Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T21:23:56.030Z Has data issue: false hasContentIssue false

Section 5: - Objectifying Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abdo, WF, van de Warrenburg, BPC, Burn, DJ, et al. The clinical approach to movement disorders. Nat Rev Neurol 2010;6:2937.CrossRefGoogle ScholarPubMed
Hughes, AJ, Daniel, SE, Kilford, L, Lees, AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurology Neurosurg Psychiatry 1992;55: 181184.CrossRefGoogle ScholarPubMed
Hughes, AJ, Daniel, SE, Ben‐Shlomo, Y, et al. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002;125:861870.CrossRefGoogle Scholar
Köllensperger, M, Geser, F, Seppi, K, et al. Red flags for multiple system atrophy. Movement Disord 2008;23:10931099.CrossRefGoogle ScholarPubMed
Williams, DR, Lees, AJ. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 2009;8:270279.CrossRefGoogle ScholarPubMed
Albanese, A, Bhatia, K, Bressman, SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013;28:863873.CrossRefGoogle ScholarPubMed
Lees, AJ, Hardie, RJ, Stern, GM. Kinesigenic foot dystonia as a presenting feature of Parkinson’s disease. J Neurology Neurosurg Psychiatry 1984;47:885.CrossRefGoogle ScholarPubMed
Kang, UJ, Burke, RE, Fahn, S. Natural history and treatment of tardive dystonia. Mov Disord 1986;1:193208.CrossRefGoogle ScholarPubMed
Tadic, V, Kasten, M, Brüggemann, N, et al. Dopa-responsive dystonia revisited: diagnostic delay, residual signs, and nonmotor signs. Arch Neurol 2012;69:15581562.CrossRefGoogle ScholarPubMed
Heilman, KM. Orthostatic tremor. Arch Neurol 1984;41:880881.CrossRefGoogle ScholarPubMed
Silverdale, MA, Schneider, SA, Bhatia, KP, et al. The spectrum of orolingual tremor – a proposed classification system. Mov Disord 2008;23:159167.CrossRefGoogle ScholarPubMed
Quinn, NP, Schneider, SA, Schwingenschuh, P, et al. Tremor – some controversial aspects. Mov Disord 2011;26:1823.CrossRefGoogle ScholarPubMed
Schwingenschuh, P, Ruge, D, Edwards, MJ, et al. Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson’s disease: a clinical and electrophysiological study. Mov Disord 2010;25:560569.CrossRefGoogle ScholarPubMed
Micieli, JA, Newman, NJ, Kase, CS, et al. Teaching video neuroimages: opsoclonus in anti-DPPX encephalitis. Neurology 2019;92:e2298e2298.CrossRefGoogle ScholarPubMed
Krogias, C, Hoepner, R, Müller, A, et al. Successful treatment of anti-Caspr2 syndrome by interleukin 6 receptor blockade through tocilizumab. JAMA Neurol 2013;70:10561059.CrossRefGoogle ScholarPubMed
Gövert, F, Witt, K, Erro, R, et al. Orthostatic myoclonus associated with Caspr2 antibodies. Neurology 2016;86:13531355.CrossRefGoogle ScholarPubMed
Jesús, S, Latorre, A, Vinuela, A, et al. Stimulus sensitive foot myoclonus: a clue to coeliac disease. Mov Disord Clin Pract 2019;6:320323.CrossRefGoogle ScholarPubMed
Schneider, SA, Lang, AE, Moro, E, et al. Characteristic head drops and axial extension in advanced chorea–acanthocytosis. Mov Disord 2010;25:14871491.CrossRefGoogle ScholarPubMed
Hawley, JS, Weiner, WJ. Hemiballismus: current concepts and review. Parkinsonism Relat Disord 2012;18:125129.CrossRefGoogle ScholarPubMed
Schwartz, MA, Selhorst, JB, Ochs, AL, et al. Oculomasticatory myorhythrma: a unique movement disorder occurring in Whipple’s disease. Ann Neurol 1986;20:677683.CrossRefGoogle ScholarPubMed
Kleinig, TJ, Thompson, PD, Matar, W, et al. The distinctive movement disorder of ovarian teratoma-associated encephalitis. Mov Disord 2008;23:12561261.CrossRefGoogle ScholarPubMed

References

Nunnally, JC, Bernstein, IH. Psychometric Theory. New York: McGraw Hill; 1994.Google Scholar
Hobart, JC, Cano, SJ, Zajicek, JP, Thompson, AJ. Rating scales as outcome measures for clinical trials in neurology: problems, solutions, and recommendations. Lancet Neurol 2007;6(12):10941105.CrossRefGoogle ScholarPubMed
Terwee, CB, Bot, SDM, de Boer, MR, et al. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol 2007;60(1):3442.CrossRefGoogle ScholarPubMed
Streiner, DL, Norman, GR. Health Measurement Scales. A Practical Guide to Their Development and Use, 4th ed. Oxford: Oxford University Press; 2008.CrossRefGoogle Scholar
Scientific Advisory Committee of the Medical Outcomes Trust. Assessing health status and quality-of-life instruments: attributes and review criteria. Qual Life Res 2002;11(3):193205.CrossRefGoogle Scholar
Mokkink, LB, Terwee, CB, Patrick, DL, et al. The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study. Qual Life Res 2010;19(4):539549.CrossRefGoogle ScholarPubMed
Martinez-Martin, P, Rodriguez-Blazquez, C, Kurtis, MM. Scales and tests in movement disorders. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders: Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 755770.Google Scholar
Movement Disorders Society. MDS Rating Scales [Internet]. [cited 2021 Jul 10]. Available from: www.movementdisorders.org/MDS/MDS-Rating-Scales.htmGoogle Scholar
Barnes, TR. A rating scale for drug-induced akathisia. Br J Psychiatry 1989;154:672676.CrossRefGoogle ScholarPubMed
Schmitz-Hübsch, T, du Montcel, ST, Baliko, L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006;66(11):17171720.CrossRefGoogle ScholarPubMed
Perez‐Lloret, S, Warrenburg, B, Rossi, M, et al. Assessment of ataxia rating scales and cerebellar functional tests: critique and recommendations. Mov Disord 2021;36(2):283297.CrossRefGoogle ScholarPubMed
Trouillas, P, Takayanagi, T, Hallett, M, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 1997;145(2):205211.CrossRefGoogle ScholarPubMed
Subramony, SH, May, W, Lynch, D, et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology 2005;64(7):12611262.CrossRefGoogle ScholarPubMed
Huntington Study Group. Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 1996;11(2):136142.CrossRefGoogle Scholar
Mestre, TA, Forjaz, MJ, Mahlknecht, P, et al. Rating scales for motor symptoms and signs in Huntington’s disease: critique and recommendations. Mov Disord Clin Pract 2018;5(2):111117.CrossRefGoogle ScholarPubMed
Siesling, S, Zwinderman, AH, van Vugt, JP, Kieburtz, K, Roos, RA. A shortened version of the motor section of the Unified Huntington’s Disease Rating Scale. Mov Disord 1997;12(2):229234.CrossRefGoogle ScholarPubMed
Bylsma, FW, Rothlind, J, Hall, MR, Folstein, SE, Brandt, J. Assessment of adaptive functioning in Huntington’s disease. Mov Disord 1993;8(2):183190.CrossRefGoogle ScholarPubMed
Timman, R, Claus, H, Slingerland, H, et al. Nature and development of Huntington disease in a nursing home population: the Behavior Observation Scale Huntington (BOSH). Cogn Behav Neurol 2005;18(4):215222.CrossRefGoogle Scholar
Teixeira, AL Jr, Maia, DP, Cardoso, F. UFMG Sydenham’s chorea rating scale (USCRS): reliability and consistency. Mov Disord 2005;20(5):585591.CrossRefGoogle ScholarPubMed
Simpson, GM, Angus, JW. A rating scale for extrapyramidal side effects. Acta Psychiatr Scand Suppl 1970;212:1119.CrossRefGoogle ScholarPubMed
Chouinard, G, Rosschouinard, A, Annable, L, Jones, B. Extrapyramidal Symptom Rating Scale. Can J Neurol Sci 1980;7(3):233233.Google Scholar
Burke, RE, Fahn, S, Marsden, CD, et al. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology 1985;35(1):7377.CrossRefGoogle ScholarPubMed
Albanese, A, Sorbo, FD, Comella, C, et al. Dystonia rating scales: critique and recommendations. Mov Disord 2013;28(7):874883.CrossRefGoogle ScholarPubMed
