Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T13:11:31.606Z Has data issue: false hasContentIssue false

Chapter 14 - Breast Cancer

Published online by Cambridge University Press:  23 October 2024

Laurie J. Mckenzie
Affiliation:
University of Texas MD Anderson Cancer Center, Houston
Denise R. Nebgen
Affiliation:
University of Texas MD Anderson Cancer Center, Houston
Get access

Summary

Breast cancer is the second most common malignancy in women worldwide. Due to improvements in screening, diagnosis, endocrine therapy and novel targeted agents, survival continues to increase. The initial workup should include thorough imaging of the breast and nodal basins, pathologic review, receptor status analysis and systemic staging as necessary. This information is fundamental to determine the best options for surgery, systemic therapy and radiation therapy and in addition, the most appropriate sequence of multimodal therapy. Care of patients with germline mutations should include genetic counseling and consideration of prophylactic mastectomy and salpingo-oophorectomy. Recent advances in immunotherapy, targeted agents and antibody drug conjugates improve survival and quality of life for metastatic breast cancer patients while limiting toxicity. Surgical techniques have evolved to allow more patients to undergo breast conservation and to limit morbidities from axillary node dissections. New genomic predictive assays allow us to select high risk patients who will truly benefit from chemotherapy and radiation therapy. Modern radiation approaches can limit toxicities by using hypofractionation, partial breast irradiation, 3D conformal planning and proton therapy. The optimal treatment of breast cancer patients requires a multidisciplinary approach tailored to the individual patient in order to maximize clinical outcome and minimize toxicities.

Type
Chapter
Information
Caring for the Female Cancer Patient
Gynecologic Considerations
, pp. 227 - 257
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Giaquinto, A. N., Sung, H., Miller, K. D., et al. Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians. 2022;72(6):524–41.Google Scholar
DeSantis, C. E., Ma, J., Gaudet, M. M., et al. Breast cancer statistics, 2019. CA: A Cancer Journal for Clinicians. 2019;69(6):438–51.Google ScholarPubMed
Rossouw, J. E., Anderson, G. L., Prentice, R. L., et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women’s Health Initiative randomized controlled trial. Jama. 2002;288(3):321–33.Google ScholarPubMed
Holm, J., Humphreys, K., Li, J., et al. Risk factors and tumor characteristics of interval cancer by mammographic density. J Clin Oncol. 2015;33(9):1030–7.CrossRefGoogle ScholarPubMed
Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Populations - Total U.S. (2015–2019).Google Scholar
Le‐Petross, H. T., Whitman, G. J., Atchley, D. P., et al. Effectiveness of alternating mammography and magnetic resonance imaging for screening women with deleterious BRCA mutations at high risk of breast cancer. Cancer. 2011;117(17):3900–7.CrossRefGoogle ScholarPubMed
Kauff, N. D., Satagopan, J. M., Robson, M. E., et al. Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med. 2002;346(21):1609–15.CrossRefGoogle ScholarPubMed
Giuliano, A. E., Connolly, J. L., Edge, S. B., et al. Breast Cancer: Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(4):290303.CrossRefGoogle ScholarPubMed
(NCCN). NCCN. NCCN Clinical Practice Guidelines in Oncology. www.nccn.org. Published 2023.Google Scholar
Amin, M. B., Edge, S. B., Greene, F. L., et al. AJCC cancer staging manual. Vol 1024: Springer; 2017.Google Scholar
Fisher, B., Anderson, S., Bryant, J., et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. The New England Journal of Medicine. 2002;347(16):1233–41.Google ScholarPubMed
