Skip to main content Accessibility help
×
Hostname: page-component-7857688df4-fzltz Total loading time: 0 Render date: 2025-11-16T15:33:41.954Z Has data issue: false hasContentIssue false

11 - Decision-Making Deficits

Published online by Cambridge University Press:  14 November 2025

Stacey A. Bedwell
Affiliation:
King’s College London
Get access

Summary

As a result of its complexity, integration of multiple functions and brain regions, and prolonged development, decision-making is particularly vulnerable to deficit or dysfunction. Decision-making deficits have been described in schizophrenia, psychopathy, autism and depression. A commonality in proposed explanations is that of differences in the way networks associated with decision-making are structured. In some cases it may be over-connection, in others under-connection.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Alloy, L. B., & Abramson, L. Y. (1980). Judgment of contingency in depressed and nondepressed students: Sadder but wiser? Journal of Experimental Psychology, 108(4), 441485.CrossRefGoogle Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). American Psychiatric Publishing, Inc. https://doi.org/10.1176/appi.books.9780890425596Google Scholar
Andrews, P. W., & Thomson, J. A. (2009). The bright side of being blue: Depression as an adaptation for analyzing complex problems. Psychological Review, 116, 620654. https://doi.org/10.1037/a0016242CrossRefGoogle Scholar
Arrondo, G., Segarra, N., Metastasio, A., Ziauddeen, H., Spencer, J., Reinders, N. R., Dudas, R. B., Robbins, T. W., Fletcher, P. C., & Murray, G. K. (2015). Reduction in ventral striatal activity when anticipating a reward in depression and schizophrenia: A replicated cross-diagnostic finding. Frontiers in Psychology, 6, 1280. https://doi.org/10.3389/fpsyg.2015.01280CrossRefGoogle ScholarPubMed
Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience, 27(31), 81618165. https://doi.org/10.1523/JNEUROSCI.1554-07.2007CrossRefGoogle ScholarPubMed
Bast, T., Pezze, M., & McGarrity, S. (2017). Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition. British Journal of Pharmacology, 174(19), 32113225. https://doi.org/10.1111/bph.13850CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1–3), 715. https://doi.org/10.1016/0010-0277(94)90018-3CrossRefGoogle ScholarPubMed
Bekhbat, M., Li, Z., Mehta, N. D., Treadway, M. T., Lucido, M. J., Woolwine, B. J., Haroon, E., Miller, A. H., & Felger, J. C. (2022). Correction to: Functional connectivity in reward circuitry and symptoms of anhedonia as therapeutic targets in depression with high inflammation: Evidence from a dopamine challenge study. Molecular Psychiatry, 27(10), 4122. https://doi.org/10.1038/s41380-022-01754-wCrossRefGoogle ScholarPubMed
Boehme, R., Deserno, L., Gleich, T., Katthagen, T., Pankow, A., Behr, J., Buchert, R., Roiser, J. P., Heinz, A., & Schlagenhauf, F. (2015). Aberrant salience is related to reduced reinforcement learning signals and elevated dopamine synthesis capacity in healthy adults. Journal of Neuroscience, 35(28), 1010310111. https://doi.org/10.1523/JNEUROSCI.0805-15.2015CrossRefGoogle ScholarPubMed
Brown, E. C., Hack, S. M., Gold, J. M., Carpenter, W. T. Jr., Fischer, B. A., Prentice, K. P., & Waltz, J. A. (2015). Integrating frequency and magnitude information in decision-making in schizophrenia: An account of patient performance on the Iowa Gambling Task. Journal of Psychiatric Research, 66 –67, 1623. https://doi.org/10.1016/j.jpsychires.2015.04.007CrossRefGoogle ScholarPubMed
Brozoski, T. J., Brown, R. M., Rosvold, H. E., & Goldman, P. S. (1979). Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science, 205(4409), 929932. https://doi.org/10.1126/science.112679CrossRefGoogle ScholarPubMed
Callicott, J. H., Mattay, V. S., Verchinski, B. A., Marenco, S., Egan, M. F., & Weinberger, D. R. (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down. The American Journal of Psychiatry, 160(12). https://doi.org/10.1176/appi.ajp.160.12.2209CrossRefGoogle ScholarPubMed
