Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-rgmxm Total loading time: 0 Render date: 2025-12-19T19:43:45.620Z Has data issue: false hasContentIssue false

Part V - Brain, Language, and Music

Published online by Cambridge University Press:  12 December 2025

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Alain, C., Zendel, B. R., Hutka, S., & Bidelman, G. M. (2014). Turning down the noise: The benefit of musical training on the aging auditory brain. Hearing Research, 308, 162173.10.1016/j.heares.2013.06.008CrossRefGoogle ScholarPubMed
Anaya, E. M., Pisoni, D. P., & Kronenberger, W. G. (2016). Long-term musical experience and auditory and visual perceptual abilities under adverse conditions. Journal of the Acoustical Society of America, 140(3), 20742081.10.1121/1.4962628CrossRefGoogle ScholarPubMed
Anvari, S. H., Trainor, L. J., Woodside, J., & Levy, B. A. (2002). Relations among musical skills, phonological processing and early reading ability in preschool children. Journal of Experimental Child Psychology, 83(2), 111130.10.1016/S0022-0965(02)00124-8CrossRefGoogle ScholarPubMed
Association, American Music Therapy. (2005). What is Music Therapy? AMTA Official Definition of Music Therapy. www.musictherapy.org/about/musictherapy/Google Scholar
Banai, K., Hornickel, J., Skoe, E., Nicol, T., Zecker, S., & Kraus, N. (2009). Reading and Subcortical Auditory Function Cerebral Cortex (Vol. 19, pp. 26992707). Department of Communication Sciences, Auditory Neuroscience Lab, Northwestern University.Google Scholar
Başkent, D., Fuller, C. D., Galvin, J. J., Schepel, L., Gaudrain, E., & Free, R. H. (2018). Musician effect on perception of spectro-temporally degraded speech, vocal emotion, and music in young adolescents. Journal of the Acoustical Society of America, 143(5), EL311EL316.10.1121/1.5034489CrossRefGoogle ScholarPubMed
Besson, M., Chobert, J., & Marie, C. (2011). Transfer of training between music and speech: Common processing, attention, and memory. Frontiers in Psychology, 2, 94.10.3389/fpsyg.2011.00094CrossRefGoogle ScholarPubMed
Bialystok, E., & DePape, A. M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 565574.Google ScholarPubMed
Bidelman, G. M. (2016). Musicians have enhanced audiovisual multisensory binding: Experience-dependent effects in the double-flash illusion. Experimental Brain Research, 234(10), 30373047.10.1007/s00221-016-4705-6CrossRefGoogle ScholarPubMed
Bidelman, G. M. (2018a). Sonification of scalp-recorded frequency-following responses (FFRs) offers improved response detection over conventional statistical metrics. Journal of Neuroscience Methods, 293, 5966.10.1016/j.jneumeth.2017.09.005CrossRefGoogle ScholarPubMed
Bidelman, G. M. (2018b). Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. NeuroImage, 175, 5669.10.1016/j.neuroimage.2018.03.060CrossRefGoogle ScholarPubMed
Bidelman, G. M., & Alain, C. (2015). Musical training orchestrates coordinated neuroplasticity in auditory brainstem and cortex to counteract age-related declines in categorical vowel perception. Journal of Neuroscience, 35(2), 12401249.10.1523/JNEUROSCI.3292-14.2015CrossRefGoogle ScholarPubMed
Bidelman, G. M., Brown, B., Mankel, K., & Price, C. N. (2020). Psychobiological responses reveal audiovisual noise differentially challenges speech recognition. Ear and Hearing, 41(2), 268277.10.1097/AUD.0000000000000755CrossRefGoogle ScholarPubMed
Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2011a). Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem. Journal of Cognitive Neuroscience, 23(2), 425434.10.1162/jocn.2009.21362CrossRefGoogle ScholarPubMed
Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2011b). Musicians demonstrate experience-dependent brainstem enhancement of musical scale features within continuously gliding pitch. Neuroscience Letters, 503(3), 203207.10.1016/j.neulet.2011.08.036CrossRefGoogle ScholarPubMed
Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2011c). Musicians and tone-language speakers share enhanced brainstem encoding but not perceptual benefits for musical pitch. Brain and Cognition, 77(1), 110.10.1016/j.bandc.2011.07.006CrossRefGoogle Scholar
Bidelman, G. M., Hutka, S., & Moreno, S. (2013). Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: Evidence for bidirectionality between the domains of language and music. PLoS ONE, 8(4), e60676.10.1371/journal.pone.0060676CrossRefGoogle ScholarPubMed
Bidelman, G. M., & Krishnan, A. (2010). Effects of reverberation on brainstem representation of speech in musicians and non-musicians. Brain Research, 1355, 112125.10.1016/j.brainres.2010.07.100CrossRefGoogle ScholarPubMed
Bidelman, G. M., Krishnan, A., & Gandour, J. T. (2011). Enhanced brainstem encoding predicts musicians’ perceptual advantages with pitch. European Journal of Neuroscience, 33(3), 530538.10.1111/j.1460-9568.2010.07527.xCrossRefGoogle ScholarPubMed
Bidelman, G. M., & Mankel, K. (2019). Reply to Schellenberg: Is there more to auditory plasticity than meets the ear?. Proceedings of National Academy of Sciences of the United States of America [Letter to the Editor], 116(8), 27852786.Google ScholarPubMed
Bidelman, G. M., & Yoo, J. (2020). Musicians show improved speech segregation in competitive, multi-talker cocktail party scenarios. Frontiers in Psychology, 11(1927), 111.10.3389/fpsyg.2020.01927CrossRefGoogle ScholarPubMed
Bizley, J. K., Maddox, R. K., & Lee, A. K. C. (2016). Defining auditory-visual objects: Behavioral tests and physiological mechanisms. Trends in Neuroscience, 39(2), 7485.10.1016/j.tins.2015.12.007CrossRefGoogle ScholarPubMed
Boebinger, D., Evans, S., Rosen, S., Lima, C. F., Manly, T., & Scott, S. K. (2015). Musicians and non-musicians are equally adept at perceiving masked speech. Journal of the Acoustical Society of America, 137(1), 378387.10.1121/1.4904537CrossRefGoogle ScholarPubMed
Bolia, R. S., Nelson, W. T., Ericson, M. A., & Simpson, B. D. (2000). A speech corpus for multitalker communications research. Journal of the Acoustical Society of America, 107(2), 10651066.10.1121/1.428288CrossRefGoogle ScholarPubMed
Bonacina, S., Huang, S., White-Schwoch, T., Krizman, J., Nicol, T., & Kraus, N. (2021). Rhythm, reading, and sound processing in the brain in preschool children. npj Science of Learning, 6, 111.10.1038/s41539-021-00097-5CrossRefGoogle ScholarPubMed
Brandler, S., & Rammsayer, T. H. (2003). Differences in mental abilities between musicians and nonmusicians. Psychology of Music, 31, 123138.10.1177/0305735603031002290CrossRefGoogle Scholar
Brattico, E., Pallesen, K. J., Varyagina, O., Bailey, C., Anourova, I., Jarvenpaa, M., … Tervaniemi, M. (2009). Neural discrimination of nonprototypical chords in music experts and laymen: An MEG study. Journal of Cognitive Neuroscience, 21(11), 22302244.10.1162/jocn.2008.21144CrossRefGoogle ScholarPubMed
Brendel, B., & Ziegler, W. (2008). Effectiveness of metrical pacing in the treatment of apraxia of speech. Aphasiology, 22(1), 77102.10.1080/02687030600965464CrossRefGoogle Scholar
