Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-nk9cn Total loading time: 0 Render date: 2025-12-07T09:58:01.300Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  28 November 2025

Joseph O'Rourke
Affiliation:
Smith College, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abel, Z., Demaine, E. D., Demaine, M. L., Itoh, J.-i., Lubiw, A., Nara, C., and O’Rourke, J. (2014). Continuously flattening polyhedra using straight skeletons. In Proc. 30th Ann. Symp. Comput. Geom., pp. 396405. Association for Computing Machinery.Google Scholar
Akitaya, H. A., Cheung, K. C., Demaine, E. D., Horiyama, T., Hull, T. C., Ku, J. S., Tachi, T., and Uehara, R. (2016). Box pleating is hard. In Discrete Comput. Geom. Graphs: 18th Japan Conf. JCDCGG 2015, Kyoto, Japan., pp. 167179. Springer.10.1007/978-3-319-48532-4_15CrossRefGoogle Scholar
Akitaya, H. A., Demaine, E. D., Horiyama, T., Hull, T. C., Ku, J. S., and Tachi, T. (2020). Rigid foldability is NP-hard. J. Comput. Geom. 11 (1), 93124.Google Scholar
Azam, A., Leong, T. G., Zarafshar, A. M., and Gracias, D. H. (2009). Compactness determines the success of cube and octahedron self-assembly. PloS one 4 (2), e4451.10.1371/journal.pone.0004451CrossRefGoogle ScholarPubMed
Bern, M., Demaine, E. D., Eppstein, D., and Hayes, B. (2002). A disk-packing algorithm for an origami magic trick. In Origami3: Proc. 3rd Internat. Meet. Origami Sci., Math., Educ. (2001), pp. 1728. A K Peters.Google Scholar
Bern, M. and Hayes, B. (1996). The complexity of flat origami. In Proc. 7th ACM-SIAM Sympos. Discrete Algorithms, pp. 175183. Association for Computing Machinery.Google Scholar
Cepelewicz, J. (2024). How to build an origami computer. Quanta Magazine. 30 January 2024.Google Scholar
Cook, M. (2004). Universality in elementary cellular automata. Complex Systems 15 (1), 140.10.25088/ComplexSystems.15.1.1CrossRefGoogle Scholar
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to Algorithms (4th ed.). MIT Press.Google Scholar
Demaine, E. D., Demaine, M. L., Hart, V., Price, G. N., and Tachi, T. (2011a). (Non) existence of pleated folds: How paper folds between creases. Graphs Combinatorics 27, 377397.CrossRefGoogle Scholar
Demaine, E. D., Demaine, M. L., Iacono, J., and Langerman, S. (2007). Wrapping the Mozartkugel. In 24th Euro. Workshop Comput. Geom. (EuroCG 2007), Graz, Austria, pp. 1417.Google Scholar
Demaine, E. D., Demaine, M. L., and Koschitz, D. (2011b). Reconstructing David Huffmans legacy in curved-crease folding. Origami5: Proc. 5th Internat. Meet. Origami Sci., Math., Educ. (2011), pp. 3952. CRC Press.Google Scholar
Demaine, E. D., Demaine, M. L., Koschitz, D., and Tachi, T. (2015). A review on curved creases in art, design and mathematics. Symmetry: Culture Sci. 26 (2), 145161.Google Scholar
Demaine, E. D., Mundilova, K., and Tachi, T. (2022). Locally flat and rigidly foldable discretizations of conic crease patterns with reflecting rule lines. In Internat. Conf. Geom. Graphics, pp. 185196. Springer.Google Scholar
Demaine, E. D. and O’Rourke, J. (2007). Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press.CrossRefGoogle Scholar
Demaine, E. D. and Tachi, T. (2017). Origamizer: A practical algorithm for folding any polyhedron. In 33rd Internat. Symp. Comput. Geom. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.Google Scholar
Devadoss, S. and O’Rourke, J. (2025). Discrete and Computational Geometry (2 ed.). Princeton University Press.Google Scholar