Damiano, C. R., Mazefsky, C. A., White, S. W., & Dichter, G. S. (2014). Future directions for research in autism spectrum disorders. Journal of Clinical Child & Adolescent Psychology, 43(5), 828843. https://doi.org/10.1080/15374416.2014.945214CrossRefGoogle ScholarPubMed
Deserno, L., Schlagenhauf, F., & Heinz, A. (2016). Striatal dopamine, reward, and decision making in schizophrenia. Dialogues in Clinical Neuroscience, 18(1), 7789. https://doi.org/10.31887/DCNS.2016.18.1/ldesernoCrossRefGoogle ScholarPubMed
Egerton, A., Chaddock, C. A., Winton-Brown, T. T., Bloomfield, M. A. P., Bhattacharyya, S., Allen, P., McGuire, P. K., & Howes, O. D. (2013). Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: Findings in a second cohort. Biological Psychiatry, 74(2), 106112. https://doi.org/10.1016/j.biopsych.2012.11.017CrossRefGoogle ScholarPubMed
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143149. https://doi.org/10.3758/BF03203267CrossRefGoogle Scholar
Fernández-Sevillano, J., Alberich, S., Zorrilla, I., González-Ortega, I., López, M. P., Pérez, V., Vieta, E., González-Pinto, A., & Saíz, P. (2021). Cognition in recent suicide attempts: Altered executive function. Frontiers in Psychiatry, 12, 701140. https://doi.org/10.3389/fpsyt.2021.701140CrossRefGoogle ScholarPubMed
Glantz, L. A., & Lewis, D. A. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry, 57(1), 6573. https://doi.org/10.1001/archpsyc.57.1.65CrossRefGoogle ScholarPubMed
Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12(11), 652669. https://doi.org/10.1038/nrn3119CrossRefGoogle ScholarPubMed
Howes, O. D., Montgomery, A. J., Asselin, M.-C., Murray, R. M., Valli, I., Tabraham, P., Bramon-Bosch, E., Valmaggia, L., Johns, L., Broome, M., McGuire, P. K., & Grasby, P. M. (2009). Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Archives of General Psychiatry, 66(1), 1320. https://doi.org/10.1001/archgenpsychiatry.2008.514CrossRefGoogle ScholarPubMed
Hughes, M. A., Dolan, M. C., & Stout, J. C. (2015). Decision-making in psychopathy. Psychiatry, Psychology and Law, 23(4), 117. https://doi.org/10.1080/13218719.2015.1081228Google Scholar
Joel, D. (2001). Open interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington’s disease. Movement Disorders, 16(3), 407423. https://doi.org/10.1002/mds.1096CrossRefGoogle Scholar
Karlsgodt, K. H., Sun, D., & Cannon, T. D. (2010). Structural and functional brain abnormalities in schizophrenia. Current Directions in Psychological Science, 19(4), 226231. https://doi.org/10.1177/0963721410377601CrossRefGoogle ScholarPubMed
Kegeles, L. S., Abi-Dargham, A., Frankle, W. G., Gil, R., Cooper, T. B., Slifstein, M., Hwang, D.-R., Huang, Y., Haber, S. N., & Laruelle, M. (2010). Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Archives of General Psychiatry, 67(3), 231239. https://doi.org/10.1001/archgenpsychiatry.2010.10CrossRefGoogle ScholarPubMed
Kim, H., Sul, J. H., Huh, N., Lee, D., & Jung, M. W. (2009). Role of striatum in updating values of chosen actions. Journal of Neuroscience, 29(47), 1470114712. https://doi.org/10.1523/JNEUROSCI.2728-09.2009CrossRefGoogle ScholarPubMed
Koeda, M., Takahashi, H., Matsuura, M., Asai, K., & Okubo, Y. (2013). Cerebral responses to vocal attractiveness and auditory hallucinations in schizophrenia: A functional MRI study. Frontiers in Human Neuroscience, 7, 221. https://doi.org/10.3389/fnhum.2013.00221CrossRefGoogle ScholarPubMed
Luke, L., Clare, I. C. H., Ring, H., Redley, M., & Watson, P. (2012). Decision-making difficulties experienced by adults with autism spectrum conditions. Autism, 16(6), 612621. https://doi.org/10.1177/1362361311415876CrossRefGoogle ScholarPubMed
Millan, M. J., Agid, Y., Brune, M., Bullmore, E. T., Carter, C. S., Clayton, N. S., Connor, R., Davis, S., Deakin, B., DeRubeis, R. J., Dubois, B., Geyer, M. A., Goodwin, G. M., Gorwood, P., Jay, T. M., Joëls, M., Mansuy, I. M., Meyer-Lindenberg, A., Murphy, D., … Young, L. J. (2012). Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discovery, 11, 141168. https://doi.org/10.1038/nrd3628CrossRefGoogle ScholarPubMed
Minassian, K., Hofstoetter, U. S., Dzeladini, F., Guertin, P. A., & Ijspeert, A. (2017). The human central pattern generator for locomotion: Does it exist and contribute to walking? The Neuroscientist, 23(6), 649663. https://doi.org/10.1177/1073858417699790CrossRefGoogle ScholarPubMed