Comella, CL, Leurgans, S, Wuu, J, Stebbins, GT, Chmura, T. Rating scales for dystonia: a multicenter assessment. Mov Disord 2003;18(3):303312.CrossRefGoogle ScholarPubMed
Jankovic, J, Kenney, C, Grafe, S, Goertelmeyer, R, Comes, G. Relationship between various clinical outcome assessments in patients with blepharospasm. Mov Disord 2009;24(3):407413.CrossRefGoogle ScholarPubMed
Consky, ES, Lang, AE. Clinical assessments of patients with cervical dystonia. In: Jankovic, J, Hallett, M, eds. Therapy with Botulinum Toxin. New York: Marcel Dekker; 1994: 211237.Google Scholar
Jost, WH, Hefter, H, Stenner, A, Reichel, G. Rating scales for cervical dystonia: a critical evaluation of tools for outcome assessment of botulinum toxin therapy. J Neural Transm (Vienna) 2013;120(3):487496.CrossRefGoogle ScholarPubMed
O’Brien, C, Brashear, A, Cullis, P, et al. Cervical dystonia severity scale reliability study. Mov Disord 2001;16(6):10861090.CrossRefGoogle ScholarPubMed
Tsui, JK, Eisen, A, Stoessl, AJ, Calne, S, Calne, DB. Double-blind study of botulinum toxin in spasmodic torticollis. Lancet 1986;2(8501):245247.CrossRefGoogle ScholarPubMed
Wissel, J, Kabus, C, Wenzel, R, et al. Botulinum toxin in writer’s cramp: objective response evaluation in 31 patients. J Neurol Neurosurg Psychiatry 1996;61(2):172175.CrossRefGoogle ScholarPubMed
Yoshida, K. Development and validation of a disease-specific Oromandibular Dystonia Rating Scale (OMDRS). Front Neurol 2020;11:583177.CrossRefGoogle ScholarPubMed
Jacobson, BH, Johnson, A, Grywalski, C, et al. The Voice Handicap Index (VHI): development and validation. Am J Speech Lang Pathol 1997;6(3):6670.CrossRefGoogle Scholar
Carding, PN, Horsley, IA, Docherty, GJ. A study of the effectiveness of voice therapy in the treatment of 45 patients with nonorganic dysphonia. J Voice 1999;13(1):72104.CrossRefGoogle ScholarPubMed
Martí, MJ, Tolosa, E, Alom, J. Botulinum toxin in hemifacial spasm: a double-blind controlled trial. In: Bartko, D, ed. New Trends in Clinical Neuropharmacology: Calcium Antagonists, Acute Neurology, Headache and Movement Disorders. London: John Libbey & Co.; 1988.Google Scholar
Frucht, SJ, Leurgans, SE, Hallett, M, Fahn, S. The Unified Myoclonus Rating Scale. Adv Neurol 2002;89:361376.Google ScholarPubMed
Hyppönen, J, Hakala, A, Annala, K, et al. Automatic assessment of the myoclonus severity from videos recorded according to standardized Unified Myoclonus Rating Scale protocol and using human pose and body movement analysis. Seizure 2020;76:7278.CrossRefGoogle ScholarPubMed
Wenning, GK, Tison, F, Seppi, K, et al. Development and validation of the Unified Multiple System Atrophy Rating Scale (UMSARS). Mov Disord 2004;19(12):13911402.CrossRefGoogle ScholarPubMed
Matsushima, M, Yabe, I, Oba, K, et al. Comparison of different symptom assessment scales for multiple system atrophy. Cerebellum 2016;15(2):190200.CrossRefGoogle ScholarPubMed
Fahn, S, Elton, R, UPDRS Program Members. Unified Parkinson’s disease rating scale. In: Fahn, S, Marsden, C, Goldstein, M, Calne, D, eds. Recent Developments in Parkinson’s Disease. Florham Park, NJ: Macmillan Healthcare Information; 1987: 153163.Google Scholar
Movement Disorder Society Task Force on Rating Scales for Parkinsons’s Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord 2003;18(7):738750.CrossRefGoogle Scholar
Goetz, CG, Fahn, S, Martinez-Martin, P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov Disord 2007;22(1):4147.CrossRefGoogle ScholarPubMed
Regnault, A, Boroojerdi, B, Meunier, J, et al. Does the MDS-UPDRS provide the precision to assess progression in early Parkinson’s disease? Learnings from the Parkinson’s progression marker initiative cohort. J Neurol 2019;266(8):19271936.CrossRefGoogle ScholarPubMed
Horváth, K, Aschermann, Z, Kovács, M, et al. Minimal clinically important differences for the experiences of daily living parts of Movement Disorder Society-sponsored unified Parkinson’s disease rating scale. Mov Disord 2017;32(5):789793.CrossRefGoogle ScholarPubMed
Horváth, K, Aschermann, Z, Ács, P, et al. Minimal clinically important difference on the Motor Examination part of MDS-UPDRS. Parkinsonism Relat Disord 2015;21(12):14211426.CrossRefGoogle ScholarPubMed
Jha, A, Menozzi, E, Oyekan, R, et al. The CloudUPDRS smartphone software in Parkinson’s study: cross-validation against blinded human raters. NPJ Parkinsons Dis 2020;6(1):36.CrossRefGoogle ScholarPubMed
Schneider, RB, Myers, TL, Tarolli, CG, et al. Remote administration of the MDS-UPDRS in the time of COVID-19 and beyond. J Parkinsons Dis 2020;10(4):13791382.CrossRefGoogle ScholarPubMed
Stocchi, F, Radicati, FG, Chaudhuri, KR, et al. The Parkinson’s Disease Composite Scale: results of the first validation study. Eur J Neurol 2018;25(3):503511.CrossRefGoogle ScholarPubMed
Martinez-Martin, P, Radicati, FG, Rodriguez Blazquez, C, et al. Extensive validation study of the Parkinson’s Disease Composite Scale. Eur J Neurol 2019;26(10):12811288.CrossRefGoogle ScholarPubMed
Balestrino, R, Hurtado-Gonzalez, CA, Stocchi, F, et al. Applications of the European Parkinson’s Disease Association-sponsored Parkinson’s Disease Composite Scale (PDCS). NPJ Parkinsons Dis 2019;5:26.CrossRefGoogle ScholarPubMed
Pintér, D, Martinez-Martin, P, Janszky, J, Kovács, N. The Parkinson’s Disease Composite Scale is adequately responsive to acute levodopa challenge. Parkinsons Dis 2019;2019:1412984.Google ScholarPubMed
Hoehn, MM, Yahr, MD. Parkinsonism: onset, progression and mortality. Neurology 1967;17(5):427442.CrossRefGoogle ScholarPubMed
Goetz, CG, Poewe, W, Rascol, O, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord 2004;19(9):10201028.CrossRefGoogle ScholarPubMed
Martínez-Martín, P, Rodríguez-Blázquez, C, Forjaz, MJ, de Pedro, J. The Clinical Impression of Severity Index for Parkinson’s disease: international validation study. Mov Disord 2009;24(2):211217.CrossRefGoogle ScholarPubMed
Marinus, J, Visser, M, Stiggelbout, AM, et al. A short scale for the assessment of motor impairments and disabilities in Parkinson’s disease: the SPES/SCOPA. J Neurol Neurosurg Psychiatry 2004;75(3):388395.CrossRefGoogle Scholar
Bianchi, MLE, Riboldazzi, G, Mauri, M, Versino, M. Efficacy of safinamide on non-motor symptoms in a cohort of patients affected by idiopathic Parkinson’s disease. Neurol Sci 2019;40(2):275279.CrossRefGoogle Scholar
Jost, ST, Sauerbier, A, Visser-Vandewalle, V, et al. A prospective, controlled study of non-motor effects of subthalamic stimulation in Parkinson’s disease: results at the 36-month follow-up. J Neurol Neurosurg Psychiatry 2020;91(7):687694.CrossRefGoogle ScholarPubMed
McRae, C, Diem, G, Vo, A, O’Brien, C, Seeberger, L. Schwab & England: standardization of administration. Mov Disord 2000;15(2):335336.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Goetz, CG, Nutt, JG, Stebbins, GT. The Unified Dyskinesia Rating Scale: presentation and clinimetric profile. Mov Disord 2008;23(16):23982403.CrossRefGoogle ScholarPubMed
Ren, X, Lin, J, Luo, S, Goetz, CG, Stebbins, GT, Cubo, E. Successful use of the Unified Dyskinesia Rating Scale regardless of PD- or dyskinesia-duration. Parkinsonism Relat Disord 2019;67:113116.CrossRefGoogle ScholarPubMed