Veronesi, U., Cascinelli, N., Mariani, L., et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. The New England Journal of Medicine. 2002;347(16):1227–32.CrossRefGoogle ScholarPubMed
Agarwal, S., Pappas, L., Neumayer, L., Kokeny, K., Agarwal, J. Effect of breast conservation therapy vs mastectomy on disease-specific survival for early-stage breast cancer. JAMA Surg. 2014;149(3):267–74.CrossRefGoogle ScholarPubMed
Hartmann-Johnsen, O. J., Kåresen, R., Schlichting, E., Nygård, J. F. Survival is better after breast conserving therapy than mastectomy for early stage breast cancer: A registry-based follow-up study of Norwegian women primary operated between 1998 and 2008. Ann Surg Oncol. 2015;22(12):3836–45.CrossRefGoogle ScholarPubMed
Schumacher, J. R., Wiener, A. A., Greenberg, C. C., et al. Local/regional recurrence rates after breast conserving therapy in patients enrolled in legacy trials of the Alliance for Clinical Trials in Oncology (AFT-01). Ann Surg. 2022;277(5):841–5.CrossRefGoogle Scholar
van Maaren, M. C., de Munck, L., de Bock, G. H., et al. 10 year survival after breast-conserving surgery plus radiotherapy compared with mastectomy in early breast cancer in the Netherlands: A population-based study. Lancet Oncol. 2016;17(8):1158–70.CrossRefGoogle ScholarPubMed
Carter, S. A., Lyons, G. R., Kuerer, H. M., et al. Operative and oncologic outcomes in 9861 patients with operable breast cancer: Single-institution analysis of breast conservation with oncoplastic reconstruction. Ann Surg Oncol. 2016;23(10):3190–8.CrossRefGoogle ScholarPubMed
Clough, K. B., Benyahi, D., Nos, C., Charles, C., Sarfati, I. Oncoplastic surgery: Pushing the limits of breast-conserving surgery. Breast J. 2015;21(2):140–6.CrossRefGoogle ScholarPubMed
Domchek, S. M., Friebel, T. M., Singer, C. F., et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. Jama. 2010;304(9):967–75.Google ScholarPubMed
Metcalfe, K. A., Cil, T. D., Semple, J. L., et al. Long-term psychosocial functioning in women with bilateral prophylactic mastectomy: Does preservation of the nipple-areolar complex make a difference? Ann Surg Oncol. 2015;22(10):3324–30.CrossRefGoogle Scholar
Smith, B. L., Coopey, S. B. Nipple-sparing mastectomy. Adv Surg. 2018;52(1):113–26.CrossRefGoogle ScholarPubMed
Macadam, S. A., Bovill, E. S., Buchel, E. W., Lennox, P. A. Evidence-based medicine: Autologous breast reconstruction. Plast Reconstr Surg. 2017;139(1):204e229e.CrossRefGoogle Scholar
Baker, J. L., Dizon, D. S., Wenziger, C. M., et al. “Going flat” after mastectomy: Patient-reported outcomes by online survey. Ann Surg Oncol. 2021;28(5):2493–505.Google ScholarPubMed
Gipponi, M., Bassetti, C., Canavese, G., et al. Sentinel lymph node as a new marker for therapeutic planning in breast cancer patients. J Surg Oncol. 2004;85(3):102–11.CrossRefGoogle ScholarPubMed
Albertini, J. J., Lyman, G. H., Cox, C., et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. Jama. 1996;276(22):1818–22.CrossRefGoogle ScholarPubMed
Kim, T., Giuliano, A. E., Lyman, G. H. Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: A metaanalysis. Cancer. 2006;106(1):416.CrossRefGoogle ScholarPubMed
Krag, D. N., Anderson, S. J., Julian, T. B., et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: Overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010;11(10):927–33.CrossRefGoogle ScholarPubMed
Galimberti, V., Cole, B. F., Viale, G., et al. Axillary dissection versus no axillary dissection in patients with breast cancer and sentinel-node micrometastases (IBCSG 23-01): 10-year follow-up of a randomised, controlled phase 3 trial. Lancet Oncol. 2018;19(10):1385–93.CrossRefGoogle ScholarPubMed
Giuliano, A. E., McCall, L., Beitsch, P., et al. Locoregional recurrence after sentinel lymph node dissection with or without axillary dissection in patients with sentinel lymph node metastases: The American College of Surgeons Oncology Group Z0011 randomized trial. Ann Surg. 2010;252(3):426–32.CrossRefGoogle ScholarPubMed
