Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T09:41:50.474Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 July 2022

Dimitrios Kolymbas
Affiliation:
University of Innsbruck
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abedi, S., Rechenmacher, A.L. & Orlando, A.D., Vortex formation and dissolution in sheared sands. Granular Matter (2012), 14:695705.CrossRefGoogle Scholar
Achenbach, J.D., Wave Propagation in Elastic Solids, New York: American Elsevier, 1973.Google Scholar
Amorosi, A. & Rampello, S., An experimental investigation into the mechanical behaviour of a structured stiff clay. Géotechnique (2007), 57(2):153166.CrossRefGoogle Scholar
Atkins, P.W., Physikalische Chemie, Hoboken, NJ: Verlag Chemie, 1990.Google Scholar
Bathaeian, I., Meshfree simulation of problems in soil mechanics. PhD thesis, Universität Innsbruck, 2018.Google Scholar
Becker, B. & Bürger, W., Kontinuumsmechanik, Stuttgart: Teubner, 1975.Google Scholar
Belytschko, T., Liu, W.K. & Moran, B., Nonlinear Finite Elements for Continua and Structures, New York: John Wiley & Sons, 2000.Google Scholar
Bouvard, D. & Stutz, P., Experimental study of rheological properties of a sand using a special triaxial apparatus. Geotechnical Testing Journal (1986), 9(1):1018.Google Scholar
Brekhovskikh, L.M. & Goncharov, V., Mechanics of Continua and Wave Dynamics, 2nd ed., Berlin: Springer-Verlag, 1994.Google Scholar
Budhu, M., Nonuniformities imposed by simple shear apparatus. Canadian Geotechnical Journal (1984), 21(1):125137.CrossRefGoogle Scholar
Callisto, L. & Calabresi, G., Mechanical behaviour of a natural soft clay. Géotechnique (1998), 48(4):495513.Google Scholar
Callisto, L. & Rampello, S., Shear strength and small-strain stiffness of a natural clay under general stress conditions. Géotechnique (2002), 52(8): 547560.CrossRefGoogle Scholar
Casey, B., The consolidation and strength behavior of mechanically compressed fine-grained sediments, PhD thesis, Massachusetts Institute of Technology, 2014.Google Scholar
Cnudde, V. & Boone, M.N., High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. EarthScience Reviews (2013), 123:117.Google Scholar
Davis, R.O. & Selvadurai, A.P.S., Plasticity and Geomechanics, Cambridge: Cambridge University Press, 2002.CrossRefGoogle Scholar
Desrues, J., Zweschper, B. & Vermeer, P.A., Database for tests on Hostun RF sand. Institutsbericht 13, Stuttgart: Universität Stuttgart, 2000.Google Scholar
Desrues, J., Chambon, R., Mokni, M. & Mazerolle, F., Void ratio evolution inside shear bands in triaxial sand specimen studies by computed tomography. Géotechnique (1996), 46(3):529546.Google Scholar
Desrues, J., Lanier, J. & Stutz, P., Localization of the deformation in tests on 178 sand sample. Engineering Fracture Mechanics (1985), 21(4):909921.Google Scholar
Desrues, J., Andó, E., Bésuelle, P., et al., Localisation precursors in geomaterials? In Papamichos, E. et al. (eds.), Bifurcation and Degradation of Geomaterials with Engineering Applications, Springer Series in Geomechanics and Geoengineering, Springer, 2017, pp. 310. doi: 10.1007/978-3-319-56397-8_1Google Scholar
Desrues, J., Agrilage, A., Caillerie, D., et al., From discrete to continuum modelling of boundary value problems in geomechanics: An integrated FEMDEM approach. International Journal for Numerical and Analytical Methods in Geomechanics (2019), 43(5):137.Google Scholar
Doherty, J.P., Gourvenec, S. & Gaone, F.M., Insights from a shallow foundation load-settlement prediction exercise. Computers and Geotechnics (2018), 93:269279.CrossRefGoogle Scholar
Falk, G., Theoretische Physik, Band II Thermodynamik, Berlin: Springer, 1968.Google Scholar
Ferretti, E., On nonlocality and locality: Differential and discrete formulations. In XVII National Conference Italian Group of Fracture, Bologna, Italy, June 16–18, 2004.Google Scholar