Luo, S, Liu, Y, Teresi, JA, Stebbins, GT, Goetz, CG. Differential item functioning in the Unified Dyskinesia Rating Scale (UDysRS). Mov Disord 2017;32(8):12441249.CrossRefGoogle ScholarPubMed
Luo, S, Ren, X, Han, W, Goetz, CG, Stebbins, GT. Missing data in the Unified Dysksinesia Rating Scale (UDysRS). Mov Disord Clin Pract 2018;5(5):523526.CrossRefGoogle ScholarPubMed
Mestre, TA, Beaulieu-Boire, I, Aquino, CC, et al. What is a clinically important change in the Unified Dyskinesia Rating Scale in Parkinson’s disease? Parkinsonism Relat Disord 2015;21(11):13491354.CrossRefGoogle ScholarPubMed
Colosimo, C, Martínez-Martín, P, Fabbrini, G, et al. Task force report on scales to assess dyskinesia in Parkinson’s disease: critique and recommendations. Mov Disord 2010;25(9):11311142.CrossRefGoogle ScholarPubMed
Goetz, CG, Stebbins, GT, Shale, HM, et al. Utility of an objective dyskinesia rating scale for Parkinson’s disease: inter- and intrarater reliability assessment. Mov Disord 1994;9(4):390394.CrossRefGoogle ScholarPubMed
Stacy, M, Bowron, A, Guttman, M, et al. Identification of motor and nonmotor wearing-off in Parkinson’s disease: comparison of a patient questionnaire versus a clinician assessment. Mov Disord 2005;20(6):726733.CrossRefGoogle ScholarPubMed
Stacy, M, Hauser, R. Development of a patient questionnaire to facilitate recognition of motor and non-motor wearing-off in Parkinson’s disease. J Neural Transm (Vienna) 2007;114(2):211217.CrossRefGoogle ScholarPubMed
Stacy, MA, Murphy, JM, Greeley, DR, et al. The sensitivity and specificity of the 9-item Wearing-off Questionnaire. Parkinsonism Relat Disord 2008;14(3):205212.CrossRefGoogle ScholarPubMed
Martinez-Martin, P, Hernandez, B. The Q10 questionnaire for detection of wearing-off phenomena in Parkinson’s disease. Parkinsonism Relat Disord 2012;18(4):382385.CrossRefGoogle ScholarPubMed
Antonini, A, Martinez-Martin, P, Chaudhuri, RK, et al. Wearing-off scales in Parkinson’s disease: critique and recommendations. Mov Disord 2011;26(12):21692175.CrossRefGoogle ScholarPubMed
Guy, W. Abnormal Involuntary Movement Scale. ECDEU Assessment Manual for Psychopharmacology. Washington, DC: US Government Printing Office; 1976: 534537.Google Scholar
Rolland, Y, Vérin, M, Payan, CA, et al. A new MRI rating scale for progressive supranuclear palsy and multiple system atrophy: validity and reliability. J Neurol Neurosurg Psychiatry 2011;82(9):10251032.CrossRefGoogle ScholarPubMed
Piot, I, Schweyer, K, Respondek, G, et al. The Progressive Supranuclear Palsy Clinical Deficits Scale. Mov Disord 2020;35(4):650661.CrossRefGoogle ScholarPubMed
Hinson, VK, Cubo, E, Comella, CL, Goetz, CG, Leurgans, S. Rating scale for psychogenic movement disorders: scale development and clinimetric testing. Mov Disord 2005;20(12):15921597.CrossRefGoogle ScholarPubMed
Nielsen, G, Ricciardi, L, Meppelink, AM, et al. A simplified version of the Psychogenic Movement Disorders Rating Scale: the Simplified Functional Movement Disorders Rating Scale (S-FMDRS). Mov Disord Clin Pract 2017;4(5):710716.CrossRefGoogle ScholarPubMed
Walters, AS, LeBrocq, C, Dhar, A, et al. Validation of the International Restless Legs Syndrome Study Group rating scale for restless legs syndrome. Sleep Med 2003;4(2):121132.Google Scholar
Allen, RP, Earley, CJ. Validation of the Johns Hopkins restless legs severity scale. Sleep Med 2001;2(3):239242.CrossRefGoogle ScholarPubMed
Hening, WA, Allen, RP, Thanner, S, et al. The Johns Hopkins telephone diagnostic interview for the restless legs syndrome: preliminary investigation for validation in a multi-center patient and control population. Sleep Med 2003;4(2):137141.CrossRefGoogle Scholar
Leckman, JF, Riddle, MA, Hardin, MT, et al. The Yale Global Tic Severity Scale: initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc Psychiatry 1989;28(4):566573.CrossRefGoogle ScholarPubMed
Harcherik, DF, Leckman, JF, Detlor, J, Cohen, DJ. A new instrument for clinical studies of Tourette’s syndrome. J Am Acad Child Psychiatry 1984;23(2):153160.CrossRefGoogle ScholarPubMed
Shapiro, AK, Shapiro, E. Controlled study of pimozide vs. placebo in Tourette’s syndrome. J Am Acad Child Psychiatry 1984;23(2):161173.CrossRefGoogle ScholarPubMed
Shytle, RD, Silver, AA, Sheehan, KH, et al. The Tourette’s Disorder Scale (TODS): development, reliability, and validity. Assessment 2003;10(3):273287.CrossRefGoogle ScholarPubMed
Martino, D, Pringsheim, TM, Cavanna, AE, et al. Systematic review of severity scales and screening instruments for tics: critique and recommendations. Mov Disord 2017;32(3):467473.CrossRefGoogle ScholarPubMed
Woods, DW, Piacentini, J, Himle, MB, Chang, S. Premonitory Urge for Tics Scale (PUTS): initial psychometric results and examination of the premonitory urge phenomenon in youths with tic disorders. J Dev Behav Pediatr 2005;26(6):397403.CrossRefGoogle ScholarPubMed
Louis, ED, Ottman, R, Ford, B, et al. The Washington Heights–Inwood Genetic Study of Essential Tremor: methodologic issues in essential-tremor research. Neuroepidemiology 1997;16(3):124133.CrossRefGoogle ScholarPubMed

References

Jalloul, N. Wearable sensors for the monitoring of movement disorders. Biomed J 2018;41(4):249253.CrossRefGoogle ScholarPubMed
Johansson, D, Malmgren, K, Alt Murphy, M. Wearable sensors for clinical applications in epilepsy, Parkinson’s disease, and stroke: a mixed-methods systematic review. J Neurol 2018;265(8):17401752.CrossRefGoogle ScholarPubMed
Teshuva, I, Hillel, I, Gazit, E, et al. Using wearables to assess bradykinesia and rigidity in patients with Parkinson’s disease: a focused, narrative review of the literature. J Neural Transm (Vienna) 2019;126(6):699710.CrossRefGoogle ScholarPubMed
Luinge, HJ. Inertial Sensing of Human Movement. Enschede: Twente University Press; 2002.Google Scholar
Iosa, M, Picerno, P, Paolucci, S, Morone, G. Wearable inertial sensors for human movement analysis. Expert Rev Med Devices 2016;13(7):641659.CrossRefGoogle ScholarPubMed
Espay, AJ, Bonato, P, Nahab, FB, et al. Technology in Parkinson’s disease: challenges and opportunities. Mov Disord 2016;31(9):12721282.CrossRefGoogle ScholarPubMed
Papapetropoulos, S, Mitsi, G, Espay, AJ. Digital health revolution: is it time for affordable remote monitoring for Parkinson’s disease? Front Neurol 2015;6:34.CrossRefGoogle ScholarPubMed
Goetz, CG, Tilley, BC, Shaftman, SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 2008;23(15):21292170.CrossRefGoogle ScholarPubMed
Vitale, C, Pellecchia, MT, Grossi, D, et al. Unawareness of dyskinesias in Parkinson’s and Huntington’s diseases. Neurol Sci 2001;22(1):105106.CrossRefGoogle ScholarPubMed
Weintraub, D, Burn, DJ. Parkinson’s disease: the quintessential neuropsychiatric disorder. Mov Disord 2011;26(6):10221031.CrossRefGoogle ScholarPubMed
Lu, R, Xu, Y, Li, X, et al. Evaluation of wearable sensor devices in Parkinson’s disease: a review of current status and future prospects. Parkinsons Dis 2020;2020:4693019.Google ScholarPubMed
Del Din, S, Godfrey, A, Mazzà, C, Lord, S, Rochester, L. Free-living monitoring of Parkinson’s disease: lessons from the field. Mov Disord 2016;31(9):12931313.CrossRefGoogle ScholarPubMed
Memar, S, Delrobaei, M, Pieterman, M, McIsaac, K, Jog, M. Quantification of whole-body bradykinesia in Parkinson’s disease participants using multiple inertial sensors. J Neurol Sci 2018;387:157165.CrossRefGoogle ScholarPubMed