Caudle, A. S., Yang, W. T., Krishnamurthy, S., et al. Improved axillary evaluation following neoadjuvant therapy for patients with node-positive breast cancer using selective evaluation of clipped nodes: Implementation of targeted axillary dissection. J Clin Oncol. 2016;34(10):1072–8.CrossRefGoogle ScholarPubMed
Fisher, B., Anderson, S., Bryant, J., et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. New England Journal of Medicine. 2002;347(16):1233–41.Google ScholarPubMed
de Boniface, J., Szulkin, R., Johansson, A. L. V. Survival after breast conservation vs mastectomy adjusted for comorbidity and socioeconomic status: A Swedish national 6-Year follow-up of 48 986 women. JAMA Surg. 2021;156(7):628–37.CrossRefGoogle Scholar
Hwang, E. S., Lichtensztajn, D. Y., Gomez, S. L., Fowble, B., Clarke, C. A. Survival after lumpectomy and mastectomy for early stage invasive breast cancer: The effect of age and hormone receptor status. Cancer. 2013;119(7):1402–11.Google ScholarPubMed
Abdulkarim, B. S., Cuartero, J., Hanson, J., et al. Increased risk of locoregional recurrence for women with T1-2N0 triple-negative breast cancer treated with modified radical mastectomy without adjuvant radiation therapy compared with breast-conserving therapy. J Clin Oncol. 2011;29(21):2852–8.CrossRefGoogle ScholarPubMed
Mouabbi, J. A., Chand, M., Asghar, I. A., et al. Lumpectomy followed by radiation improves survival in HER2 positive and triple-negative breast cancer with high tumor-infiltrating lymphocytes compared to mastectomy alone. Cancer Med. 2021;10(14):4790–5.CrossRefGoogle ScholarPubMed
Darby, S., McGale, P., Correa, C., et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10,801 women in 17 randomized trials. Lancet. 2011;378(9804):1707–16.Google Scholar
Kunkler, I. H., Williams, L. J., Jack, W. J. L, Cameron, D. A., Dixon, J. M. Breast-conserving surgery with or without irradiation in early breast cancer. New England Journal of Medicine. 2023;388(7):585–94.CrossRefGoogle ScholarPubMed
Hughes, K. S., Schnaper, L. A., Bellon, J. R., et al. Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: Long-term follow-up of CALGB 9343. Journal of Clinical Oncology. 2013;31(19):2382–7.CrossRefGoogle ScholarPubMed
Hughes, L. L., Wang, M., Page, D. L., et al. Local excision alone without irradiation for ductal carcinoma in situ of the breast: A trial of the Eastern Cooperative Oncology Group. J Clin Oncol. 2009;27(32):5319–24.CrossRefGoogle ScholarPubMed
McCormick, B., Winter, K. A., Woodward, W., et al. Randomized phase III trial evaluating radiation following surgical excision for good-risk ductal carcinoma in situ: Long-term report from NRG Oncology/RTOG 9804. J Clin Oncol. 2021;39(32):3574–82.CrossRefGoogle ScholarPubMed
Whelan, T. J., Pignol, J. P., Levine, M. N., et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med. 2010;362(6):513–20.CrossRefGoogle ScholarPubMed
Haviland, J. S., Owen, J. R., Dewar, J. A., et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013;14(11):1086–94.CrossRefGoogle ScholarPubMed
Smith, B. D., Bellon, J. R., Blitzblau, R., et al. Radiation therapy for the whole breast: Executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Pract Radiat Oncol. 2018;8(3):145–52.CrossRefGoogle ScholarPubMed
Murray Brunt, A., Haviland, J. S., Wheatley, D. A., et al. Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial. Lancet. 2020;395(10237):1613–26.CrossRefGoogle ScholarPubMed
Krug, D., Baumann, R., Combs, S. E., et al. Moderate hypofractionation remains the standard of care for whole-breast radiotherapy in breast cancer: Considerations regarding FAST and FAST-Forward. Strahlenther Onkol. 2021;197(4):269–80.CrossRefGoogle ScholarPubMed
Vicini, F. A., Cecchini, R. S., White, J. R., et al. Long-term primary results of accelerated partial breast irradiation after breast-conserving surgery for early-stage breast cancer: A randomised, phase 3, equivalence trial. Lancet. 2019;394(10215):2155–64.CrossRefGoogle ScholarPubMed