Feynman, R.P., What Do You Care What Other People Think?, New York: W. W. Norton 1988.Google Scholar
Fellin, W., Abschätzung der Standsicherheit von annähernd unendlich langen Kriechhängen. Geotechnik (2011), 34(1):2231.Google Scholar
Fellin, W. & Ostermann, A., The critical state behaviour of barodesy compared with the Matsuoka-Nakai failure criterion. International Journal for Numerical and Analytical Methods in Geomechanics (2013), 37(3):299308. doi: 10.1002/nag.1111CrossRefGoogle Scholar
Gardner, W.R., Mathematics of isothermal water conduction in unsaturated soil. http://onlinepubs.trb.org/Onlinepubs/sr/sr40/sr40-009.pdfGoogle Scholar
Glasstone, S., Laidler, K.J. & Eyring, H., The Theory of Rate Processes, New York: McGraw-Hill, 1941.Google Scholar
Godunov, S.K., Uravneniya Metematicheskoy Fiziki, Moscow: Nauka, 1971.Google Scholar
Goldscheider, M., Grenzbedingung und Fließregel von Sand. Mechanics Research Communications (1976), 3:463468.Google Scholar
Goldscheider, M., Der Erdruhedruckbeiwert K0 von Reibungsböden – Materialgesetz und Bestimmung aus einem Standard-Triaxialversuch. Geotechnik (2020), 43:8496. doi: 10.1002/gete.202000001Google Scholar
Goldscheider, M., Mechanik des Kriechens von Böschungen und Hängen. Geotechnik (2014), 37(4):259270.CrossRefGoogle Scholar
Gudehus, G., A comparison of some constitutive laws for soils under radially symmetric loading and unloading. In Wittke, W. (ed.), Proceedings of the Third International Conference on Numerical Methods in Geomechanics, Rotterdam: Balkema, 4:13091324.Google Scholar
Gudehus, G., Darve, F., & Vardoulakis, I., (eds.). Results of the International Workshop on Constitutive Relation for Soils, Rotterdam: Balkema, 1988.Google Scholar
Hanisch, J., ‘Wegweiser’ auf dem Wege zu einem neuen Abschnitt in der Geschichte des Erd-und Grundbaus. Bautechnik (1995), 74(5):287293.Google Scholar
Hattab, M. & Hicher, P.-Y., Dilating behavior of overconsolidated clay. Soils and Foundations (2004), 44(4):2740.Google Scholar
Hight, D.W., McMillan, F., Powell, J.J.M., Jardine, R.J. & Allenou, C.P. Some characteristics of London clay. In Tan, T.S. et al. (eds.), Characterisation and Engineering Properties of Natural Soils, Lisse: Swets & Zeitlinger, 2002, vol. 2, pp. 851908.Google Scholar
di Prisco, C. & Imposimato, S., Experimental analysis and theoretical interpretation of triaxial load controlled loose sand specimen collapses. Mechanics of Cohesive-Frictional Materials (1997), 2:93120.Google Scholar
Kitanidis, P.K., Introduction to Geostatistics, Cambridge: Cambridge University Press, 1999.Google Scholar
Ishihara, K., Liquefaction and flow failure during earthquakes. Géotechnique (1993), 43(3):351415.CrossRefGoogle Scholar
Khalili, N. & Khabbaz, M.H., A unique relationship for x for the determination of the shear strength of unsaturated soils, Géotechnique (1998), 48(5): 681687.Google Scholar
Knops, R.J. & Payne, L.E., Uniqueness Theorems in Linear Elasticity, Berlin: Springer, 1971.CrossRefGoogle Scholar
Kolymbas, D.A., generalized hypoelastic constitutive law. In Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco, CA: A.A.Balkema, 1985, vol. 5, p. 2626Google Scholar
Kolymbas, D. Computer-aided design of constitutive laws. International Journal for Numerical and Analytical Methods in Geomechanics (1991), 15(8):593604.CrossRefGoogle Scholar
Kolymbas, D. & Bauer, E., Soft oedometer – A new testing device and its applications for the calibration of hypoplastic constitutive laws. Geotechnical Testing Journal (1993), 16(2):263270.Google Scholar
Kolymbas, D., Incompatible deformation in rock mechanics. Acta Geotechnica (2007), 2:3340.CrossRefGoogle Scholar
Kolymbas, D., Barodesy: A new hypoplastic approach. International Journal for Numerical and Analytical Methods in Geomechanics (2012), 36:12201240. doi: 10.1002/nag.1051Google Scholar