Brown, C. J., Jeon, E-K., Driscoll, V., Mussoi, B., Deshpande, S. B., Gfeller, K., & Abbas, P. J. (2017). Effects of long-term musical training on cortical auditory evoked potentials. Ear and Hearing, 38(2), e74e84.10.1097/AUD.0000000000000375CrossRefGoogle ScholarPubMed
Brown, J. A., & Bidelman, G. M. (2022). Familiarity of background music modulates the cortical tracking of target speech at the “cocktail party”. Brain Sciences, 12(10), 1320.10.3390/brainsci12101320CrossRefGoogle ScholarPubMed
Bugos, J. A., Perlstein, W. M., McCrae, C. S., Brophy, T. S., & Bedenbaugh, P. H. (2007). Individualized piano instruction enhances executive functioning and working memory in older adults. Aging and Mental Health, 11(4), 464471.10.1080/13607860601086504CrossRefGoogle ScholarPubMed
Bugos, J. A., & Wang, Y. (2022). Piano training enhances executive functions and psychosocial outcomes in aging: Results of a randomized controlled trial. J Gerontology, 77(9), 16251636.10.1093/geronb/gbac021CrossRefGoogle ScholarPubMed
Burns, E. M., & Ward, W. D. (1978). Categorical perception – phenomenon or epiphenomenon: Evidence from experiments in the perception of melodic musical intervals. Journal of the Acoustical Society of America, 63(2), 456468.10.1121/1.381737CrossRefGoogle ScholarPubMed
Cason, N., Hidalgo, C., Isoard, F., Roman, S., & Schon, D. (2015). Rhythmic priming enhances speech production abilities: Evidence from prelingually deaf children. Neuropsychology, 29(1), 102107.10.1037/neu0000115CrossRefGoogle ScholarPubMed
Chan, A. S., Ho, Y. C., & Cheung, M. C. (1998). Music training improves verbal memory. Nature, 396(6707), 128.10.1038/24075CrossRefGoogle ScholarPubMed
Chartrand, J. P., & Belin, P. (2006). Superior voice timbre processing in musicians. Neuroscience Letters, 405(3), 164167.10.1016/j.neulet.2006.06.053CrossRefGoogle ScholarPubMed
Chung, W.-L., Jarmulowicz, L., & Bidelman, G. M. (2021). Cross-linguistic contributions of acoustic cues and prosodic awareness to first and second language vocabulary knowledge. Journal of Research in Reading, 44(2), 434452.10.1111/1467-9817.12349CrossRefGoogle ScholarPubMed
Clayton, K. K., Swaminathan, J., Yazdanbakhsh, A., Zuk, J., Patel, A. D., & Kidd, G. Jr. (2016). Executive function, visual attention and the cocktail party problem in musicians and non-musicians. PLoS ONE, 11(7), e0157638.10.1371/journal.pone.0157638CrossRefGoogle ScholarPubMed
Coffey, E. B. J., Mogilever, N. B., & Zatorre, R. J. (2017). Speech-in-noise perception in musicians: A review. Hearing Research, 352, 4969.10.1016/j.heares.2017.02.006CrossRefGoogle ScholarPubMed
Corrigall, K. A., Schellenberg, E. G., & Misura, N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4, 222.10.3389/fpsyg.2013.00222CrossRefGoogle ScholarPubMed
Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169, 323338.10.1016/S0079-6123(07)00020-9CrossRefGoogle ScholarPubMed
Degé, F., Kubicek, C., & Schwarzer, G. (2011). Music lessons and intelligence: A relation mediated by executive functions. Music Perception, 29(2), 195201.10.1525/mp.2011.29.2.195CrossRefGoogle Scholar
Degé, F., & Schwarzer, G. (2011). The effect of a music program on phonological awareness in preschoolers. Frontiers in Psychology, 2, 124.10.3389/fpsyg.2011.00124CrossRefGoogle ScholarPubMed
Delogu, F., Lampis, G., & Olivetti Belardinelli, M. (2006). Music-to-language transfer effect: May melodic ability improve learning of tonal languages by native nontonal speakers? Cognitive Processing, 7(3), 203207.10.1007/s10339-006-0146-7CrossRefGoogle ScholarPubMed
Delogu, F., Lampis, G., & Olivetti Belardinelli, M. (2010). From melody to lexical tone: Musical ability enhances specific aspects of foreign language perception. European Journal of Cognitive Psychology, 22(1), 4661.10.1080/09541440802708136CrossRefGoogle Scholar
Deroche, M. L. D., Limb, C. J., Chatterjee, M., & Gracco, V. L. (2017). Similar abilities of musicians and non-musicians to segregate voices by fundamental frequency. The Journal of the Acoustical Society of America, 142(4), 17391755.10.1121/1.5005496CrossRefGoogle ScholarPubMed
Du, Y., & Zatorre, R. J. (2017). Musical training sharpens and bonds ears and tongue to hear speech better. Proceedings of the National Academy of Sciences of the United States of America, 114(51), 1357913584.10.1073/pnas.1712223114CrossRefGoogle ScholarPubMed
Eierud, C., Michael, A., Banks, D., & Andrews, E. (2023). Resting-state functional connectivity in lifelong musicians. Psychoradiology, 3, kkad003.10.1093/psyrad/kkad003CrossRefGoogle ScholarPubMed
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1996). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305307.10.1126/science.270.5234.305CrossRefGoogle Scholar
Escobar, J., Mussoi, B. S., & Silberer, A. B. (2020). The effect of musical training and working memory in adverse listening situations. Ear and Hearing, 41(2), 278288.10.1097/AUD.0000000000000754CrossRefGoogle ScholarPubMed
Fitch, W. T., & Martins, M. D. (2014). Hierarchical processing in music, language, and action: Lashley revisited. Annals of the New York Academy of Science, 1316, 87104.10.1111/nyas.12406CrossRefGoogle ScholarPubMed
Foss, A. H., Altschuler, E. L., & James, K. H. (2007). Neural correlates of the Pythagorean ratio rules. Neuroreport, 18(15), 15211525.10.1097/WNR.0b013e3282ef6b51CrossRefGoogle ScholarPubMed
Foss-Feig, J. H., Kwakye, L. D., Cascio, C. J., Burnette, C. P., Kadivar, H., Stone, W. L., & Wallace, M. T. (2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203(2), 381389.10.1007/s00221-010-2240-4CrossRefGoogle ScholarPubMed
François, C., Chobert, J., Besson, M., & Schön, D. (2013). Music training for the development of speech segmentation. Cerebral Cortex, 23, 20382043.10.1093/cercor/bhs180CrossRefGoogle ScholarPubMed
Franklin, M. S., Sledge Moore, K., Yip, C-Y., Jonides, J., Rattray, K., & Moher, J. (2008). The effects of musical training on verbal memory. Psychology of Music, 36(3), 353365.10.1177/0305735607086044CrossRefGoogle Scholar
Fuller, C. D., Galvin, J. J., 3rd, Maat, B., Free, R. H., & Baskent, D. (2014). The musician effect: Does it persist under degraded pitch conditions of cochlear implant simulations? Frontiers in Neuroscience, 8, 179.10.3389/fnins.2014.00179CrossRefGoogle ScholarPubMed
Galbraith, G. C., Arbagey, P. W., Branski, R., Comerci, N., & Rector, P. M. (1995). Intelligible speech encoded in the human brain stem frequency-following response. Neuroreport, 6(17), 23632367.10.1097/00001756-199511270-00021CrossRefGoogle ScholarPubMed
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3), 455479.10.1080/02643290442000310CrossRefGoogle ScholarPubMed
Gandour, J.T. (1983). Tone perception in Far Eastern languages. Journal of Phonetics, 11, 149175.10.1016/S0095-4470(19)30813-7CrossRefGoogle Scholar
Gentilucci, M., & Volta, R. D. (2008). Spoken language and arm gestures are controlled by the same motor control system. Quarterly Journal of Experimental Psychology, 61(6), 944957.10.1080/17470210701625683CrossRefGoogle ScholarPubMed