Dai, H, Lin, H, Lueth, TC. Quantitative assessment of parkinsonian bradykinesia based on an inertial measurement unit. Biomed Eng Online 2015;14:68.CrossRefGoogle Scholar
Dai, H, Zhang, P, Lueth, TC. Quantitative assessment of parkinsonian tremor based on an inertial measurement unit. Sensors 2015;15(10):Art. no. 10.CrossRefGoogle Scholar
Heldman, DA, Giuffrida, JP, Chen, R, et al. The modified bradykinesia rating scale for Parkinson’s disease: Reliability and comparison with kinematic measures. Mov Disord 2011;26(10):18591863.CrossRefGoogle ScholarPubMed
Heldman, DA, Filipkowski, DE, Riley, DE, et al. Automated motion sensor quantification of gait and lower extremity bradykinesia. Conf Proc IEEE Eng Med Biol Soc 2012;2012:19561959.Google ScholarPubMed
Salarian, A, Russmann, H, Wider, C, et al. Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans Biomed Eng 2007;54(2):313322.CrossRefGoogle ScholarPubMed
Griffiths, RI, Kotschet, K, Arfon, S, et al., Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J Parkinsons Dis 2012;2(1):4755.CrossRefGoogle ScholarPubMed
Rincón, D, Valderrama, J, González, MC, et al. Wristbands containing accelerometers for objective arm swing analysis in patients with Parkinson’s disease. Sensors (Basel) 2020;20(15):4339.CrossRefGoogle ScholarPubMed
di Biase, L, Di Santo, A, Caminiti, ML, et al. Gait analysis in Parkinson’s disease: an overview of the most accurate markers for diagnosis and symptoms monitoring. Sensors (Basel) 2020;20(12):3529.CrossRefGoogle ScholarPubMed
Mirelman, A, Bonato, P, Camicioloi, R, et al. Gait impairments in Parkinson’s disease. Lancet Neurol 2019;18(7):697708.CrossRefGoogle ScholarPubMed
Pistacchi, M, Gioulis, M, Sanson, F, et al. Gait analysis and clinical correlations in early Parkinson’s disease. Funct Neurol 2017;32(1):2834.CrossRefGoogle ScholarPubMed
Washabaugh, EP, Kalyanaraman, T, Adamczyk, PG, Claflin, ES, Krishnan, C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture 2017;55:8793.CrossRefGoogle ScholarPubMed
Maetzler, W, Domingos, J, Srulijes, K, Ferreira, JJ, Bloem, BR. Quantitative wearable sensors for objective assessment of Parkinson’s disease. Mov Disord 2013;28(12):16281637.CrossRefGoogle ScholarPubMed
Bonora, G, Mancini, M, Carpinella, I, et al. Gait initiation is impaired in subjects with Parkinson’s disease in the OFF state: evidence from the analysis of the anticipatory postural adjustments through wearable inertial sensors. Gait Posture 2017;51:218221.CrossRefGoogle ScholarPubMed
Ghislieri, M, Gastaldi, L, Pastorelli, S, Tadano, S, Agostini, V. Wearable inertial sensors to assess standing balance: a systematic review. Sensors (Basel) 2019;19(19):4075.CrossRefGoogle ScholarPubMed
Tao, W, Liu, T, Zheng, R, Feng, H. Gait analysis using wearable sensors. Sensors (Basel) 2012;12(2):22552283.CrossRefGoogle ScholarPubMed
Alam, MN, Garg, A, Munia, TTK, Fazel-Rezai, R, Tavakolian, K. Vertical ground reaction force marker for Parkinson’s disease. PLoS One 2017;12(5):e0175951.CrossRefGoogle ScholarPubMed
di Biase, L, Brittain, JS, Shah, SA, et al. Tremor stability index: a new tool for differential diagnosis in tremor syndromes. Brain 2017;140(7):19771986.CrossRefGoogle ScholarPubMed
Gibb, WR, Lees, AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 1988;51(6):745752.CrossRefGoogle Scholar
Jain, S, Lo, SE, Louis, ED. Common misdiagnosis of a common neurological disorder: how are we misdiagnosing essential tremor? Arch Neurol 2006;63(8):11001104.CrossRefGoogle ScholarPubMed
Bhatia, KP, Bain, P, Bajaj, N, et al. Consensus statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord 2018;33(1):7587.CrossRefGoogle ScholarPubMed
Deuschl, G, Bain, P, Brin, M. Consensus Statement of the Movement Disorder Society on tremor. Mov Disord 1998;13(S3):223.CrossRefGoogle ScholarPubMed
Muthuraman, M, Hossen, A, Heute, U, Deuschl, G, Raethjen, J. A new diagnostic test to distinguish tremulous Parkinson’s disease from advanced essential tremor. Mov Disord 2011;26(8):15481552.CrossRefGoogle ScholarPubMed
Rüegge, D, Mahendran, S, Stieglitz, LH, et al. Tremor analysis with wearable sensors correlates with outcome after thalamic deep brain stimulation. Clin Park Relat Disord 2020;3:100066.Google ScholarPubMed
Hallett, M. Functional (psychogenic) movement disorders – clinical presentations. Parkinsonism Relat Disord 2016;22:S149S152.CrossRefGoogle ScholarPubMed
Zeuner, KE, Schmidt, R, Schwingenschuh, P. Klinische und kognitive Neurologie des funktionellen (psychogenen) Tremors. Nervenarzt 2018;89(4):400407.CrossRefGoogle Scholar
Rahimi, F, Bee, C, Duval, C, et al. Using ecological whole body kinematics to evaluate effects of medication adjustment in Parkinson disease. J Parkinsons Dis 2014;4(4):617627.CrossRefGoogle ScholarPubMed
Patel, S, Mancinelli, C, Hughes, R, et al. Optimizing deep brain stimulation settings using wearable sensing technology. In: 2009 4th International IEEE/EMBS Conference on Neural Engineering, April 2009, pp. 6–9.CrossRefGoogle Scholar

References

Klassen, BT, Caviness, JN, Bower, JH. Electrophysiology testing of movement disorders. In: Rubin, DI, ed., Clinical Neurophysiology, fifth ed. Oxford: Oxford University Press; 2021: 845868.Google Scholar
Hallett, M, Shahani, BT, Young, RR. EMG analysis of stereotyped voluntary movements in man. J Neurol Neurosurg Psychiatry 1975;38:11541162.CrossRefGoogle ScholarPubMed
Berardelli, A, Dick, JP, Rothwell, JC, Day, BL, Marsden, CD. Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1986;49:12731279.CrossRefGoogle ScholarPubMed
Jahanshahi, M, Brown, RG, Marsen, CD. A comparative study of simple and choice reaction time in Parkinson’s, Huntington’s and cerebellar disease. J Neurol Neurosurg Psychiatry 1993;56:11691177.CrossRefGoogle ScholarPubMed
Benecke, R, Rothwell, JC, Dick, JP, Day, BL, Marsden, CD. Performance of simultaneous movements in patients with Parkinson’s disease. Brain 1986;109:739757.CrossRefGoogle ScholarPubMed
Benecke, R, Rothwell, JC, Dick, JP, Day, BL, Marsden, CD. Disturbance of sequential movements in patients with Parkinson’s disease. Brain 1987;110:361379.CrossRefGoogle ScholarPubMed
Benecke, R, Rothwell, JC, Dick, JP, Day, BL, Marsen, CD. Simple and complex movements off and on treatment in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1987;50:296303.CrossRefGoogle ScholarPubMed
Brown, P, Corscos, DM, Rothwell, JC. Does parkinsonian action tremor contribute to muscle weakness in Parkinson’s disease? Brain 1997;120:401408.CrossRefGoogle ScholarPubMed
Brown, P, Corscos, DM, Rothwell, JC. Action tremor and weakness in Parkinson’s disease: a study of the elbow extensors. Mov Disord 1998;13:5660.CrossRefGoogle ScholarPubMed
Caviness, JN, Lue, L, Adler, CH, Walker, DG. Parkinson’s disease dementia and potential therapeutic strategies. CNS Neurosci Ther 2011;17:3244.CrossRefGoogle ScholarPubMed
Caviness, JN, Hentz, JG, Evidente, VGH, et al. Both early and late cognitive dysfunction affects the electroencephalogram in Parkinson’s disease. Parkinsonism Rel Disord 2007;13:348354.CrossRefGoogle ScholarPubMed
Klassen, B, Hentz, J, Shill, H, et al. Quantitative electroencephalography as a predictor for Parkinson’s disease dementia. Neurology 2011;77:118124.CrossRefGoogle Scholar