Kolymbas, D., Wagner, P. & Blioumi, A., Cavity expansion in cross-anisotropic rock, International Journal for Numerical and Analytical Methods in Geomechanics (2012), 36(2):128139.CrossRefGoogle Scholar
Kolymbas, D., Barodesy: A new constitutive frame for soils. Géotechnique Letters (2012), 2:1723.Google Scholar
Kolymbas, D., Barodesy as a novel hypoplastic constitutive theory based on the asymptotic behaviour of sand. Geotechnik 35 (2012), 3:187197.Google Scholar
Kolymbas, D., Barodesy: The next generation of hypoplastic constitutive models for soils. In Hofstetter, G. (ed.), Computational Engineering, Berlin: Springer International Publishing, 2014, pp. 4356. doi: 10.1007/978-3-319-05933-4_2CrossRefGoogle Scholar
Kolymbas, D., Introduction to barodesy. Géotechnique (2015), 65(1):5265.Google Scholar
Kolymbas, D. & Medicus, G., Genealogy of hypoplasticity and barodesy. International Journal for Numerical and Analytical Methods in Geomechanics (2016), 40:25322550.CrossRefGoogle Scholar
Kolymbas, D., Barodesy with a new concept for critical void ratio. Geotechnik (2021), 3:166177.Google Scholar
Kolymbas, D., Bifurcation analysis for sand samples with a non-linear constitutive equation. Ingenieur-Archiv (1981), 50:131140.Google Scholar
Kolymbas, D. & Rombach, G., Shear band formation in generalized hypoelasticity, Ingenieur-Archiv (1989), 59:177186.Google Scholar
Kolymbas, D., Geotechnik, Bodenmechanik, Grundbau und Tunnelbau, 5th ed., Berlin: Springer, 2019.CrossRefGoogle Scholar
Kolymbas, D. & Bathaeian, I., Numerically obtained vortices in granular media. International Journal for Numerical and Analytical Methods in Geomechanics (2019), 43(16):25122524.Google Scholar
Kozicki, J., Niedostatkiewicz, M., Tejchman, J. & Muhlhaus, H.B. Discrete modelling results ofa direct shear test for granular materials versus FE results. Granular Matter (2013), 15(5):607627.Google Scholar
Krieg, S. & Goldscheider, M., Bodenviskosität und ihr Einfluss auf das Tragverhalten von Pfählen. Bautechnik (1998), 75:806820.Google Scholar
Krieg, S., Viskoses Bodenverhalten von Mudden, Seeton und Klei, Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, 2000.Google Scholar
Kuntsche, K., Materialverhalten von wassergesättigtem Ton bei ebenen und zylindrischen Verformungen, Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karslruhe (1982), Heft 91.Google Scholar
Kuznetsov, W.W. and Sher, E.N., The principle of homogeneous fracture of solids (in Russian), Doklady Akademii Nauk SSSR, 1976, 226(2):321323.Google Scholar
Landau, L.D. and Lifschitz, E.M., Elastizitätstheorie, Berlin: Akademie Verlag, 1966.Google Scholar
Lanczos, C., The Variational Principles of Mechanics, New York: Dover Publications, 1970.Google Scholar
Leinenkugel, H.J., Deformations-und Festigkeitsverhalten bindiger Erdstoffe. Experimentelle Ergebnisse und ihre physikalische Deutung. Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karslsruhe, 1976.Google Scholar
Lesne, A. & Laguës, M., Scale Invariance, New York: Springer, 2012.Google Scholar
Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, Cambridge: Cambridge University Press, 1892.Google Scholar
Nova, R. Plasticity theory treatment of geotechnical problems. In Smoltczyk, U. (ed.), Grundbau – Taschenbuch, Berlin: Ernst und Sohn, 2001, 6th ed. part I, pp. 307346.Google Scholar
Nova, R., Controllability of the incremental repsonse of soil specimens subjected to arbitrary loading programmes. Journal of the Mechanical Behavior of Materials https://doi.org/10.1515/JMBM.1994.5.2.193Google Scholar
Mandel, J., Consolidation des sols (Étude Mathematique). Géotechnique (1953), 3(7):287299.Google Scholar
Miura, S. & Toki, S., A sample preparation method and its effect on static and cyclic deformation – strength properties of sand. Soils and Foundations (1982), 22(1):6177.Google Scholar