Whelan, T. J., Julian, J. A., Berrang, T. S., et al. External beam accelerated partial breast irradiation versus whole breast irradiation after breast conserving surgery in women with ductal carcinoma in situ and node-negative breast cancer (RAPID): A randomised controlled trial. Lancet. 2019;394(10215):2165–72.CrossRefGoogle ScholarPubMed
Coles, C. E., Griffin, C. L., Kirby, A. M., et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet. 2017;390(10099):1048–60.CrossRefGoogle ScholarPubMed
Meattini, I., Marrazzo, L., Saieva, C., et al. Accelerated partial-breast irradiation compared with whole-breast irradiation for early breast cancer: Long-term results of the randomized phase III APBI-IMRT-Florence Trial. Journal of Clinical Oncology. 2020;38(35):4175–83.CrossRefGoogle ScholarPubMed
Correa, C., Harris, E. E., Leonardi, M. C., et al. Accelerated partial breast irradiation: Executive summary for the update of an ASTRO evidence-based consensus statement. Pract Radiat Oncol. 2017;7(2):73–9.CrossRefGoogle ScholarPubMed
Whelan, T. J., Olivotto, I. A., Parulekar, W. R., et al. Regional nodal irradiation in early-stage breast cancer. N Engl J Med. 2015;373(4):307316.CrossRefGoogle ScholarPubMed
Poortmans, P. M., Weltens, C., Fortpied, C., et al. Internal mammary and medial supraclavicular lymph node chain irradiation in stage I-III breast cancer (EORTC 22922/10925): 15-year results of a randomised, phase 3 trial. Lancet Oncol. 2020;21(12):1602–10.CrossRefGoogle ScholarPubMed
McGale, P., Taylor, C., Correa, C., et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383(9935):2127–35.Google ScholarPubMed
Recht, A., Comen, E. A., Fine, R. E., et al. Postmastectomy radiotherapy: An American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Focused Guideline Update. Ann Surg Oncol. 2017;24(1):3851.CrossRefGoogle Scholar
Wang, S.-L., Fang, H., Song, Y.-W., et al. Hypofractionated versus conventional fractionated postmastectomy radiotherapy for patients with high-risk breast cancer: A randomised, non-inferiority, open-label, phase 3 trial. The Lancet Oncology. 2019;20(3):352–60.CrossRefGoogle ScholarPubMed
Clarke, M., Collins, R., Darby, S., et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366(9503):20872106.Google ScholarPubMed
Darby, S. C., Ewertz, M., McGale, P., et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.CrossRefGoogle ScholarPubMed
Freislederer, P., Kügele, M., Öllers, M., et al. Recent advances in Surface Guided Radiation Therapy. Radiat Oncol. 2020;15(1):187.CrossRefGoogle ScholarPubMed
Mutter, R. W., Choi, J. I., Jimenez, R. B., et al. Proton therapy for breast cancer: A consensus statement from the particle therapy cooperative group breast cancer subcommittee. Int J Radiat Oncol Biol Phys. 2021;111(2):337–59.CrossRefGoogle ScholarPubMed
Sparano, J. A., Gray, R. J., Makower, D. F., et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. New England Journal of Medicine. 2018;379(2):111–21.CrossRefGoogle ScholarPubMed
Kalinsky, K., Barlow, W. E., Gralow, J. R., et al. 21-gene assay to inform chemotherapy benefit in node-positive breast cancer. New England Journal of Medicine. 2021;385(25):2336–47.CrossRefGoogle ScholarPubMed
Braybrooke, J., Bradley, R., Gray, R., et al. Anthracycline-containing and taxane-containing chemotherapy for early-stage operable breast cancer: a patient-level meta-analysis of 100 000 women from 86 randomised trials. The Lancet. 2023;401(10384):1277–92.CrossRefGoogle Scholar
Blum, J. L., Flynn, P. J., Yothers, G., et al. Anthracyclines in early breast cancer: The ABC Trials—USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). Journal of Clinical Oncology. 2017;35(23):2647–55.CrossRefGoogle ScholarPubMed