Caviness, JN, Adler, CH, Beach, T, Wetjen, K, Caselli, RJ. Myoclonus in Lewy body disorders. Adv Neurol 2002;89:2330.Google ScholarPubMed
Caviness, JN, Lue, LF, Beach, TG, et al. Parkinson’s disease, cortical dysfunction, and alpha-synuclein. Mov Disord 2001;26:14361442.CrossRefGoogle Scholar
Mansur, PHG, Cury, LKP, Andrade, CAO, et al. A review on techniques for tremor recording and quantification. Crit Rev Biomed Eng 2007;35:343362.CrossRefGoogle ScholarPubMed
Deuschl, G, Bain, P, Brin, M. Consensus statement of the Movement Disorder Society on tremor. Ad Hoc Scientific Committee. Mov Disord 1998;13(S3):223.CrossRefGoogle Scholar
Sabra, AF, Hallett, M. Action tremor with alternating activity in antagonist muscles. Neurology 1984;34:151156.CrossRefGoogle ScholarPubMed
Milanov, I. Clinical and electromyographic examinations of patients with essential tremor. Can J Neurol Sci 2000;27:6570.CrossRefGoogle ScholarPubMed
Caviness, JN, Adler, CH, Hentz, JG, et al. Electrophysiological biomarkers of incidental Lewy body disease. Clin Neurophysiol 2011;122:24262432.CrossRefGoogle Scholar
Heilman, KM. Orthostatic tremor. Arch Neurol 1984;41:880881.CrossRefGoogle ScholarPubMed
Glass, GA, Ahlskog, JE, Matsumoto, JY. Orthostatic myoclonus: a contributor to gait decline in selected elderly. Neurology 2007;68:18261830.CrossRefGoogle ScholarPubMed
Rigby, HB, Rigby, MH, Caviness, JN. Orthostatic tremor: a spectrum of fast and slow frequencies or distinct entities? Tremor Other Hyperkinet Mov (N Y) 2015;5:324.CrossRefGoogle ScholarPubMed
Kamble, NL, Pal, PK. Electrophysiological evaluation of psychogenic movement disorders. Parkinsonism Relat Disord 2016;22:S153S158.CrossRefGoogle ScholarPubMed
Caviness, JN, Brown, P. Myoclonus: current concepts and recent advances. Lancet Neurol 2004;3:598607.CrossRefGoogle ScholarPubMed
Marsden, CD, Hallett, M, Fahn, S. The nosology and pathophysiology of myoclonus. In: Marsden, CD, Fahn, S, eds., Movement Disorders. Oxford: Butterworths; 1982: 196248.Google Scholar
Pena, AB, Caviness, JN. Physiology-based treatment of myoclonus. Neurotherapeutics 2020;17:16651680.CrossRefGoogle ScholarPubMed
Caviness, JN. Clinical neurophysiology of myoclonus. In: Hallett, M, ed., Handbook of Clinical Neurophysiology. Oxford: Elsevier; 2003: 521548.CrossRefGoogle Scholar
Zutt, R, Elting, JW, van Zijl, JC, et al. Electrophysiologic testing aids diagnosis and subtyping of myoclonus. Neurology 2018;90(8):e647e657.CrossRefGoogle ScholarPubMed
Shibasaki, H. Electrophysiologic studies of myoclonus. AAEE Minimonograph 30. Muscle Nerve 2000;23:321335.3.0.CO;2-3>CrossRefGoogle Scholar
Caviness, JN, Kurth, M. Cortical myoclonus in Huntington’s disease associated with an enlarged somatosensory evoked potential. Mov Disord 1997;12:10461051.CrossRefGoogle ScholarPubMed
Caviness, JN. Epileptic myoclonus. In: Sirven, JI, Stern, JM, eds., Atlas of Video-EEG Monitoring. New York: McGraw-Hill Medical; 2011: 309328.Google Scholar
Guerrini, R, Bonanni, P, Parmeggiani, L, et al. Pathophysiology of myoclonic epilepsies. Adv Neurol 2005;95:2346.Google ScholarPubMed
Roze, E, Apartis, E, Clot, F, et al. Myoclonus-dystonia: clinical and electrophysiologic pattern related to SGCE mutations. Neurology 2008;70:10101016.CrossRefGoogle ScholarPubMed
Hallett, M, Chadwick, D, Adam, J, Marsden, CD. Reticular reflex myoclonus: a physiological type of human post-hypoxic myoclonus. J Neurol Neurosurg Psychiatry 1977;40:253264.CrossRefGoogle ScholarPubMed
Caviness, JN, Forsyth, PJ, McPhee, T, Layton, DD. The movement disorder syndrome of adult opsoclonus. Mov Disord 1995;10:2227.CrossRefGoogle ScholarPubMed
Gwinn, KA, Caviness, JN. Electrophysiological observations in idiopathic opsoclonus–myoclonus syndrome. Mov Disord 1997;12:438442.CrossRefGoogle ScholarPubMed
Brown, P, Thompson, PD, Rothwell, JC, Day, BL, Marsden, CD. Axial myoclonus of propriospinal origin. Brain 1991;114:197214.Google ScholarPubMed
Roze, E, Bounolleau, P, Ducreux, D, et al. Propriospinal myoclonus revisited: clinical, neurophysiologic, and neuroradiologic findings. Neurology 2009;72:13011309.CrossRefGoogle ScholarPubMed
Caviness, JN. Segmental myoclonus. In: Albanese, A, Jankovic, J, eds., Hyperkinetic Movement Disorders: Differential Diagnosis and Treatment. Oxford: Wiley-Blackwell; 2012: 221235.Google Scholar
Westmoreland, BF, Sharbrough, FW, Stockard, JJ, et al. Brainstem auditory evoked potentials in 20 patients with palatal myoclonus. Arch Neurol 1983;40:155158.CrossRefGoogle ScholarPubMed
Deuschl, G, Toro, C, Valls-Sole, J, et al. Symptomatic and essential palatal tremor. 1. Clinical, physiological and MRI analysis. Brain 1994;117:775788.CrossRefGoogle ScholarPubMed
Calancie, B. Spinal myoclonus after spinal cord injury. J Spinal Cord Med 2006;29:413424.CrossRefGoogle ScholarPubMed
Brown, P, Thompson, PD. Electrophysiological aids to the diagnosis of psychogenic jerks, spasms, and tremor. Mov Disord 2001;16:595599.CrossRefGoogle Scholar
Van der Salm, M, Tijssen, MAJ, Kowlman, JHTM, van Rootselaar, AF. The bereitschaftspotential in jerky movement disorders. J Neurol Neurosurg Psychiatry 2012;83:11621167.CrossRefGoogle ScholarPubMed
Brown, P, Rothwell, JC, Thompson, PD, et al. New observations on the normal auditory startle reflex in man. Brain 1991;114;18911902.CrossRefGoogle ScholarPubMed
Wilkins, DE, Hallett, M, Wess, MM. Audiogenic startle reflex of man and its relationship to startle syndromes. A review. Brain 1986;109:561573.CrossRefGoogle ScholarPubMed
Grigoriu, AI, Dinomais, M, Remy-Neris, O, Brochard, S. Impact of injection-guiding techniques on the effectiveness of botulinum toxin for the treatment of focal spasticity and dystonia: a systematic review. Arch Phys Med Rehabil 2015;96:20672078.CrossRefGoogle ScholarPubMed
Yianni, J, Yan Wang, S, Liu, X, et al. A dominant bursting electromyography pattern in dystonic conditions predicts an early response to pallidal stimulation. J Clin Neurosci 2006;13:738746.CrossRefGoogle Scholar
Deuschl, G, Heinen, F, Kleedorfer, B, et al. Clinical and polymyographic investigation of spasmodic torticollis. J Neurol 1992;239:915.CrossRefGoogle ScholarPubMed
Caviness, JN. Clinical neurophysiology. In: Wolters, ECh, Baumann, CR, eds., Movement Disorders. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press; 2014: 771787.Google Scholar

References

Saeed, U, Compagnone, J, Aviv, RI, et al. Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl Neurodegener 2017;6(1):125.CrossRefGoogle ScholarPubMed
Ghadery, C, Strafella, AP. New imaging markers for movement disorders. Curr Neurol Neurosci Rep 2018;18(5):22.CrossRefGoogle ScholarPubMed
Reiter, E, Mueller, C, Pinter, B, et al. Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism. Mov Disord 2015;30(8):10681076.CrossRefGoogle ScholarPubMed
Schwarz, ST, Afzal, M, Morgan, PS, et al. The “swallow tail” appearance of the healthy nigrosome – a new accurate test of Parkinson’s disease: a case–control and retrospective cross-sectional MRI study at 3T. PLoS One 2014;9(4):e93814.CrossRefGoogle Scholar
Mahlknecht, P, Krismer, F, Poewe, W, Seppi, K. Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson’s disease. Mov Disord 2017;32(4):619623.CrossRefGoogle ScholarPubMed
Marek, K, Seibyl, J, Eberly, S, et al. Longitudinal follow-up of SWEDD subjects in the PRECEPT Study. Neurology 2014;82(20):17911797.CrossRefGoogle ScholarPubMed