Morgenstern, N.R. & Tchalenko, J.S., Microscopic structures in kaolin subjected to direct shear. Géotechnique (1967), 17(4):309328.CrossRefGoogle Scholar
Muir Wood, D., Soil Behaviour and Critical State Soil Mechanics, New York: Cambridge University Press, 1990.Google Scholar
Niemunis, A. & Herle, I., Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials (1997), 2:279299.Google Scholar
O’Donovan, J., O’Sullivan, C. & Marketos, G., Two-dimensional discrete element modelling of bender element tests on an idealised granular material. Granular Matter (2012), 14(6):733747.Google Scholar
Palmer, A. & Pearce, J., Plasticity theory without yield surfaces. In Palmer, A. (ed.), Symposium on Plasticity and Soil Mechanics (1973), Cambridge, England, pp. 188200.Google Scholar
Park, J. & Santamarina, J.C., Sand response to a large number of loading cycles under zero-lateral-strain conditions: evolution of void ratio and small-strain stiffness. Géotechnique (2019), 69(6):501513. (https://doi.org/10.1680/jgeot.17.P.124)CrossRefGoogle Scholar
Peck, R.B., Advantages and limitations of the observational method in applied soil mechanics. Géotechnique (1969), 19(2):171187.Google Scholar
Pestana, J.M., Whittle, A.J. & Gens, A., Evaluation of a constitutive model for clays and sands: Part II – clay behaviour, International Journal for Numerical and Analytical Methods in Geomechanics (2002), 26:11231146. doi: 10.1002/nag.238Google Scholar
Peters, J.F. & Walizer, L.E., Patterned nonaffine motion in granular media. Journal of Engineering Mechanics (2013), 139(10):14791490.Google Scholar
Podio-Guidugli, P. & Favata, A., Elasticity for Geotechnicians, Berlin: Springer International Publishing, 2014.Google Scholar
Polubarinova-Kotschina, P.Ya., Teoriya Dvizheniya Gruntovykh Vod, Moscow: Nauka 1977.Google Scholar
Popov, L.V., Kontaktmechanik und Reibung, Berlin: Springer, 2009.Google Scholar
Popper, K., Die offene Gesellschaft und ihre Feinde, Tübingen: Mohr, 7. Auflage 1972.Google Scholar
Poulos, H.G. & Davis, E.H., Elastic Solutions for Rock and Soil Mechanics, New York: Wiley, 1974.Google Scholar
Prandtl, L., Führer durch die Strömungslehre, Braunschweig: Vieweg, 1965.Google Scholar
Prandtl, L., Ein Gedankenmodell zur kinetischen Theorie der festen Körper, ZAMM (1928), 8(2):85106.Google Scholar
Ruina, A., Slip instability and state variable friction laws. Journal of Geophysical Research (Dec. 10, 1983), 88:359370.Google Scholar
Saada, A. & Bianchini, G., (eds.), International Workshop on Constitutive Equations for Granular Non-Cohesive Soils, Rotterdam: Balkema, 1987.Google Scholar
Schofield, A. & Wroth, P., Critical State Soil Mechanics, London: McGraw-Hill, 1968.Google Scholar
Schofield, A.N., Interlocking, and peak and design strengths, Géotechnique (2006), 56(5):357358.Google Scholar
Schubert, H., Kapillarität in porösen Feststoffsystemen, Berlin: Springer, 1982.CrossRefGoogle Scholar
Schweiger, H.F., Results from two geotechnical benchmark problems. In Cividini, A. (ed.), Proc. 4th Europ. Conf. Num. Methods in Geotechnical Engineering, Wien, New York: Springer 1998, 645654.Google Scholar
Skempton, A.W., Effective stress in soils, concrete and rock. Proceed. Conf. on Pore Pressure and Suction in Soils, London: Butterworth, 1960, 416.Google Scholar
Sokolovski, V.V., Statics of Granular Media, New York: Pergamon Press, 1965.Google Scholar
Sommerfeld, A., Mechanik der deformierbaren Medien, Leipzig: Akademische Verlagsgesellschaft, 1964.Google Scholar
Strubecker, K., Einführung in die Höhere Mathematik, Band I, Munich: Oldenbourg, 1956.Google Scholar
Strubecker, K., Einführung in die Höhere Mathematik, Band II, Munich: Oldenbourg, 1967.Google Scholar
Sultan, N., Cui, Y.-J. & Delage, P., Yielding and plastic behaviour of Boom clay. Géotechnique (2010), 9:657666. doi: 10.1680/geot.7.00142Google Scholar