Alba, E., Calvo, L., Albanell, J., et al. Chemotherapy (CT) and hormonotherapy (HT) as neoadjuvant treatment in luminal breast cancer patients: Results from the GEICAM/2006-03, a multicenter, randomized, phase-II study. Ann Oncol. 2012;23(12):3069–74.CrossRefGoogle ScholarPubMed
Spring, L. M., Gupta, A., Reynolds, K. L., et al. Neoadjuvant endocrine therapy for estrogen receptor–positive breast cancer: A systematic review and meta-analysis. JAMA Oncology. 2016;2(11):1477–86.CrossRefGoogle ScholarPubMed
Davies, C., Godwin, J., Gray, R., et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet. 2011;378(9793):771–84.Google Scholar
Francis, P. A., Regan, M. M., Fleming, G. F., et al. Adjuvant ovarian suppression in premenopausal breast cancer. New England Journal of Medicine. 2015;372(5):436–46.CrossRefGoogle ScholarPubMed
Pagani, O., Regan, M. M., Walley, B. A., et al. Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. New England Journal of Medicine. 2014;371(2):107–18.CrossRefGoogle ScholarPubMed
Johnston, S. R., Harbeck, N., Hegg, R., et al. Abemaciclib combined with endocrine therapy for the adjuvant treatment of HR+, HER2−, node-positive, high-risk, early breast cancer (monarchE). Journal of Clinical Oncology. 2020;38(34):3987.CrossRefGoogle ScholarPubMed
Pan, H., Gray, R., Braybrooke, J., et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. New England Journal of Medicine. 2017;377(19):1836–46.CrossRefGoogle ScholarPubMed
Davies, C., Pan, H., Godwin, J., et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. The Lancet. 2013;381(9869):805–16.CrossRefGoogle Scholar
Rugo, H. S., Lerebours, F., Ciruelos, E., et al. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): One cohort of a phase 2, multicentre, open-label, non-comparative study. The Lancet Oncology. 2021;22(4):489–98.CrossRefGoogle ScholarPubMed
Schettini, F., Chic, N., Brasó-Maristany, F., et al. Clinical, pathological, and PAM50 gene expression features of HER2-low breast cancer. NPJ breast cancer. 2021;7(1):1.CrossRefGoogle ScholarPubMed
Rugo, H. S., Bardia, A., Tolaney, S. M., et al. TROPiCS-02: A Phase III study investigating sacituzumab govitecan in the treatment of HR+/HER2-metastatic breast cancer. Future Oncology. 2020;16(12):705–15.CrossRefGoogle ScholarPubMed
Schmid, P., Cortes, J., Pusztai, L., et al. Pembrolizumab for early triple-negative breast cancer. New England Journal of Medicine. 2020;382(9):810–21.CrossRefGoogle ScholarPubMed
Tutt, A. N., Garber, J. E., Kaufman, B., et al. Adjuvant olaparib for patients with BRCA1-or BRCA2-mutated breast cancer. New England Journal of Medicine. 2021;384(25):2394–405.CrossRefGoogle ScholarPubMed
Cortes, J., Rugo, H. S., Cescon, D. W., et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. New England Journal of Medicine. 2022;387(3):217–26.CrossRefGoogle ScholarPubMed
Bardia, A., Hurvitz, S. A., Tolaney, S. M., et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384(16):1529–41.CrossRefGoogle ScholarPubMed
Modi, S., Jacot, W., Yamashita, T., et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. New England Journal of Medicine. 2022;387(1):920.CrossRefGoogle ScholarPubMed
Tolaney, S. M., Tarantino, P., Graham, N., et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer: Final 10-year analysis of the open-label, single-arm, phase 2 APT trial. The Lancet Oncology. 2023;24(3):273–85.CrossRefGoogle ScholarPubMed
Schneeweiss, A., Chia, S., Hickish, T., et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Annals of oncology. 2013;24(9):2278–84.CrossRefGoogle ScholarPubMed
Von Minckwitz, G., Huang, C.-S., Mano, M. S., et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. New England Journal of Medicine. 2019;380(7):617–28.CrossRefGoogle ScholarPubMed
Swain, S. M., Baselga, J., Kim, S.-B., et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. New England Journal of Medicine. 2015;372(8):724–34.CrossRefGoogle ScholarPubMed