Chelban, V, Bocchetta, M, Hassanein, S, et al. An update on advances in magnetic resonance imaging of multiple system atrophy. J Neurol 2019;266(4):10361045.CrossRefGoogle ScholarPubMed
Brooks, DJ, Seppi, K, Neuroimaging Working Group on MSA. Proposed neuroimaging criteria for the diagnosis of multiple system atrophy. Mov Disord 2009;24(7):949964.CrossRefGoogle ScholarPubMed
Feng, J-Y, Huang, B, Yang, W-Q, et al. The putaminal abnormalities on 3.0T magnetic resonance imaging: can they separate parkinsonism-predominant multiple system atrophy from Parkinson’s disease? Acta Radiol 2015;56(3):322328.CrossRefGoogle ScholarPubMed
Hwang, I, Sohn, CH, Kang, KM, et al. Differentiation of parkinsonism-predominant multiple system atrophy from idiopathic Parkinson disease using 3T susceptibility-weighted MR imaging, focusing on putaminal change and lesion asymmetry. Am J Neuroradiol 2015;36(12):22272234.CrossRefGoogle ScholarPubMed
Matsusue, E, Fujii, S, Kanasaki, Y, et al. Putaminal lesion in multiple system atrophy: postmortem MR-pathological correlations. Neuroradiology 2008;50(7):559567.CrossRefGoogle ScholarPubMed
Lee, W-H, Lee, C, Shyu, W, Chong, P, Lin, S. Hyperintense putaminal rim sign is not a hallmark of multiple system atrophy at 3T. Am J Neuroradiol 2005;26(9):22382242.Google Scholar
Rizzo, G, Martinelli, P, Manners, D, et al. Diffusion-weighted brain imaging study of patients with clinical diagnosis of corticobasal degeneration, progressive supranuclear palsy and Parkinson’s disease. Brain 2008;131(10):26902700.CrossRefGoogle ScholarPubMed
Okamoto, K, Tokiguchi, S, Furusawa, T, et al. MR features of diseases involving bilateral middle cerebellar peduncles. Am J Neuroradiol 2003;24(10):19461954.Google ScholarPubMed
Ling, H. Clinical approach to progressive supranuclear palsy. J Mov Disord 2016;9(1):313.CrossRefGoogle ScholarPubMed
Haller, S, Garibotto, V, Schwarz, S. Neuroimaging in movement disorders. In: Barkhof, F, Jager, R, Thurnher, M, Rovira Cañellas, A, eds. Clinical Neuroradiology. Cham: Springer; 2018: 175184.Google Scholar
Gröschel, K, Kastrup, A, Litvan, I, Schulz, JB. Penguins and hummingbirds: midbrain atrophy in progressive supranuclear palsy. Neurology 2006;66(6):949950.CrossRefGoogle ScholarPubMed
Massey, LA, Jäger, HR, Paviour, DC, et al. The midbrain to pons ratio. Neurology 2013;80:18561861.CrossRefGoogle ScholarPubMed
Josephs, KA. Frontotemporal lobar degeneration. Neurol Clin 2007;25(3):683696.CrossRefGoogle ScholarPubMed
Adachi, M, Kawanami, T, Ohshima, H, Sugai, Y, Hosoya, T. Morning glory sign: a particular MR finding in progressive supranuclear palsy. Magnet Res Med Sci 2004;3(3):125132.CrossRefGoogle ScholarPubMed
Tokumaru, AM, O’uchi, T, Kuru, Y, et al. Corticobasal degeneration: MR with histopathologic comparison. Am J Neuroradiol 1996;17(10):18491852.Google ScholarPubMed
Ma, KKY, Lin, S, Mok, VCT. Neuroimaging in vascular parkinsonism. Curr Neurol Neurosci Rep 2019;19(12):110.CrossRefGoogle ScholarPubMed

References

Morbelli, S, Esposito, G, Arbizu, J, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging 2020;47(8):18851912.CrossRefGoogle ScholarPubMed
Strafella, AP, Bohnen, NI, Perlmutter, JS, et al. Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers. Mov Disord 2017;32(2):181192.CrossRefGoogle ScholarPubMed
Kaasinen, V, Vahlberg, T, Stoessl, AJ, et al. Dopamine receptors in Parkinson’s disease: a meta-analysis of imaging studies. Mov Disord 2021;36(8):1781–191.CrossRefGoogle ScholarPubMed
Whitwell, JL. Tau imaging in parkinsonism: what have we learned so far? Mov Disord Clin Pract 2018;5(2):118130.CrossRefGoogle ScholarPubMed
Vingerhoets, FJ, Schulzer, M, Calne, DB, et al. Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Ann Neurol 1997;41(1):5864.CrossRefGoogle ScholarPubMed
Nandhagopal, R, Kuramoto, L, Schulzer, M, et al. Longitudinal progression of sporadic Parkinson’s disease: a multi-tracer positron emission tomography study. Brain 2009;132(Pt 11):29702979.CrossRefGoogle ScholarPubMed
Snow, BJ, Tooyama, I, McGeer, EG, et al. Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol 1993;34(3):324330.CrossRefGoogle ScholarPubMed
Saari, L, Kivinen, K, Gardberg, M, et al. Dopamine transporter imaging does not predict the number of nigral neurons in Parkinson disease. Neurology 2017;88(15):14611467.CrossRefGoogle Scholar
Karimi, M, Tian, L, Brown, CA, et al. Validation of nigrostriatal positron emission tomography measures: critical limits. Ann Neurol 2013;73(3):390396.CrossRefGoogle ScholarPubMed
Marek, KL, Seibyl, JP, Zoghbi, SS, et al. [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 1996;46(1):231237.CrossRefGoogle ScholarPubMed
Eisensehr, I, Linke, R, Noachtar, S, et al. Reduced striatal dopamine transporters in idiopathic rapid eye movement sleep behaviour disorder. Comparison with Parkinson’s disease and controls. Brain 2000;123(Pt 6):11551160.CrossRefGoogle ScholarPubMed
Ponsen, MM, Stoffers, D, Booij, J, et al. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 2004;56(2):173181.CrossRefGoogle ScholarPubMed
Marshall, VL, Patterson, J, Hadley, DM, et al. Two-year follow-up in 150 consecutive cases with normal dopamine transporter imaging. Nucl Med Commun 2006;27(12):933937.CrossRefGoogle ScholarPubMed
de la Fuente-Fernández, R, Sossi, V, Huang, Z, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 2004;127(Pt 12):2747–54.CrossRefGoogle ScholarPubMed
Pavese, N, Evans, AH, Tai, YF, et al. Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 2006;67(9):16121617.CrossRefGoogle ScholarPubMed
Steeves, TD, Miyasaki, J, Zurowski, M, et al. Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 2009;132(Pt 5):13761385.CrossRefGoogle ScholarPubMed
Brooks, DJ, Ibanez, V, Sawle, GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 1990;28(4):547555.CrossRefGoogle ScholarPubMed
Plotkin, M, Amthauer, H, Klaffke, S, et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm (Vienna) 2005;112(5):677692.CrossRefGoogle Scholar
Gilman, S, Koeppe, RA, Junck, L, et al. Decreased striatal monoaminergic terminals in multiple system atrophy detected with positron emission tomography. Ann Neurol 1999;45(6):769777.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Cilia, R, Rossi, C, Frosini, D, et al. Dopamine transporter SPECT imaging in corticobasal syndrome. PLoS One 2011;6(5):e18301.CrossRefGoogle ScholarPubMed
Eidelberg, D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci 2009;32(10):548557.CrossRefGoogle ScholarPubMed
Zalewski, N, Botha, H, Whitwell, JL, et al. FDG-PET in pathologically confirmed spontaneous 4R-tauopathy variants. J Neurol 2014;261(4):710716.CrossRefGoogle ScholarPubMed
Blin, J, Baron, JC, Dubois, B, et al. Positron emission tomography study in progressive supranuclear palsy. Brain hypometabolic pattern and clinicometabolic correlations. Arch Neurol 1990;47(7):747752.CrossRefGoogle ScholarPubMed
Pardini, M, Huey, ED, Spina, S, et al. FDG-PET patterns associated with underlying pathology in corticobasal syndrome. Neurology 2019;92(10):e1121e1135.CrossRefGoogle ScholarPubMed
Kwon, KY, Choi, CG, Kim, JS, et al. Comparison of brain MRI and 18F-FDG PET in the differential diagnosis of multiple system atrophy from Parkinson’s disease. Mov Disord 2007;22(16):23522358.CrossRefGoogle ScholarPubMed