George, E. M., & Coch, D. (2011). Music training and working memory: An ERP study. Neuropsychologia, 49(5), 10831094.10.1016/j.neuropsychologia.2011.02.001CrossRefGoogle ScholarPubMed
Goswami, U., & Bryant, P. (2016). Phonological Skills and Learning to Read. Routledge.Google Scholar
Goswami, U., Huss, M., Mead, N., Fosker, T., & Verney, J. P. (2013). Perception of patterns of musical beat distribution in phonological developmental dyslexia: Significant longitudinal relations with word reading and reading comprehension. Cortex, 49(5), 13631376.10.1016/j.cortex.2012.05.005CrossRefGoogle ScholarPubMed
Goswami, U., Thomson, J., Richardson, U., Stainthorp, R., Hughes, D., Rosen, S., & Scott, S. K. (2002). Amplitude envelope onsets and developmental dyslexia: A new hypothesis. Proceedings of the National Academy of Sciences, 99(16), 1091110916.10.1073/pnas.122368599CrossRefGoogle ScholarPubMed
Grahn, Jessica A., & Rowe, J. B. (2009). Feeling the beat: Premotor and striatal interactions in musicians and nonmusicians during beat perception. The Journal of Neuroscience, 29(23), 75407548.10.1523/JNEUROSCI.2018-08.2009CrossRefGoogle ScholarPubMed
Gross, W., Linden, U., & Ostermann, T. (2010). Effects of music therapy in the treatment of children with delayed speech development: Results of a pilot study. BMC Complementary Alternative Medicine, 10, 39.10.1186/1472-6882-10-39CrossRefGoogle ScholarPubMed
Guhn, M., Emerson, S. D., & Gouzouasis, P. (2020). A population-level analysis of associations between school music participation and academic achievement. Journal of Educational Psychology, 112(2), 308328.10.1037/edu0000376CrossRefGoogle Scholar
Hausen, M., Torppa, R., Salmela, V. R., Vainio, M., & Sarkamo, T. (2013). Music and speech prosody: A common rhythm. Frontiers in Psychology, 4, 566.10.3389/fpsyg.2013.00566CrossRefGoogle ScholarPubMed
Hennessy, S., Mack, W. J., & Habibi, A. (2022). Speech-in-noise perception in musicians and non-musicians: A multi-level meta-analysis. Hearing Research, 416, 108442.10.1016/j.heares.2022.108442CrossRefGoogle ScholarPubMed
Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76(3), 486502.10.1016/j.neuron.2012.10.011CrossRefGoogle ScholarPubMed
Ho, Y., Cheung, M., & Chan, A. (2003). Music training improves verbal but not visual memory: Cross sectional and longitudinal explorations in children. Neuropsychology, 17(3), 439450.10.1037/0894-4105.17.3.439CrossRefGoogle Scholar
Honing, H. (2018). The Origins of Musicality. The MIT Press.10.7551/mitpress/10636.001.0001CrossRefGoogle Scholar
Huss, M., Verney, J. P., Fosker, T., Mead, N., & Goswami, U. (2011). Music, rhythm, rise time perception and developmental dyslexia: Perception of musical meter predicts reading and phonology. Cortex, 47(6), 674689.10.1016/j.cortex.2010.07.010CrossRefGoogle ScholarPubMed
Hutka, S. A., Bidelman, G. M., & Moreno, S. (2013). Brain signal variability as a window into the bidirectionality between music and language processing: Moving from a linear to a nonlinear model. Frontiers in Psychology, 4(984), 111.10.3389/fpsyg.2013.00984CrossRefGoogle ScholarPubMed
Ingham, R. J., Bothe, A. K., Wang, Y., Purkhiser, K., & New, A. (2012). Phonation interval modification and speech performance quality during fluency-inducing conditions by adults who stutter. Journal of Communication Disorders, 45(3), 198211.10.1016/j.jcomdis.2012.01.004CrossRefGoogle ScholarPubMed
Jentzsch, I., Mkrtchian, A., & Kansal, N. (2014). Improved effectiveness of performance monitoring in amateur instrumental musicians. Neuropsychologia, 52, 117124.10.1016/j.neuropsychologia.2013.09.025CrossRefGoogle ScholarPubMed
Jones, M. R., & Yee, W. (1997). Sensitivity to time change: The role of context and skill. Journal of Experimental Psychology: Human Perception and Performance, 23, 693709.Google Scholar
Kaganovich, N., Kim, J., Herring, C., Schumaker, J., Macpherson, M., & Weber-Fox, C. (2013). Musicians show general enhancement of complex sound encoding and better inhibition of irrelevant auditory change in music: An ERP study. European Journal of Neuroscience, 37(8), 12951307.10.1111/ejn.12110CrossRefGoogle ScholarPubMed
Kaganovich, N., Schumaker, J., Leonard, L. B., Gustafson, D., & Macias, D. (2014). Children with a history of SLI show reduced sensitivity to audiovisual temporal asynchrony: An ERP study. Journal of Speech, Language, and Hearing Research, 57(4), 14801502.10.1044/2014_JSLHR-L-13-0192CrossRefGoogle ScholarPubMed
Kaplan, E., Wagner, A. E., Toffanin, P., & Başkent, D. (2021). Do musicians and non-musicians differ in speech-on-speech processing? Frontiers in Psychology, 12(281).10.3389/fpsyg.2021.623787CrossRefGoogle ScholarPubMed
Kaposvari, P., Csete, G., Bognar, A., Csibri, P., Toth, E., Szabo, N., … Kincses, Z. T. (2015). Audio-visual integration through the parallel visual pathways. Brain Research, 1624, 7177.10.1016/j.brainres.2015.06.036CrossRefGoogle ScholarPubMed
Khera, T., & Rangasamy, V. (2021). Cognition and pain: A review. Frontiers in Psychology, 12.10.3389/fpsyg.2021.673962CrossRefGoogle ScholarPubMed
Killion, M. C., Niquette, P. A., Gudmundsen, G. I., Revit, L. J., & Banerjee, S. (2004). Development of a quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 116(4 Pt 1), 23952405.10.1121/1.1784440CrossRefGoogle ScholarPubMed
Kishon-Rabin, L., Amir, O., Vexler, Y., & Zaltz, Y. (2001). Pitch discrimination: Are professional musicians better than non-musicians? Journal of Basic and Clinical Physiology and Pharmacology, 12(2), 125143.10.1515/JBCPP.2001.12.2.125CrossRefGoogle ScholarPubMed
Koelsch, S., Gunter, T. C., Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002). Bach speaks: A cortical “language-network” serves the processing of music. Neuroimage, 17(2), 956966.10.1006/nimg.2002.1154CrossRefGoogle ScholarPubMed
Koelsch, S., Schroger, E., & Tervaniemi, M. (1999). Superior pre-attentive auditory processing in musicians. Neuroreport, 10(6), 13091313.10.1097/00001756-199904260-00029CrossRefGoogle ScholarPubMed
Kraus, N., Slater, J., Thompson, E. C., Hornickel, J., Strait, D. L., Nicol, T., & White-Schwoch, T. (2014). Music enrichment programs improve the neural encoding of speech in at-risk children. Journal of Neuroscience, 34(36), 1191311918.10.1523/JNEUROSCI.1881-14.2014CrossRefGoogle ScholarPubMed
Krishnan, A., Gandour, J. T., Ananthakrishnan, S., Bidelman, G. M., & Smalt, C. J. (2011). Linguistic status of timbre influences pitch encoding in the brainstem. Neuroreport, 22(16), 801803.10.1097/WNR.0b013e32834b2996CrossRefGoogle ScholarPubMed
Krishnan, A., Gandour, J. T., & Bidelman, G. M. (2010a). Brainstem pitch representation in native speakers of Mandarin is less susceptible to degradation of stimulus temporal regularity. Brain Research, 1313, 124133.10.1016/j.brainres.2009.11.061CrossRefGoogle ScholarPubMed