Eppstein, D. (2024). Computational complexities of folding. arXiv:2410.07666.Google Scholar
Farnham, J., Hull, T. C., and Rumbolt, A. (2022). Rigid folding equations of degree-6 origami vertices. Proc. Royal Soc. A 478 (2260), 20220051.Google ScholarPubMed
Felton, S., Tolley, M., Demaine, E. D., Rus, D., and Wood, R. (2014). A method for building self-folding machines. Science 345 (6197), 644646.10.1126/science.1252610CrossRefGoogle ScholarPubMed
Fuchs, D. and Tabachnikov, S. (1999). More on paperfolding. Amer. Math. Monthly 106 (1), 2735.10.1080/00029890.1999.12005003CrossRefGoogle Scholar
Gu, H., Möckli, M., Ehmke, C., Kim, M., Wieland, M., Moser, S., Bechinger, C., Boehler, Q., and Nelson, B. J. (2023). Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nat. Commun. 14 (1), 1263.Google ScholarPubMed
Horiyama, T. and Shoji, W. (2011). Edge unfoldings of Platonic solids never overlap. In Proc. 23rd Canad. Conf. Comput. Geom., 6570.Google Scholar
Houdini, H. (1922). Paper Magic, pp. 176177. E. P. Dutton & Company. Reprinted by Magico Magazine.Google Scholar
Huffman, D. A. (1976). Curvature and creases: A primer on paper. IEEE Trans. Comput. C-25, 10101019.CrossRefGoogle Scholar
Hull, T. C. (2020). Origametry: Mathematical Methods in Paper Folding. Cambridge University Press.10.1017/9781108778633CrossRefGoogle Scholar
Hull, T. C. and Urbanski, M. T. (2018). Rigid foldability of the augmented square twist. arXiv:1809.04899 [math.MG].Google Scholar
Hull, T. C. and Zakharevich, I. (2023). Flat origami is Turing complete. arXiv:2309.07932.Google Scholar
Itoh, J.-i., Nara, C., and Vîlcu, C. (2012). Continuous flattening of convex polyhedra. In Comput. Geom., Volume 7579 of Lecture Notes in Computer Science, pp. 8597. Springer.10.1007/978-3-642-34191-5_8CrossRefGoogle Scholar
Jungck, J. R., Brittain, S., Plante, D., and Flynn, J. (2022). Self-assembly, selffolding, and origami: Comparative design principles. Biomimetics 8 (1), 12.10.3390/biomimetics8010012CrossRefGoogle ScholarPubMed
Kuribayashi, K., Tsuchiya, K., You, Z., Tomus, D., Umemoto, M., Ito, T., and Sasaki, M. (2006). Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng: A 419 (1-2), 131137.10.1016/j.msea.2005.12.016CrossRefGoogle Scholar
Lang, R. J. (1996). A computational algorithm for origami design. In Proc. 12th Ann. Sympos. Comput. Geom., Philadelphia, PA, pp. 98105.10.1145/237218.237249CrossRefGoogle Scholar
Lang, R. J. (2003). Origami Design Secrets: Mathematical Methods for an Ancient Art (1st ed.). A K Peters.CrossRefGoogle Scholar
Lang, R. J. (2012). Origami Design Secrets: Mathematical Methods for an Ancient Art (2nd ed.). A K Peters/CRC Press.Google Scholar
Lang, R. J. (2017). Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami. AK Peters/CRC Press.10.1201/9781315157030CrossRefGoogle Scholar
Lang, R. J., Magleby, S., and Howell, L. (2016). Single degree-of-freedom rigidly foldable cut origami flashers. J. Mech. Robot. 8 (3), 031005.10.1115/1.4032102CrossRefGoogle Scholar
Lukasheva, E. (2021). Curved Origami: Unlocking the Secrets of Curved Folding in Easy Steps. New Origami Publishing.Google Scholar
Ma, J., Feng, H., Chen, Y., Hou, D., and You, Z. (2020). Folding of tubular waterbomb. Research Vol. 2020, Article ID: 1735081.CrossRefGoogle ScholarPubMed
Morgan, T. D. (2012). Map folding. M. Eng. thesis, Massachusetts Institute of Technology.Google Scholar