Tamagnini, C., Viggiani, G. & Chambon, R., Some remarks on shear band analysis in hypoplasticity. In Mühlhaus, H.-B. et al. (eds.), Bifurcation and Localisation Theory in Geomechanics, Lisse: Swets & Zeitlinger (2001), pp. 19.Google Scholar
Tatsuoka, F., di Benedetto, H., Enomoto, T., et al., Various viscosity types of geomaterials in shear and their mathematical expression. Soils and Foundations (2008), 48(1):4160.Google Scholar
Taylor, D.W., Fundamentals of Soil Mechanics, New York: Wiley, 1966.Google Scholar
von Terzaghi, K., Relation between soil mechanics and foundation engineering. In Proceed. Intern. Conf. SMFE, Vol.III, Cambridge, MA: Harvard University Press, 1936, 1318.Google Scholar
Thornton, C. & Zhang, L., A numerical examination of shear banding and simple shear non-coaxial flow rules. Philos. Mag. (2006), 86(21–22): 34253452.Google Scholar
Tonti, E., On The Formal Structure of Physical Theories, Milan: Istituto di Matematica del Politecnico di Milano 2004.Google Scholar
Topolnicki, M., Observed Stress-Strain Behaviour of Remoulded Saturated Clay and Examination of Two Constitutive Models. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe (1987), Heft 107.Google Scholar
Tordesillas, A., Pucilowski, S., Walker, D.M., Peters, J.F. & Walizer, L.E., Micromechanics of vortices in granular media: connection to shear bands and implications for continuum modelling of failure in geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics (2014), 38:12471275. doi: 10.1002/nag.2258Google Scholar
Truesdell, C.A. & Noll, W., The non-linear field theories of mechanics. In Flügge, S. (ed.), Encyclopedia of Physics, Vol. IIIc. Berlin: Springer, 1965.Google Scholar
Truesdell, C. & Toupin, R.A., Principles of classical mechanics and field theory, In Flügge, S. (ed.), Encyclopedia of Physics, Vol. III/1. Berlin: Springer, 1960.Google Scholar
Truesdell, C., An Idiots Fugitive Essays on Science, New York: Springer, 1984.Google Scholar
Timoshenko, S.P. & Goodier, J.N., Theory of Elasticity, 3rd ed., New York: McGraw-Hill, 1970.Google Scholar
Verdugo, R. & Ishihara, K., The steady state of sandy soils. Soils and Foundations (1996), 36(2):8191.Google Scholar
Verruijt, A., Soil Mechanics, Delft University of Technology, 2012, geo.verruijt.net/software/SoilMechBook2012.pdfGoogle Scholar
Wichtmann, T., Soil behaviour under cyclic loading – experimental observations, constitutive description and applications, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik am Karlsruher Institut für Technologie (KIT) (2016), Heft 181. www.torsten-wichtmann.deGoogle Scholar
Wilmanski, K., Thermomechanics of Continua, Berlin: Springer, 1998.Google Scholar
Witham, G.B., Linear and Nonlinear Waves, New York: John Wiley & Sons, 1973.Google Scholar
Wolf, J.P. & Deeks, A.J., Foundation Vibration Analysis: A Strength of Materials Approach, New York: Elsevier, 2004.Google Scholar
von Wolffersdorff, P.A., Feldversuch an einer Spundwand in Sandboden: Versuchsergebnisse und Prognosen. Geotechnik (1994), 17(2):7383.Google Scholar
Yong, R. & Darve, F., (eds.), Workshop on Limit Equilibrium, Plasticity and Generalized Stress-Strain in Geotechnical Engineering, McGill University, Montreal: ASCE, 1980.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Dimitrios Kolymbas, University of Innsbruck
  • Book: A Primer on Theoretical Soil Mechanics
  • Online publication: 14 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781009210348.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Dimitrios Kolymbas, University of Innsbruck
  • Book: A Primer on Theoretical Soil Mechanics
  • Online publication: 14 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781009210348.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Dimitrios Kolymbas, University of Innsbruck
  • Book: A Primer on Theoretical Soil Mechanics
  • Online publication: 14 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781009210348.023
Available formats
×