Krishnan, A., Gandour, J. T., & Bidelman, G. M. (2010b). The effects of tone language experience on pitch processing in the brainstem. Journal of Neurolinguistics, 23, 8195.10.1016/j.jneuroling.2009.09.001CrossRefGoogle ScholarPubMed
Krishnan, A., Gandour, J. T., Bidelman, G. M., & Swaminathan, J. (2009). Experience-dependent neural representation of dynamic pitch in the brainstem. Neuroreport, 20(4), 408413.10.1097/WNR.0b013e3283263000CrossRefGoogle ScholarPubMed
Krishnan, A., Gandour, J. T., Smalt, C. J., & Bidelman, G. M. (2010). Language-dependent pitch encoding advantage in the brainstem is not limited to acceleration rates that occur in natural speech. Brain and Language, 114(3), 193198.10.1016/j.bandl.2010.05.004CrossRefGoogle Scholar
Krishnan, A., Swaminathan, J., & Gandour, J. T. (2009). Experience-dependent enhancement of linguistic pitch representation in the brainstem is not specific to a speech context. Journal of Cognitive Neuroscience, 21(6), 10921105.10.1162/jocn.2009.21077CrossRefGoogle Scholar
Krishnan, A, Xu, Y, Gandour, J. T., & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Brain Research Cognitive Brain Research, 25(1), 161168.10.1016/j.cogbrainres.2005.05.004CrossRefGoogle ScholarPubMed
Lappe, C., Herholz, S. C., Trainor, L. J., & Pantev, C. (2008). Cortical plasticity induced by short-term unimodal and multimodal musical training. Journal of Neuroscience, 28, 96329639.10.1523/JNEUROSCI.2254-08.2008CrossRefGoogle ScholarPubMed
Lee, C. Y., & Hung, T. H. (2008). Identification of Mandarin tones by English-speaking musicians and nonmusicians. Journal of the Acoustical Society of America, 124(5), 32353248.10.1121/1.2990713CrossRefGoogle ScholarPubMed
Lee, C.-Y., Lekich, A., & Zhang, Y. (2014). Perception of pitch height in lexical and musical tones by English-speaking musicians and nonmusiciansa. Journal of the Acoustical Society of America, 135(3), 16071615.10.1121/1.4864473CrossRefGoogle Scholar
Lee, H., & Noppeney, U. (2011). Long-term music training tunes how the brain temporally binds signals from multiple senses. Proceedings of the National Academy of Sciences of the United States of America, 108(51), E14411450.Google ScholarPubMed
Lee, H. L., & Noppeney, U. (2014). Music expertise shapes audiovisual temporal integration windows for speech, sinewave speech and music. Frontiers in Psychology, 5(868), 19.10.3389/fpsyg.2014.00868CrossRefGoogle ScholarPubMed
Lee, Y. S, Thaut, C., & Santorini, C. (2019). Neurologic music therapy for speech and language rehabilitation. In Thaut, M. H. & Hodges, D. A. (Eds.), The Oxford Handbook of Music and the Brain. Oxford University Press.Google Scholar
Lerdahl, F., & Jackendoff, R. (1983). A Generative Theory of Tonal Music. MIT Press Series on Cognitive Theory and Mental Representation (pp. xiv, 368). MIT Press.Google Scholar
Lim, V. K., Bradshaw, J. L., nicholls, M., & Altenmuller, E. (2003). Perceptual differences in sequential stimuli across patients with musician’s and writer’s cramp. Movement Disorders, 11, 12861293.10.1002/mds.10528CrossRefGoogle Scholar
Lo, C. Y., Looi, V., Thompson, W. F., & McMahon, C. M. (2020). Music training for children with sensorineural hearing loss improves speech-in-noise perception. Journal of Speech, Language, and Hearing Research, 63(6), 19902015.10.1044/2020_JSLHR-19-00391CrossRefGoogle ScholarPubMed
Lu, J., Moussard, A., Guo, S., Lee, Y., Bidelman, G. M., Moreno, S., … Alain, C. (2022). Music training modulates theta brain oscillations associated with response suppression. Annals of the New York Academy of Sciences, 1516(1), 212221.10.1111/nyas.14861CrossRefGoogle ScholarPubMed
Lu, Y., Paraskevopoulos, E., Herholz, S. C., Kuchenbuch, A., & Pantev, C. (2014). Temporal processing of audiovisual stimuli is enhanced in musicians: Evidence from magnetoencephalography (MEG). PLoS ONE, 9(3), e90686.10.1371/journal.pone.0090686CrossRefGoogle ScholarPubMed
MacLeod, A., & Summerfield, Q. (1987). Quantifying the contribution of vision to speech perception in noise. British Journal of Audiology, 21(2), 131141.10.3109/03005368709077786CrossRefGoogle ScholarPubMed
Madsen, S. M. K., Whiteford, K. L., & Oxenham, A. J. (2017). Musicians do not benefit from differences in fundamental frequency when listening to speech in competing speech backgrounds. Scientific Reports, 7(1), 12624.10.1038/s41598-017-12937-9CrossRefGoogle Scholar
Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca’s area: An MEG study. Nature Neuroscience, 4(5), 540545.10.1038/87502CrossRefGoogle ScholarPubMed
Mainka, S., & Mallien, G. (2014). Rhythmic speech cueing (RSC). In Thaut, M. H. & Hoemberg, V. (Eds.), Handbook of Neurologic Music Therapy (pp. 150160). Oxford University Press.Google Scholar
Mankel, K., & Bidelman, G. M. (2018). Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proceedings of the National Academy of Sciences of the United States of America, 115(51), 1312913134.10.1073/pnas.1811793115CrossRefGoogle ScholarPubMed
Marques, C., Moreno, S., Castro, S. L., & Besson, M. (2007). Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. Journal of Cognitive Neuroscience, 19(9), 14531463.10.1162/jocn.2007.19.9.1453CrossRefGoogle Scholar
McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746748.10.1038/264746a0CrossRefGoogle ScholarPubMed
Micheyl, C., Delhommeau, K., Perrot, X., & Oxenham, A. J. (2006). Influence of musical and psychoacoustical training on pitch discrimination. Hearing Research, 219(1–2), 3647.10.1016/j.heares.2006.05.004CrossRefGoogle ScholarPubMed
Milovanov, R., Huotilainen, M., Esquef, P. A., Alku, P., Valimaki, V., & Tervaniemi, M. (2009). The role of musical aptitude and language skills in preattentive duration processing in school-aged children. Neuroscience Letters, 460(2), 161165.10.1016/j.neulet.2009.05.063CrossRefGoogle ScholarPubMed
Moreno, S. (2009). Can music influence language and cognition? Contemporary Music Review, 28(3), 329345.10.1080/07494460903404410CrossRefGoogle Scholar
Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22, 14251433.10.1177/0956797611416999CrossRefGoogle ScholarPubMed
Moreno, S., & Bidelman, G. M. (2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 308, 8497.10.1016/j.heares.2013.09.012CrossRefGoogle ScholarPubMed
Moreno, S., Friesen, D., & Bialystok, E. (2011). Effect of music training on promoting preliteracy skills: Preliminary causal evidence. Music Perception, 29(2), 165172.10.1525/mp.2011.29.2.165CrossRefGoogle Scholar
Moreno, S., Marques, C., Santos, A., Santos, M., Castro, S. L., & Besson, M. (2009). Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cerebral Cortex, 19(3), 712723.10.1093/cercor/bhn120CrossRefGoogle ScholarPubMed
Moussard, A., Bermudez, P., Alain, C., Tays, W., & Moreno, S. (2016). Life-long music practice and executive control in older adults: An event-related potential study. Brain Research, 1642, 146153.10.1016/j.brainres.2016.03.028CrossRefGoogle ScholarPubMed
Munte, T. F., Altenmuller, E., & Jancke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3(6), 473478.10.1038/nrn843CrossRefGoogle Scholar