Morris, R. W., Cyrzon, C., Green, M. J., Le Pelley, M. E., & Balleine, B. W. (2018). Impairments in action-outcome learning in schizophrenia. Translational Psychiatry, 8(1), 54. https://doi.org/10.1038/s41398-018-0103-0CrossRefGoogle ScholarPubMed
Peterburs, J., Voegler, R., Liepelt, R., Schulze, A., Wilhelm, S., Ocklenburg, S., & Straube, T. (2017). Processing of fair and unfair offers in the ultimatum game under social observation. Scientific Reports, 7, 44062. https://doi.org/10.1038/srep44062CrossRefGoogle ScholarPubMed
Poudel, R., Riedel, M. C., Salo, T., Flannery, J. S., Hill-Bowen, L. D., Eickhoff, S. B., Laird, A. R., & Sutherland, M. T. (2020). Common and distinct brain activity associated with risky and ambiguous decision-making. Drug and Alcohol Dependence, 209, 107884. https://doi.org/10.1016/j.drugalcdep.2020.107884CrossRefGoogle ScholarPubMed
Rae, C. L., Parkinson, J., Betka, S., Gouldvan Praag, C. D., Bouyagoub, S., Polyanska, L., Larsson, D. E. O., Harrison, N. A., Garfinkel, S. N., & Critchley, H. D. (2020). Amplified engagement of prefrontal cortex during control of voluntary action in Tourette syndrome. Brain Communications, 2(2), fcaa199. https://doi.org/10.1093/braincomms/fcaa199CrossRefGoogle ScholarPubMed
Selemon, L. D., Rajkowska, G., & Goldman-Rakic, P. S. (1995). Abnormally high neuronal density in the schizophrenic cortex: A morphometric analysis of prefrontal area 9 and occipital area 17. Archives of General Psychiatry, 52(10), 805820. https://doi.org/10.1001/archpsyc.1995.03950220015005CrossRefGoogle ScholarPubMed
Steinmann, L. A., Dohm, K., Goltermann, J., Richter, M., Enneking, V., Lippitz, M., Repple, J., Mauritz, M., Dannlowski, U., & Opel, N. (2022). Understanding the neurobiological basis of anhedonia in major depressive disorder: Evidence for reduced neural activation during reward and loss processing. Journal of Psychiatry and Neuroscience, 47(4), E284E292. https://doi.org/10.1503/jpn.210180CrossRefGoogle ScholarPubMed
Stuss, D. T., & Benson, D. F. (1984). Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95(1), 328. https://doi.org/10.1037/0033-2909.95.1.3CrossRefGoogle ScholarPubMed
Voss, M., Moore, J., Hauser, M., Gallinat, J., Heinz, A., & Haggard, P. (2010). Altered awareness of action in schizophrenia: A specific deficit in predicting action consequences. Brain, 133(10), 31043112. https://doi.org/10.1093/brain/awq152CrossRefGoogle ScholarPubMed
Wible, C. G., Anderson, J., Shenton, M. E., Kricun, A., Hirayasu, Y., Tanaka, S., Levitt, J. J., O’Donnell, B. F., Kikinis, R., Jolesz, F. A., & McCarley, R. W. (2001). Prefrontal cortex, negative symptoms, and schizophrenia: An MRI study. Psychiatry Research, 108(2), 6578. https://doi.org/10.1016/S0925-4927(01)00109-3CrossRefGoogle ScholarPubMed
Williams, S. M., & Goldman-Rakic, P. S. (1998). Widespread origin of the primate mesofrontal dopamine system. Cerebral Cortex, 8(4), 321345. https://doi.org/10.1093/cercor/8.4.321CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.
Visualised data also available as non-graphical data
You can access graphs or charts in a text or tabular format, so you are not excluded if you cannot process visual displays.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Decision-Making Deficits
  • Stacey A. Bedwell, King’s College London
  • Book: Cognitive Neuroscience of Decision-Making
  • Online publication: 14 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781009407946.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Decision-Making Deficits
  • Stacey A. Bedwell, King’s College London
  • Book: Cognitive Neuroscience of Decision-Making
  • Online publication: 14 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781009407946.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Decision-Making Deficits
  • Stacey A. Bedwell, King’s College London
  • Book: Cognitive Neuroscience of Decision-Making
  • Online publication: 14 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781009407946.012
Available formats
×