Cortés, J., Kim, S.-B., Chung, W.-P., et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. New England Journal of Medicine. 2022;386(12):1143–54.CrossRefGoogle ScholarPubMed
Murthy, R. K., Loi, S., Okines, A., et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. New England Journal of Medicine. 2020;382(7):597609.CrossRefGoogle ScholarPubMed
Hance, K. W., Anderson, W. F., Devesa, S. S., Young, H. A., Levine, P. H. Trends in inflammatory breast carcinoma incidence and survival: The surveillance, epidemiology, and end results program at the National Cancer Institute. JNCI: Journal of the National Cancer Institute. 2005;97(13):966–75.CrossRefGoogle ScholarPubMed
Dawood, S., Merajver, S. D., Viens, P., et al. International expert panel on inflammatory breast cancer: Consensus statement for standardized diagnosis and treatment. Annals of Oncology. 2011;22(3):515–23.CrossRefGoogle Scholar
Mylavarapu, S., Das, A., Roy, M. Role of BRCA mutations in the modulation of response to platinum therapy. Frontiers in Oncology. 2018;8:16.CrossRefGoogle ScholarPubMed
Kuchenbaecker, K. B., Hopper, J. L., Barnes, D. R., et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–16.CrossRefGoogle ScholarPubMed
Meijers-Heijboer, H., van Geel, B., van Putten, W. L., et al. Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. New England Journal of Medicine. 2001;345(3):159–64.CrossRefGoogle ScholarPubMed
Rebbeck, T. R., Friebel, T., Lynch, H. T., et al. Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: The PROSE Study Group. Journal of Clinical Oncology. 2004;22(6):1055–62.CrossRefGoogle ScholarPubMed
Goggins, M., Overbeek, K. A., Brand, R., et al. Management of patients with increased risk for familial pancreatic cancer: Updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2020;69(1):717.CrossRefGoogle ScholarPubMed
Robson, M., Im, S.-A., Senkus, E., et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. New England Journal of Medicine. 2017;377(6):523–33.CrossRefGoogle ScholarPubMed
Litton, J. K., Rugo, H. S., Ettl, J., et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. New England Journal of Medicine. 2018;379(8):753–63.CrossRefGoogle Scholar
Oktay, K., Harvey, B. E., Partridge, A. H., et al. Fertility preservation in patients with cancer: ASCO Clinical Practice Guideline Update. J Clin Oncol. 2018;36(19):1994–2001.CrossRefGoogle ScholarPubMed
Partridge, A. H., Niman, S. M., Ruggeri, M., et al. Interrupting endocrine therapy to attempt pregnancy after breast cancer. New England Journal of Medicine. 2023;388(18):1645–56.CrossRefGoogle ScholarPubMed
Zagouri, F., Sergentanis, T. N., Chrysikos, D., et al. Trastuzumab administration during pregnancy: A systematic review and meta-analysis. Breast Cancer Research and Treatment. 2013;137:349–57.CrossRefGoogle ScholarPubMed
Martín, M., de la Torre-Montero, J. C., López-Tarruella, S., et al. Persistent major alopecia following adjuvant docetaxel for breast cancer: Incidence, characteristics, and prevention with scalp cooling. Breast Cancer Research and Treatment. 2018;171(3):627–34.Google ScholarPubMed
Gianotti, E., Razzini, G., Bini, M., et al. Scalp cooling in daily clinical practice for breast cancer patients undergoing curative chemotherapy: A multicenter interventional study. Asia-Pacific Journal of Oncology Nursing. 2019;6(3):277–82.CrossRefGoogle ScholarPubMed
Hanai, A., Ishiguro, H., Sozu, T., et al. Effects of cryotherapy on objective and subjective symptoms of paclitaxel-induced neuropathy: Prospective self-controlled trial. JNCI: Journal of the National Cancer Institute. 2017;110(2):141–8.Google Scholar
Melisko, M. E., Goldman, M. E., Hwang, J., et al. Vaginal testosterone cream vs estradiol vaginal ring for vaginal dryness or decreased libido in women receiving aromatase inhibitors for early-stage breast cancer: A randomized clinical trial. JAMA Oncology. 2017;3(3):313–19.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×