Munte, T. F., Kohlmetz, C., Nager, W., & Altenmuller, E. (2001). Superior auditory spatial tuning in conductors. Nature, 409(6820), 580.10.1038/35054668CrossRefGoogle ScholarPubMed
Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 1589415898.10.1073/pnas.0701498104CrossRefGoogle ScholarPubMed
Navarra, J., & Soto-Faraco, S. (2007). Hearing lips in a second language: Visual articulatory information enables the perception of second language sounds. Psychological Research, 71(1), 412.10.1007/s00426-005-0031-5CrossRefGoogle Scholar
Neves, L., Correia, A. I., Castro, S. L., Martins, D., & Lima, C. F. (2022). Does music training enhance auditory and linguistic processing? A systematic review and meta-analysis of behavioral and brain evidence. Neuroscience & Biobehavioral Reviews, 140, 104777.10.1016/j.neubiorev.2022.104777CrossRefGoogle ScholarPubMed
Nie, P., Wang, C., Rong, G., Du, B., Lu, J., Li, S., …& Tervaniemi, M. (2022). Effects of music training on the auditory working memory of Chinese-speaking school-aged children: A longitudinal intervention study. Frontiers in Psychology, 12.10.3389/fpsyg.2021.770425CrossRefGoogle ScholarPubMed
Nilsson, M., Soli, S. D., & Sullivan, J. A. (1994). Development of the hearing in noise test for the measurement of speech reception thresholds in quiet and in noise. Journal of the Acoustical Society of America, 95(2), 10851099.10.1121/1.408469CrossRefGoogle ScholarPubMed
Novembre, G., & Keller, P. E. (2014). A conceptual review on action-perception coupling in the musicians’ brain: What is it good for? Frontiers in Human Neuroscience, 8, 603.10.3389/fnhum.2014.00603CrossRefGoogle ScholarPubMed
Oxenham, A. J., & Shera, C. A. (2003). Estimates of human cochlear tuning at low levels using forward and simultaneous masking. Journal of the Association for Research in Otolaryngology, 4, 541554.10.1007/s10162-002-3058-yCrossRefGoogle Scholar
Pallesen, K. J., Brattico, E., Bailey, C. J., Korvenoja, A., Koivisto, J., Gjedde, A., & Carlson, S. (2010). Cognitive control in auditory working memory is enhanced in musicians. PLoS ONE, 5(6), e11120.10.1371/journal.pone.0011120CrossRefGoogle ScholarPubMed
Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., & Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. Neuroreport, 12(1), 169174.10.1097/00001756-200101220-00041CrossRefGoogle ScholarPubMed
Paraskevopoulos, E., Kraneburg, A., Herholz, S. C., Bamidis, P. D., & Pantev, C. (2015). Musical expertise is related to altered functional connectivity during audiovisual integration. Proceedings of the National Academy of Sciences of the United States of America, 112(40), 1252212527.10.1073/pnas.1510662112CrossRefGoogle ScholarPubMed
Paraskevopoulos, E., Kuchenbuch, A., Herholz, S. C., & Pantev, C. (2012). Evidence for training-induced plasticity in multisensory brain structures: An MEG study. PLoS ONE, 7, e36534.10.1371/journal.pone.0036534CrossRefGoogle ScholarPubMed
Parbery-Clark, A., Skoe, E., & Kraus, N. (2009). Musical experience limits the degradative effects of background noise on the neural processing of sound. Journal of Neuroscience, 29(45), 1410014107.10.1523/JNEUROSCI.3256-09.2009CrossRefGoogle ScholarPubMed
Parbery-Clark, A., Skoe, E., Lam, C., & Kraus, N. (2009). Musician enhancement for speech-in-noise. Ear and Hearing, 30(6), 653661.10.1097/AUD.0b013e3181b412e9CrossRefGoogle ScholarPubMed
Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., & Kraus, N. (2011). Musical experience and the aging auditory system: Implications for cognitive abilities and hearing speech in noise. PLoS ONE, 6(5), e18082.10.1371/journal.pone.0018082CrossRefGoogle ScholarPubMed
Patel, A D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6, 674681.10.1038/nn1082CrossRefGoogle ScholarPubMed
Patel, A. D. (2008). Music, Language, and the Brain. Oxford University Press.Google Scholar
Patel, A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2, 142.10.3389/fpsyg.2011.00142CrossRefGoogle ScholarPubMed
Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J. (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717733.10.1162/089892998563121CrossRefGoogle ScholarPubMed
Patel, A. D., & Iversen, J. R. (2007). The linguistic benefits of musical abilities. Trends in Cognitive Sciences, 11(9), 369372.10.1016/j.tics.2007.08.003CrossRefGoogle ScholarPubMed
Peng, G. (2006). Temporal and tonal aspects of Chinese syllables: A corpus-based comparative study of Mandarin and Catonese. Journal of Chinese Linguistics, 34(1), 134154.Google Scholar
Peretz, I., & Hyde, K. L. (2003). What is specific to music processing? Insights from congenital amusia. Trends in Cognitive Sciences, 7(8), 362367.10.1016/S1364-6613(03)00150-5CrossRefGoogle ScholarPubMed
Perruchet, P., & Poulin-Charronnat, B. (2013). Challenging prior evidence for a shared syntactic processor for language and music. Psychonomic Bulletin & Review, 20(2), 310317.10.3758/s13423-012-0344-5CrossRefGoogle ScholarPubMed
Price, C. N., & Bidelman, G. M. (2022). Musical experience partially counteracts temporal speech processing deficits in putative mild cognitive impairment. Annals of the New York Academy of Sciences, 1516(1), 114122.10.1111/nyas.14853CrossRefGoogle ScholarPubMed
Raichle, M. E. (2011). The restless brain. Brain Connect, 1(1), 312.10.1089/brain.2011.0019CrossRefGoogle ScholarPubMed
Rammsayer, T., & Altenmuller, E. (2006). Temporal information processing in musicians and nonmusicians. Music Perception, 24, 37-48.10.1525/mp.2006.24.1.37CrossRefGoogle Scholar
Rammsayer, T., Buttkus, F., & Altenmüller, E. (2012). Musicians do better than non-musicians in both auditory and visual timing tasks. Music Perception, 30, 8596.10.1525/mp.2012.30.1.85CrossRefGoogle Scholar
Rohrmeier, M. (2007). A generative grammar approach to diatonic harmonic structure. Proceedings of the 4th Sound and Music Computing Conference, SMC 2007, 97–100.Google Scholar
Román-Caballero, R., Vadillo, M. A., Trainor, L. J., & Lupiáñez, J. (2022). Please don’t stop the music: A meta-analysis of the cognitive and academic benefits of instrumental musical training in childhood and adolescence. Educational Research Review, 35, 100436.10.1016/j.edurev.2022.100436CrossRefGoogle Scholar
Ruggles, D. R., Freyman, R. L., & Oxenham, A. J. (2014). Influence of musical training on understanding voiced and whispered speech in noise. PLoS ONE, 9(1), e86980.10.1371/journal.pone.0086980CrossRefGoogle ScholarPubMed
Russeler, J., Altenmuller, E., Nager, W., Kohlmetz, C., & Munte, T. F. (2001). Event-related brain potentials to sound omissions differ in musicians and non-musicians. Neuroscience Letters, 308(1), 3336.10.1016/S0304-3940(01)01977-2CrossRefGoogle ScholarPubMed
Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15(8), 511514.10.1111/j.0956-7976.2004.00711.xCrossRefGoogle ScholarPubMed
Schellenberg, E. G. (2006). Long-term positive associations between music lessons and IQ. Journal of Educational Psychology, 98, 457468.10.1037/0022-0663.98.2.457CrossRefGoogle Scholar
