Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T22:37:53.228Z Has data issue: false hasContentIssue false

4 - Numerical Homogenization

from Part I - The Sobolev Space Setting

Published online by Cambridge University Press:  10 October 2019

Houman Owhadi
Affiliation:
California Institute of Technology
Clint Scovel
Affiliation:
California Institute of Technology
Get access

Summary

This chapter reviews classical homogenizationconcepts such as the cell problem; correctors; compactness by compensation; oscillating test functions; H, G, and Gamma convergence; and periodic and stochastic homogenization. Numerical homogenization is presented as the problem of identifying basis functions that are both as accurate and as localized as possible. Optimal recovery splines constructed from simple measurement functions (Diracs, indicator functions, and local polynomials) provide a simple to solution to this problem: they achieve the Kolmogorov n-width optimal accuracy (up to a constant) and they are exponentially localized. Current numerical homogenization methods are reviewed. Gamblets, the LOD method, the variational multiscale method, andpolyharmonic splines are shown to have a common characterization as optimal recovery splines.

Type
Chapter
Information
Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization
From a Game Theoretic Approach to Numerical Approximation and Algorithm Design
, pp. 38 - 62
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Numerical Homogenization
  • Houman Owhadi, California Institute of Technology, Clint Scovel, California Institute of Technology
  • Book: Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization
  • Online publication: 10 October 2019
  • Chapter DOI: https://doi.org/10.1017/9781108594967.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Numerical Homogenization
  • Houman Owhadi, California Institute of Technology, Clint Scovel, California Institute of Technology
  • Book: Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization
  • Online publication: 10 October 2019
  • Chapter DOI: https://doi.org/10.1017/9781108594967.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Numerical Homogenization
  • Houman Owhadi, California Institute of Technology, Clint Scovel, California Institute of Technology
  • Book: Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization
  • Online publication: 10 October 2019
  • Chapter DOI: https://doi.org/10.1017/9781108594967.007
Available formats
×