Mundilova, K. (2019). On mathematical folding of curved crease origami: Sliding developables and parametrizations of folds into cylinders and cones. Comput.- Aided Des. 115, 3441.10.1016/j.cad.2019.05.026CrossRefGoogle Scholar
Mundilova, K. (2024). Gluing and Creasing Paper along Curves: Computational Methods for Analysis and Design. Ph. D. thesis, Massachusetts Institute of Technology.Google Scholar
Mundilova, K. and Wills, T. (2018). Folding the Vesica Piscis. In Proc. Bridges 2018: Math., Art, Music, Arch., Educ., Cult., pp. 535538.Google Scholar
O’Rourke, J. (2011). How to Fold It: The Mathematics of Linkages, Origami, and Polyhedra. Cambridge University Press.10.1017/CBO9780511975028CrossRefGoogle Scholar
O’Rourke, J. (2022). Pop-Up Geometry: The Mathematics Behind Pop-Up Cards. Cambridge University Press.10.1017/9781009093095CrossRefGoogle Scholar
O’Rourke, J. (2024). Review of Origametry: Mathematical Methods in Paper Folding, by Thomas Hull. Math. Intell. 47 (1).Google Scholar
Randall, C. L., Gultepe, E., and Gracias, D. H. (2012). Self-folding devices and materials for biomedical applications. Trends Biotechnol. 30 (3), 138146.10.1016/j.tibtech.2011.06.013CrossRefGoogle ScholarPubMed
Resch, R. D. (1974). The space curve as a folded edge. In Comput. Aided Geom. Des., pp. 255258. Elsevier.10.1016/B978-0-12-079050-0.50017-5CrossRefGoogle Scholar
Santangelo, C. D. (2017). Extreme mechanics: Self-folding origami. Ann. Rev. Conden. Ma. P. 8 (1), 165183.10.1146/annurev-conmatphys-031016-025316CrossRefGoogle Scholar
Sipser, M. (2012). Introduction to the Theory of Computation (3rd ed.). Cengage Learning.Google Scholar
Stern, M., Pinson, M. B., and Murugan, A. (2017). The complexity of folding self-folding origami. Phys. Rev. X 7 (4), 041070.Google Scholar
Tabachnikov, S. (2014). Dragon curves revisited. Math. Intell. 36, 1317.10.1007/s00283-013-9428-yCrossRefGoogle Scholar
Tachi, T. (2009). Origamizing polyhedral surfaces. IEEE Trans. Vis. Comp. Graphics 16 (2), 298311.CrossRefGoogle Scholar
Tachi, T. (2011). Rigid-foldable thick origami. Origami5: Proc. 5th Internat. Meet. Origami Sci., Math., Educ. (2011), pp. 253264. CRC Press.10.1201/b10971-24CrossRefGoogle Scholar
Tachi, T. (2013). Composite rigid-foldable curved origami structure. Proc. Transformables, 1820.Google Scholar
Tachi, T. and Hull, T. C. (2017). Self-foldability of rigid origami. J. Mech. Robot. 9 (2), 021008.10.1115/1.4035558CrossRefGoogle Scholar
Uehara, R. (2020). Introduction to Computational Origami. Springer.10.1007/978-981-15-4470-5CrossRefGoogle Scholar
Wolfram, S. (2002). A New Kind of Science. Wolfram Media Inc.Google Scholar
Zhu, Y. and Filipov, E. T. (2024). Large-scale modular and uniformly thick origami-inspired adaptable and load-carrying structures. Nat. Commun. 15 (1), 2353.10.1038/s41467-024-46667-0CrossRefGoogle ScholarPubMed

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Joseph O'Rourke, Smith College, Massachusetts
  • Book: The Mathematics of Origami
  • Online publication: 28 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781009687362.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Joseph O'Rourke, Smith College, Massachusetts
  • Book: The Mathematics of Origami
  • Online publication: 28 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781009687362.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Joseph O'Rourke, Smith College, Massachusetts
  • Book: The Mathematics of Origami
  • Online publication: 28 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781009687362.014
Available formats
×