Schon, D., Magne, C., & Besson, M. (2004). The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology, 41(3), 341349.10.1111/1469-8986.00172.xCrossRefGoogle ScholarPubMed
Seger, C. A., Spiering, B. J., Sares, A. G., Quraini, S. I., Alpeter, C., David, J., & Thaut, M. H. (2013). Corticostriatal contributions to musical expectancy perception. Journal of Cognitive Neuroscience, 25(7), 10621077.10.1162/jocn_a_00371CrossRefGoogle ScholarPubMed
Shams, L., Kamitani, Y., & Shimojo, S. (2000). What you see is what you hear. Nature, 408(14), 788.10.1038/35048669CrossRefGoogle ScholarPubMed
Shams, L., Kamitani, Y., & Shimojo, S. (2002). Visual illusion induced by sound. Cognitive Brain Research, 14, 147152.10.1016/S0926-6410(02)00069-1CrossRefGoogle ScholarPubMed
Shi, E. R., & Zhang, Q. (2020). A domain-general perspective on the role of the basal ganglia in language and music: Benefits of music therapy for the treatment of aphasia. Brain and Language, 206, 104811.10.1016/j.bandl.2020.104811CrossRefGoogle ScholarPubMed
Slater, J., Skoe, E., Strait, D., O’Connell, S., Thompson, E., & Kraus, N. (2015). Music training improves speech-in-noise perception: Longitudinal evidence from a community-based music program. Behavioural Brain Research, 291, 244252.10.1016/j.bbr.2015.05.026CrossRefGoogle ScholarPubMed
Slevc, L. R., & Miyake, A. (2006). Individual differences in second-language proficiency: Does musical ability matter? Psychological Science, 17(8), 675681.10.1111/j.1467-9280.2006.01765.xCrossRefGoogle ScholarPubMed
Slevc, L. R., Rosenberg, J. C., & Patel, A. D. (2009). Making psycholinguistics musical: Self-paced reading time evidence for shared processing of linguistic and musical syntax. Psychonomic Bulletin & Review, 16(2), 374381.10.3758/16.2.374CrossRefGoogle ScholarPubMed
Slevc, L. R., & Okada, B. M. (2015). Processing structure in language and music: A case for shared reliance on cognitive control. Psychonomic Bulletin and Review, 22, 637652.10.3758/s13423-014-0712-4CrossRefGoogle Scholar
Sluming, V., Brooks, J., Howard, M., Downes, J. J., & Roberts, N. (2007). Broca’s area supports enhanced visuospatial cognition in orchestral musicians. Journal of Neuroscience, 27(14), 37993806.10.1523/JNEUROSCI.0147-07.2007CrossRefGoogle ScholarPubMed
Smit, E. A., Milne, A. J., & Escudero, P. (2022). Music perception abilities and ambiguous word learning: Is there cross-domain transfer in nonmusicians? Frontiers in Psychology, 13.10.3389/fpsyg.2022.801263CrossRefGoogle ScholarPubMed
Smith, J. C., Marsh, J. T., & Brown, W. S. (1975). Far-field recorded frequency-following responses: Evidence for the locus of brainstem sources. Electroencephalography and Clinical Neurophysiology, 39(5), 465472.10.1016/0013-4694(75)90047-4CrossRefGoogle ScholarPubMed
Spiegel, M. F., & Watson, C. S. (1984). Performance on frequency-discrimination tasks by musicians and nonmusicians. Journal of the Acoustical Society of America, 766(6), 16901695.10.1121/1.391605CrossRefGoogle Scholar
Stahl, B., Kotz, S. A., Henseler, I., Turner, R., & Geyer, S. (2011). Rhythm in disguise: Why singing may not hold the key to recovery from aphasia. Brain, 134(Pt 10), 30833093.10.1093/brain/awr240CrossRefGoogle Scholar
Strait, D. L., Chan, K., Ashley, R., & Kraus, N. (2011). Specialization among the specialized: Auditory brainstem function is tuned in to timbre. Cortex, 48(3), 360362.10.1016/j.cortex.2011.03.015CrossRefGoogle ScholarPubMed
Strait, D. L., & Kraus, N. (2014). Biological impact of auditory expertise across the life span: Musicians as a model of auditory learning. Hearing Research, 308, 109121.10.1016/j.heares.2013.08.004CrossRefGoogle Scholar
Strait, D. L., Kraus, N., Parbery-Clark, A., & Ashley, R. (2010). Musical experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance. Hearing Research, 261(1–2), 2229.10.1016/j.heares.2009.12.021CrossRefGoogle ScholarPubMed
Sumby, W. H., & Pollack, I. (1954). Visual contribution to speech intelligibility in noise. Journal of the Acoustical Society of America, 26, 212215.10.1121/1.1907309CrossRefGoogle Scholar
Swaminathan, J., Mason, C. R., Streeter, T. M., Best, V., Kidd, G. Jr., & Patel, A. D. (2015). Musical training, individual differences and the cocktail party problem. Scientific Reports, 5, 11628.CrossRefGoogle ScholarPubMed
Swaminathan, S., Schellenberg, E. G., & Khalil, S. (2017). Revisiting the association between music lessons and intelligence: Training effects or music aptitude? Intelligence, 62, 119124.10.1016/j.intell.2017.03.005CrossRefGoogle Scholar
Talamini, F., Altoè, G., Carretti, B., & Grassi, M. (2017). Musicians have better memory than nonmusicians: A meta-analysis. PLoS ONE, 12(10), e0186773.10.1371/journal.pone.0186773CrossRefGoogle ScholarPubMed
Tervaniemi, M., Just, V., Koelsch, S., Widmann, A., & Schroger, E. (2005). Pitch discrimination accuracy in musicians vs nonmusicians: An event-related potential and behavioral study. Experimental Brain Research, 161(1), 110.10.1007/s00221-004-2044-5CrossRefGoogle ScholarPubMed
Thaut, M. H., McIntosh, G. C., & Hoemberg, V. (2014). Neurobiological foundations of neurologic music therapy: Rhythmic entrainment and the motor system. Frontiers in Psychology, 5, 1185.Google ScholarPubMed
Thaut, M. H., McIntosh, K. W., McIntosh, G. C., & Hoemberg, V. (2001). Auditory rhythmicity enhances movement and speech motor control in patients with Parkinson’s disease. Functional Neurology, 16(2), 163172.Google ScholarPubMed
Thaut, M. H., Thaut, C., & McIntosh, K. (2014). Melodic Intonation Therapy (MIT). In Thaut, M. H. & Hoemberg, V. (Eds.), The Handbook of Neurologic Music Therapy (pp. 140145). Oxford University Press.Google Scholar
Thaut, M. (2013). Rhythm, music, and the brain: Scientific foundations and clinical applications: Routledge.10.4324/9780203958827CrossRefGoogle Scholar
Thaut, M., & Hoemberg, V. (2014). Handbook of Neurologic Music Therapy. Oxford University Press.Google Scholar
Thompson, W. F., Schellenberg, E. G., & Husain, G. (2004). Decoding speech prosody: Do music lessons help? Emotion, 4, 4664.10.1037/1528-3542.4.1.46CrossRefGoogle ScholarPubMed
Tierney, A. T., Bergeson, T. R., & Pisoni, D. B. (2008). Effects of early musical experience on auditory sequence memory. Empirical Musicology Review, 3(4), 178186.10.18061/1811/35989CrossRefGoogle ScholarPubMed
Tierney, A., & Kraus, N. (2014). Auditory-motor entrainment and phonological skills: Precise auditory timing hypothesis (PATH). Frontiers in Human Neuroscience, 8.10.3389/fnhum.2014.00949CrossRefGoogle ScholarPubMed
Torppa, R., Faulkner, A., Kujala, T., Huotilainen, M., & Lipsanen, J. (2018). Developmental links between speech perception in noise, singing, and cortical processing of music in children with cochlear implants. Music Perception, 36(2), 156174.10.1525/mp.2018.36.2.156CrossRefGoogle Scholar
Tsang, C. D., & Conrad, N. J. (2011). Music training and reading readiness. Music Perception, 29(2), 157163.10.1525/mp.2011.29.2.157CrossRefGoogle Scholar