Lim, SM, Katsifis, A, Villemagne, VL, et al. The 18F-FDG PET cingulate island sign and comparison to 123I-β-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med 2009;50(10):16381645.CrossRefGoogle ScholarPubMed
Nagayama, H, Hamamoto, M, Ueda, M, et al. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2005;76(2):249251.CrossRefGoogle ScholarPubMed
Oka, H, Yoshioka, M, Onouchi, K, et al. Characteristics of orthostatic hypotension in Parkinson’s disease. Brain 2007;130(Pt 9):24252432.CrossRefGoogle ScholarPubMed
Gjerloff, T, Fedorova, T, Knudsen, K, et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with C-11-donepezil PET. Brain 2015;138:653663.CrossRefGoogle ScholarPubMed
Meyer, JH, Kruger, S, Wilson, AA, et al. Lower dopamine transporter binding potential in striatum during depression. Neuroreport 2001;12(18):41214125.CrossRefGoogle ScholarPubMed
Remy, P, Doder, M, Lees, AJ, Turjanski, N, Brooks, DJ. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005;128:13141322.CrossRefGoogle ScholarPubMed
Politis, M, Wu, K, Loane, C, et al. Depressive symptoms in PD correlate with higher 5-HTT binding in raphe and limbic structures. Neurology 2010;75(21):19201927.CrossRefGoogle ScholarPubMed
Kim, SE, Choi, JY, Choe, YS, et al. Serotonin transporters in the midbrain of Parkinson’s disease patients: a study with 123I-beta-CIT SPECT. J Nucl Med 2003;44(6):870876.Google ScholarPubMed
Doder, M, Rabiner, EA, Turjanski, N, et al. Brain serotonin HT1A receptors in Parkinson’s disease with and without depression measured by positron emission tomography and 11C-WAY100635. Mov Disord 2000;15(Suppl 3):213.Google Scholar
Ballanger, B, Klinger, H, Eche, J, et al. Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson’s disease. Mov Disord 2012;27(1):8489.CrossRefGoogle ScholarPubMed
Bohnen, NI, Kaufer, DI, Hendrickson, R, et al. Cortical cholinergic denervation is associated with depressive symptoms in Parkinson’s disease and parkinsonian dementia. J Neurol Neurosurg Psychiatry 2007;78(6):641643.CrossRefGoogle ScholarPubMed
Schifitto, G, Friedman, JH, Oakes, D, et al. Fatigue in levodopa-naive subjects with Parkinson disease. Neurology 2008;71(7):481485.CrossRefGoogle ScholarPubMed
Pavese, N, Metta, V, Bose, SK, et al. Fatigue in Parkinson’s disease is linked to striatal and limbic serotonergic dysfunction. Brain 2010;133(11):34343443.CrossRefGoogle ScholarPubMed
Happe, S, Baier, PC, Helmschmied, K, et al. Association of daytime sleepiness with nigrostriatal dopaminergic degeneration in early Parkinson’s disease. J Neurol 2007;254(8):10371043.CrossRefGoogle ScholarPubMed
Pavese, N. Imaging the aetiology of sleep disorders in dementia and Parkinson’s disease. Curr Neurol Neurosci Rep 2014;14(12):501.CrossRefGoogle ScholarPubMed
Wilson, H, Giordano, B, Turkheimer, FE, et al. Serotonergic dysregulation is linked to sleep problems in Parkinson’s disease. Neuroimage Clin 2018;18:630637.CrossRefGoogle ScholarPubMed
Sommerauer, M, Fedorova, TD, Hansen, AK, et al. Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain 2018;141(2):496504.CrossRefGoogle ScholarPubMed
Kotagal, V, Albin, RL, Muller, ML, et al. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Ann Neurol 2012;71(4):560568.CrossRefGoogle ScholarPubMed
Firbank, MJ, Yarnall, AJ, Lawson, RA, et al. Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLE-PD study. J Neurol Neurosurg Psychiatry 2017;88(4):310316.CrossRefGoogle ScholarPubMed
Yong, SW, Yoon, JK, An, YS, et al. A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 2007;14(12):13571362.CrossRefGoogle ScholarPubMed
O’Brien, JT, Colloby, S, Fenwick, J, et al. Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol 2004;61(6):919925.CrossRefGoogle ScholarPubMed
Ito, K, Nagano-Saito, A, Kato, T, et al. Striatal and extrastriatal dysfunction in Parkinson’s disease with dementia: a 6-[18F]fluoro-L-dopa PET study. Brain 2002;125(Pt 6):13581365.CrossRefGoogle ScholarPubMed
Rinne, JO, Portin, R, Ruottinen, H, et al. Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study. Arch Neurol 2000;57(4):470475.CrossRefGoogle ScholarPubMed
Bohnen, NI, Kaufer, DI, Ivanco, LS, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 2003;60(12):17451748.CrossRefGoogle Scholar
Bohnen, NI, Kaufer, DI, Hendrickson, R, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 2006;253(2):242247.CrossRefGoogle ScholarPubMed
Kuhl, DE, Phelps, ME, Markham, CH, et al. Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scans. Ann Neurol 1982;12:425434.CrossRefGoogle Scholar
Young, AB, Penney, JB, Starosta-Rubinstein, S, et al. PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 1986;20:296303.CrossRefGoogle ScholarPubMed
Berent, S, Giordani, B, Lehtinen, S, et al. Positron emission tomographic scan investigations of Huntington’s disease – cerebral metabolic correlates of cognitive function. Ann Neurol 1988;23:541546.CrossRefGoogle ScholarPubMed
Kuwert, T, Lange, HW, Langen, KJ, et al. Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 1990;113:14051423.CrossRefGoogle ScholarPubMed
Young, AB, Penney, JB, Starosta-Rubinstein, S, et al. Normal caudate glucose metabolism in persons at-risk for Huntington’s disease. Arch Neurol 1987;44:254257.CrossRefGoogle ScholarPubMed
Antonini, A, Leenders, KL, Spiegel, R, et al. Striatal glucose metabolism and dopamine D-2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain 1996;119:20852095.CrossRefGoogle Scholar
Dubinsky, RM, Hallett, M, Levey, R, et al. Regional brain glucose metabolism in neuroacanthocytosis. Neurology 1989;39:12531255.CrossRefGoogle ScholarPubMed
Hosokawa, S, Ichiya, Y, Kuwabara, Y, et al. Positron emission tomography in cases of chorea with different underlying diseases. J Neurol Neurosurg Psychiatry 1987;50:12841287.CrossRefGoogle ScholarPubMed
Guttman, M, Lang, AE, Garnett, ES, et al. Regional cerebral glucose metabolism in SLE chorea: further evidence that striatal hypometabolism is not a correlate of chorea. Mov Disord 1987;2:201210.CrossRefGoogle Scholar
Weindl, A, Kuwert, T, Leenders, KL, et al. Increased striatal glucose consumption in Sydenham chorea. Mov Disord 1993;8:437444.CrossRefGoogle Scholar
Pahl, JJ, Mazziotta, JC, Cummings, J, et al. Positron emission tomography in tardive dyskinesia and Huntington’s disease. J Cereb Blood Flow Metabol 1987;7:12531255.Google Scholar
Carbon, M, Eidelberg, D. Abnormal structure–function relationships in hereditary dystonia. Neuroscience 2009;164(1):220229.CrossRefGoogle ScholarPubMed
Carbon, M, Argyelan, M, Eidelberg, D. Functional imaging in hereditary dystonia. Eur J Neurol 2010;17(Suppl 1):5864.CrossRefGoogle ScholarPubMed
Hutchinson, M, Nakamura, T, Moeller, JR, et al. The metabolic topography of essential blepharospasm: a focal dystonia with general implications. Neurology 2000;55(5):673677.CrossRefGoogle ScholarPubMed
Playford, ED, Fletcher, NA, Sawle, GV, et al. Integrity of the nigro-striatal dopaminergic system in familial dystonia: an 18F-dopa PET study. Brain 1993;116:11911199.CrossRefGoogle Scholar
Naumann, M, Pirker, W, Reiners, K, et al. Imaging the pre- and postsynaptic side of striatal dopaminergic synapses in idiopathic cervical dystonia: a SPECT study using [123I]Epidepride and [123I]b-CIT. Mov Disord 1998;13:319323.CrossRefGoogle Scholar
Perlmutter, JS, Stambuk, MK, Markham, J, et al. Decreased [F-18] spiperone binding in putamen in idiopathic focal dystonia. J Neurosci 1997;17:843850.CrossRefGoogle ScholarPubMed
