Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-kmmxp Total loading time: 0 Render date: 2025-06-21T07:16:39.172Z Has data issue: false hasContentIssue false

Periods and moduli

Published online by Cambridge University Press:  29 May 2025

Lucia Caporaso
Affiliation:
University of Rome III
James McKernan
Affiliation:
Massachusetts Institute of Technology
Mircea Mustata
Affiliation:
University of Michigan, Ann Arbor
Mihnea Popa
Affiliation:
University of Illinois, Chicago
Get access

Summary

This text is an introduction, without proofs and by means of many examples, to some elementary aspects of the theory of period maps, period domains, and their relationship with moduli spaces. We start with the definitions of Jacobians of curves, Prym varieties, and intermediate Jacobians, then move on to Griffiths’ construction of period domains and period maps. We review some instances of the Torelli problem and discuss some recent results of Allcock, Carlson, Laza, Looijenga, Swierstra, and Toledo, expressing some moduli spaces as ball quotients.

It has been known since the nineteenth century that there is a group structure on the points of the smooth cubic complex plane curve (called an elliptic curve) and that it is isomorphic to the quotient of C by a lattice. Conversely, any such quotient is an elliptic curve.

The higher-dimensional analogs are complex tori, where is a lattice in a (finite-dimensional) complex vector space V. The group structure and the analytic structure are obvious, but not all tori are algebraic. For that, we need an additional condition, which was formulated by Riemann: the existence of a positive definite Hermitian form on V whose (skew-symmetric) imaginary part is integral on . An algebraic complex torus is called an abelian variety. When this skew-symmetric form is in addition unimodular on, we say that the abelian variety is principally polarized. It contains a hypersurface uniquely determined up to translation (“the” theta divisor).

The combination of the algebraic and group structures makes the geometry of abelian varieties very rich. This is one of the reasons why it is useful to associate, whenever possible, an abelian variety (if possible principally polarized) to a given geometric situation. This can be done only in a few specific cases, and the theory of periods, mainly developed by Griffiths, constitutes a far-reaching extension.

Our aim is to present an elementary introduction to this theory. We show many examples to illustrate its diversity, with no pretense at exhaustivity, and no proofs. For those interested in pursuing this very rich subject, we refer to [Carlson et al. 2003] and its bibliography.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×