van Vugt, F. T., & Tillmann, B. (2014). Thresholds of auditory-motor coupling measured with a simple task in musicians and non-musicians: Was the sound simultaneous to the key press? PLoS ONE, 9(2), e87176.10.1371/journal.pone.0087176CrossRefGoogle Scholar
Vuust, P., Roepstorff, A., Wallentin, M., Mouridsen, K., & Ostergaard, L. (2006). It don’t mean a thing… Keeping the rhythm during polyrhythmic tension, activates language areas (BA47). NeuroImage, 31(2), 832841.10.1016/j.neuroimage.2005.12.037CrossRefGoogle Scholar
Wallace, M. T., & Stevenson, R. A. (2014). The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia, 64C, 105123.10.1016/j.neuropsychologia.2014.08.005CrossRefGoogle Scholar
Weiss, M. W., & Bidelman, G. M. (2015). Listening to the brainstem: Musicianship enhances intelligibility of subcortical representations for speech. Journal of Neuroscience, 35(4), 16871691.10.1523/JNEUROSCI.3680-14.2015CrossRefGoogle Scholar
Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420422.10.1038/nn1872CrossRefGoogle ScholarPubMed
Worschech, F., Marie, D., Jünemann, K., Sinke, C., Krüger, T. H. C., Großbach, M., …& Altenmüller, E. (2021). Improved speech in noise perception in the elderly after 6 months of musical instruction. Frontiers in Neuroscience, 15.10.3389/fnins.2021.696240CrossRefGoogle ScholarPubMed
Yang, X., Shen, X., Zhang, Q., Wang, C., Zhou, L., & Chen, Y. (2022). Music training is associated with better clause segmentation during spoken language processing. Psychonomic Bulletin and Review, 22, 14721479.10.3758/s13423-022-02076-2CrossRefGoogle Scholar
Yeend, I., Beach, E. F., Sharma, M., & Dillon, H. (2017). The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise. Hearing Research, 353, 224236.10.1016/j.heares.2017.07.006CrossRefGoogle ScholarPubMed
Yoo, J., & Bidelman, G. M. (2019). Linguistic, perceptual, and cognitive factors underlying musicians’ benefits in noise-degraded speech perception. Hearing Research, 377, 189195.10.1016/j.heares.2019.03.021CrossRefGoogle ScholarPubMed
Zamorano, A. M., Cifre, I., Montoya, P., Riquelme, I., & Kleber, B. (2017). Insula-based networks in professional musicians: Evidence for increased functional connectivity during resting state fMRI. Human Brain Mapping, 38(10), 48344849.10.1002/hbm.23682CrossRefGoogle ScholarPubMed
Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547558.10.1038/nrn2152CrossRefGoogle ScholarPubMed
Zendel, B. R., & Alain, C. (2009). Concurrent sound segregation is enhanced in musicians. Journal of Cognitive Neuroscience, 21(8), 14881498.10.1162/jocn.2009.21140CrossRefGoogle ScholarPubMed
Zendel, B. R., & Alain, C. (2012). Musicians experience less age-related decline in central auditory processing. Psychology and Aging, 27(2), 410417.10.1037/a0024816CrossRefGoogle ScholarPubMed
Zendel, B. R., & Alain, C. (2013). The influence of lifelong musicianship on neurophysiological measures of concurrent sound segregation. Journal of Cognitive Neuroscience, 25(4), 503516.10.1162/jocn_a_00329CrossRefGoogle ScholarPubMed
Zendel, B. R., West, G. L., Belleville, S., & Peretz, I. (2019). Musical training improves the ability to understand speech-in-noise in older adults. Neurobiology of Aging, 81, 102115.10.1016/j.neurobiolaging.2019.05.015CrossRefGoogle ScholarPubMed

References

Adger, D. (2015). Syntax: Syntax. Wiley Interdisciplinary Reviews: Cognitive Science, 6(2), 131147. https://doi.org/10.1002/wcs.1332Google ScholarPubMed
Albouy, P., Benjamin, L., Morillon, B., & Zatorre, R. J. (2020). Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science, 367(6481), 10431047. https://doi.org/10.1126/science.aaz3468CrossRefGoogle ScholarPubMed
Alexander, E., Van Hedger, S. C., & Batterink, L. J. (2023). Learning words without trying: Daily second language podcasts support word-form learning in adults. Psychonomic Bulletin & Review, 30(2), 751762. https://doi.org/10.3758/s13423-022-02190-1CrossRefGoogle ScholarPubMed
Andrews, E. (2014). Neuroscience and Multilingualism. Cambridge University Press.10.1017/CBO9781139567770CrossRefGoogle Scholar
Andrews, E. (2019). Cognitive neuroscience and multilingualism. In Schwieter, J. W. & Paradis, M. (Eds.), The Handbook of the Neuroscience of Multilingualism (1st ed., pp. 1947). Wiley. https://doi.org/10.1002/9781119387725.ch2CrossRefGoogle Scholar
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2021). Effects of lifelong musicianship on white matter integrity and cognitive brain reserve. Brain Sciences, 11(1), 67. https://doi.org/10.3390/brainsci11010067CrossRefGoogle Scholar
Anvari, S. H., Trainor, L. J., Woodside, J., & Levy, B. A. (2002). Relations among musical skills, phonological processing, and early reading ability in preschool children. Journal of Experimental Child Psychology, 83(2), 111130. https://doi.org/10.1016/S0022-0965(02)00124-8CrossRefGoogle ScholarPubMed
Asano, R., & Boeckx, C. (2015). Syntax in language and music: What is the right level of comparison? Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00942CrossRefGoogle Scholar
Bachem, A. (1955). Absolute pitch. The Journal of the Acoustical Society of America, 27(6), 11801185. https://doi.org/10.1121/1.1908155CrossRefGoogle Scholar
Benitez, V. L., & Saffran, J. R. (2021). Two for the price of one: Concurrent learning of words and phonotactic regularities from continuous speech. PLoS ONE, 16(6), e0253039. https://doi.org/10.1371/journal.pone.0253039CrossRefGoogle Scholar
Besson, M., Chobert, J., & Marie, C. (2011). Transfer of training between music and speech: Common processing, attention, and memory. Frontiers in Psychology, 2, 94. https://doi.org/10.3389/fpsyg.2011.00094CrossRefGoogle ScholarPubMed
Besson, M., & Macar, F. (1987). An event-related potential analysis of incongruity in music and other non-linguistic contexts. Psychophysiology, 24(1), 1425. https://doi.org/10.1111/j.1469-8986.1987.tb01853.xCrossRefGoogle ScholarPubMed
Bialystok, E., & DePape, A. M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 565. https://doi.org/10.1037/a0012735Google ScholarPubMed
Bidelman, G. M., Hutka, S., & Moreno, S. (2013). Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: Evidence for bidirectionality between the domains of language and music. PLoS ONE, 8(4), e60676. https://doi.org/10.1371/journal.pone.0060676CrossRefGoogle ScholarPubMed
Bidelman, G. M., & Krishnan, A. (2010). Effects of reverberation on brainstem representation of speech in musicians and non-musicians. Brain Research, 1355, 112125. https://doi.org/10.1016/j.brainres.2010.07.100CrossRefGoogle ScholarPubMed
Bidelman, G. M., & Yoo, J. (2020). Musicians show improved speech segregation in competitive, multi-talker cocktail party scenarios. Frontiers in Psychology, 11. www.frontiersin.org/articles/10.3389/fpsyg.2020.0192710.3389/fpsyg.2020.01927CrossRefGoogle ScholarPubMed