Sawle, GV, Leenders, KL, Brooks, DJ, et al. Dopa-responsive dystonia: [18F]dopa positron emission tomography. Ann Neurol 1991;30:2430.CrossRefGoogle ScholarPubMed
Naumann, M, Pirker, W, Reiners, K, et al. [123I]beta-CIT single-photon emission tomography in DOPA-responsive dystonia. Mov Disord 1997;12(3):448451.CrossRefGoogle ScholarPubMed
Turjanski, N, Bhatia, K, Burn, DJ, et al. Comparison of striatal 18F-dopa uptake in adult-onset dystonia–parkinsonism, Parkinson’s disease, and dopa-responsive dystonia. Neurology 1993;43:15631568.CrossRefGoogle ScholarPubMed
Benamer, HT, Patterson, J, Grosset, DG, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT Study Group. Mov Disord 2000;15(3):503–10.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Vlaar, AM, de Nijs, T, Kessels, AG, et al. Diagnostic value of 123I-ioflupane and 123I-iodobenzamide SPECT scans in 248 patients with parkinsonian syndromes. Eur Neurol 2008;59(5):258266.CrossRefGoogle ScholarPubMed
Sudmeyer, M, Antke, C, Zizek, T, et al. Diagnostic accuracy of combined FP-CIT, IBZM, and MIBG scintigraphy in the differential diagnosis of degenerative parkinsonism: a multidimensional statistical approach. J Nucl Med 2011;52(5):733740.CrossRefGoogle ScholarPubMed
Hellwig, S, Amtage, F, Kreft, A, et al. [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology 2012;79(13):13141322.CrossRefGoogle ScholarPubMed
Treglia, G, Cason, E, Stefanelli, A, et al. MIBG scintigraphy in differential diagnosis of Parkinsonism: a meta-analysis. Clin Auton Res 2012;22(1):4355.CrossRefGoogle ScholarPubMed
Eckert, T, Barnes, A, Dhawan, V, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005;26(3):912921.CrossRefGoogle ScholarPubMed
Tripathi, M, Dhawan, V, Peng, S, et al. Differential diagnosis of parkinsonian syndromes using F-18 fluorodeoxyglucose positron emission tomography. Neuroradiology 2013;55(4):483492.CrossRefGoogle ScholarPubMed
Smith, R, Schain, M, Nilsson, C, et al. Increased basal ganglia binding of 18F-AV-1451 in patients with progressive supranuclear palsy. Mov Disord 2017;32(1):108114.CrossRefGoogle ScholarPubMed
Schonhaut, DR, McMillan, CT, Spina, S, et al. 18F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann Neurol 2017;82(4):622634.CrossRefGoogle ScholarPubMed
Ghirelli, A, Tosakulwong, N, Weigand, SD, et al. Sensitivity-specificity of tau and amyloid β positron emission tomography in frontotemporal lobar degeneration. Ann Neurol 2020;88(5):10091022.CrossRefGoogle ScholarPubMed
Cho, H, Baek, MS, Choi, JY, et al. 18F-AV-1451 binds to motor-related subcortical gray and white matter in corticobasal syndrome. Neurology 2017;89(11):11701178.CrossRefGoogle ScholarPubMed
Brendel, M, Barthel, H, van Eimeren, T, et al. Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol 2020;77(11):14081419.CrossRefGoogle ScholarPubMed
Palleis, C, Brendel, M, Finze, A, et al. Cortical [18F]PI-2620 binding differentiates corticobasal syndrome subtypes. Mov Disord 2021;36(9):21042115.CrossRefGoogle ScholarPubMed
Tagai, K, Ono, M, Kubota, M, et al. High-contrast in vivo imaging of tau pathologies in Alzheimer’s and non-Alzheimer’s disease tauopathies. Neuron 2021;109(1):4258.CrossRefGoogle ScholarPubMed
Petrou, M, Dwamena, BA, Foerster, BR, et al. Amyloid deposition in Parkinson’s disease and cognitive impairment: a systematic review. Mov Disord 2015;30(7):928935.CrossRefGoogle ScholarPubMed
Gomperts, SN, Locascio, JJ, Rentz, D, et al. Amyloid is linked to cognitive decline in patients with Parkinson disease without dementia. Neurology 2013;80(1):8591.CrossRefGoogle ScholarPubMed
Müller, ML, Frey, KA, Petrou, M, et al. β-Amyloid and postural instability and gait difficulty in Parkinson’s disease at risk for dementia. Mov Disord 2013;28(3):296301.CrossRefGoogle ScholarPubMed
Gomperts, SN, Locascio, JJ, Makaretz, SJ, et al. Tau positron emission tomographic imaging in the Lewy body diseases. JAMA Neurol 2016;73(11):13341341.CrossRefGoogle ScholarPubMed
Hansen, AK, Damholdt, MF, Fedorova, TD, et al. In vivo cortical tau in Parkinson’s disease using 18F-AV-1451 positron emission tomography. Mov Disord 2017;32(6):922927.CrossRefGoogle ScholarPubMed
Lee, SH, Cho, H, Choi, JY, et al. Distinct patterns of amyloid-dependent tau accumulation in Lewy body diseases. Mov Disord 2018;33(2):262272.CrossRefGoogle ScholarPubMed
Kikuchi, A, Takeda, A, Okamura, N, et al. In vivo visualization of alpha-synuclein deposition by carbon-11-labelled 2-[2-(2-dimethylaminothiazol-5-yl)ethenyl]-6-[2-(fluoro)ethoxy]benzoxazole positron emission tomography in multiple system atrophy. Brain 2010;133(Pt 6):17721778.CrossRefGoogle ScholarPubMed
Shah, M, Seibyl, J, Cartier, A, et al. Molecular imaging insights into neurodegeneration: focus on alpha-synuclein radiotracers. J Nucl Med 2014;55(9):13971400.CrossRefGoogle ScholarPubMed
Smith, R, Capotosti, F, Schain, M, et al. Initial clinical scans using [18F]ACI-12589, a novel α-synuclein PET-tracer. Alzheimers Dement 2022;18(S6):e065394.CrossRefGoogle Scholar
Matsuoka, K, Ono, M, Takado, Y, et al. High-contrast imaging of α-synuclein pathologies in living patients with multiple system atrophy. Mov Disord 2022;37(10):21592161.CrossRefGoogle ScholarPubMed
Pavese, N, Brooks, DJ. Imaging neurodegeneration in Parkinson’s disease. Biochim Biophys Acta 2009;1792(7):722729.CrossRefGoogle ScholarPubMed
Whone, AL, Watts, RL, Stoessl, AJ, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol 2003;54(1):93101.CrossRefGoogle ScholarPubMed
Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002;287(13):16531661.CrossRefGoogle Scholar
Parkinson Study Group. Pramipexole vs levodopa as initial therapy for Parkinson’s disease. JAMA 2000;284:19311938.CrossRefGoogle Scholar
Fahn, S, Oakes, D, Shoulson, I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med 2004;351(24):24982508.Google ScholarPubMed
Schapira, AHV, McDermott, MP, Barone, P, et al. Pramipexole in patients with early Parkinson’s disease (PROUD): a randomised delayed-start trial. Lancet Neurol 2013;12(8):747755.CrossRefGoogle Scholar
Verschuur, CVM, Suwijn, SR, Boel, JA, et al. Randomized delayed-start trial of levodopa in Parkinson’s disease. N Engl J Med 2019;380(4):315324.CrossRefGoogle ScholarPubMed
Piccini, P, Brooks, DJ, Bjorklund, A, et al. Dopamine release from nigral transplants visualised in vivo in a Parkinson’s patient. Nature Neurosci 1999;2:11371140.CrossRefGoogle Scholar
Freed, CR, Greene, PE, Breeze, RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001;344(10):710719.CrossRefGoogle ScholarPubMed
Olanow, CW, Goetz, CG, Kordower, JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003;54(3):403414.CrossRefGoogle ScholarPubMed
Gill, SS, Patel, NK, Hotton, GR, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003;9(5):589595.CrossRefGoogle ScholarPubMed
Lang, AE, Gill, S, Patel, NK, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006;59(3):459466.CrossRefGoogle ScholarPubMed
Pagano, G, Taylor, KI, Anzures-Cabrera, J, et al. Trial of prasinezumab in early-stage Parkinson’s disease. N Engl J Med 2022;387(5):421432.CrossRefGoogle ScholarPubMed
Lang, AE, Siderowf, AD, Macklin, EA, et al. Trial of cinpanemab in early Parkinson’s disease. N Engl J Med 2022;387(5):408420.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×