Bigand, E., Delbé, C., Poulin-Charronnat, B., Leman, M., & Tillmann, B. (2014). Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory. Frontiers in Systems Neuroscience, 8. https://doi.org/10.3389/fnsys.2014.00094CrossRefGoogle ScholarPubMed
Bolinger, D. (1949). The sign is not arbitrary. Boletín del Instituto Caro y Cuervo (= Thesaurus), 5, 5262.Google Scholar
Bolinger, D. (1983). Intonation and gesture. American Speech, 58(2), 156. https://doi.org/10.2307/455326CrossRefGoogle Scholar
Brown, R. (1957). Linguistic determinism and the part of speech. The Journal of Abnormal and Social Psychology, 55(1), 15. https://doi.org/10.1037/h0041199CrossRefGoogle ScholarPubMed
Brown, R. (1973). A First Language: The Early Stages. Harvard University Press.10.4159/harvard.9780674732469CrossRefGoogle Scholar
Brown, S. (2017). A joint prosodic origin of language and music. Frontiers in Psychology, 8, 1894. https://doi.org/10.3389/fpsyg.2017.01894CrossRefGoogle ScholarPubMed
Chartrand, J. P., & Belin, P. (2006). Superior voice timbre processing in musicians. Neuroscience Letters, 405(3), 164167. https://doi.org/10.1016/j.neulet.2006.06.053CrossRefGoogle ScholarPubMed
Cole, J. (2015). Prosody in context: A review. Language, Cognition and Neuroscience, 30(1–2), 131. https://doi.org/10.1080/23273798.2014.963130CrossRefGoogle Scholar
Conboy, B. T., & Kuhl, P. K. (2011). Impact of second‐language experience in infancy: Brain measures of first‐and second‐language speech perception. Developmental Science, 14(2), 242248. https://doi.org/10.1111/j.1467-7687.2010.00973.xCrossRefGoogle ScholarPubMed
Corrigall, K. A., Schellenberg, E. G., & Misura, N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00222CrossRefGoogle ScholarPubMed
Corrigall, K. A., & Trainor, L. J. (2011). Associations between length of music training and reading skills in children. Music Perception, 29(2), 147155. https://doi.org/10.1525/mp.2011.29.2.147CrossRefGoogle Scholar
Cox, A. (2001). The mimetic hypothesis and embodied musical meaning. Musicae Scientiae, 5(2), 195212. https://doi.org/10.1177/102986490100500204CrossRefGoogle Scholar
Cross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York Academy of Sciences, 930(1), 2842. https://doi.org/10.1111/j.1749-6632.2001.tb05723.xCrossRefGoogle ScholarPubMed
Crozier, J. B. (1997). Absolute pitch: Practice makes perfect, the earlier the better. Psychology of Music, 25(2), 110119. https://doi.org/10.1177/0305735697252002CrossRefGoogle Scholar
Crystal, D. (1981). Semantics. In Arnold, G. E., Winckel, F., & Wyke, B. D. (Eds.), Clinical Linguistics (Vol. 3, pp. 131191). Springer Vienna. https://doi.org/10.1007/978-3-7091-4001-7_5CrossRefGoogle Scholar
Curtis, M. E., & Bharucha, J. J. (2010). The minor third communicates sadness in speech, mirroring its use in music. Emotion, 10(3), 335348. https://doi.org/10.1037/a0017928CrossRefGoogle ScholarPubMed
Ćwiek, A., Fuchs, S., Draxler, C., Asu, E. L., Dediu, D., Hiovain, K., … & Winter, B. (2022). The bouba/kiki effect is robust across cultures and writing systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1841), 20200390. https://doi.org/10.1098/rstb.2020.0390CrossRefGoogle ScholarPubMed
Darwin, C. (2007/1874). The Descent of Man: The Concise Edition. Penguin.Google Scholar
Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., … & Le Bihan, D. (1997). Anatomical variability in the cortical representation of first and second language. Neuroreport, 8(17), 38093815.10.1097/00001756-199712010-00030CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Hertz-Pannier, L., & Dubois, J. (2006). Nature and nurture in language acquisition: Anatomical and functional brain-imaging studies in infants. Trends in Neurosciences, 29(7), 367373. https://doi.org/10.1016/j.tins.2006.05.011CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Hertz-Pannier, L., Dubois, J., & Dehaene, S. (2008). How does early brain organization promote language acquisition in humans? European Review, 16(4), 399411. doi:10.1017/S1062798708000513CrossRefGoogle Scholar
Dehaene-Lambertz, G., & Pena, M. (2001). Electrophysiological evidence for automatic phonetic processing in neonates. Neuroreport, 12(14), 31553158.10.1097/00001756-200110080-00034CrossRefGoogle ScholarPubMed
Deutsch, D. (2013). Absolute pitch. In The Psychology of Music (pp. 141182). Elsevier. https://doi.org/10.1016/B978-0-12-381460-9.00005-5CrossRefGoogle Scholar
Deutsch, D., Henthorn, T., & Dolson, M. (2004). Absolute pitch, speech, and tone language: Some experiments and a proposed framework. Music Perception, 21(3), 339356. https://doi.org/10.1525/mp.2004.21.3.339CrossRefGoogle Scholar
Deutsch, D., Henthorn, T., Marvin, E., & Xu, H. (2006). Absolute pitch among American and Chinese conservatory students: Prevalence differences, and evidence for a speech-related critical period. The Journal of the Acoustical Society of America, 119(2), 719722. https://doi.org/10.1121/1.2151799CrossRefGoogle ScholarPubMed
Deutsch, D., Lapidis, R., & Henthorn, T. (2008). The speech‐to‐song illusion. The Journal of the Acoustical Society of America, 124(4), 24712471. https://doi.org/10.1121/1.4808987CrossRefGoogle Scholar
Diedrich, C. G. (2015). “Neanderthal bone flutes”: Simply products of Ice Age spotted hyena scavenging activities on cave bear cubs in European cave bear dens. Royal Society Open Science, 2(4), 140022. https://doi.org/10.1098/rsos.140022CrossRefGoogle ScholarPubMed
Ding, N., Patel, A. D., Chen, L., Butler, H., Luo, C., & Poeppel, D. (2017). Temporal modulations in speech and music. Neuroscience & Biobehavioral Reviews, 81, 181187. https://doi.org/10.1016/j.neubiorev.2017.02.011CrossRefGoogle ScholarPubMed
Dollmann, J., Kogan, I., & Weißmann, M. (2020). Speaking accent-free in L2 beyond the critical period: The compensatory role of individual abilities and opportunity structures. Applied Linguistics, 41(5), 787809. https://doi.org/10.1093/applin/amz029CrossRefGoogle Scholar
Elmer, S., Meyer, M., Marrama, L., & Jäncke, L. (2011). Intensive language training and attention modulate the involvement of fronto-parietal regions during a non-verbal auditory discrimination task. European Journal of Neuroscience, 34(1), 165175. https://doi.org/10.1111/j.1460-9568.2011.07728.xCrossRefGoogle ScholarPubMed
Embick, D., Marantz, A., Miyashita, Y., O’Neil, W., & Sakai, K. L. (2000). A syntactic specialization for Broca’s area. Proceedings of the National Academy of Sciences, 97(11), 61506154. https://doi.org/10.1073/pnas.100098897CrossRefGoogle ScholarPubMed
Escoffier, N., Zhong, J., Schirmer, A., & Qiu, A. (2013). Emotional expressions in voice and music: Same code, same effect? Human Brain Mapping, 34(8), 17961810. https://doi.org/10.1002/hbm.22029CrossRefGoogle ScholarPubMed
Falk, S., Rathcke, T., & Dalla Bella, S. (2014). When speech sounds like music. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 14911506. https://doi.org/10.1037/a0036858Google ScholarPubMed
Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level linguistic processing in the human brain. Proceedings of the National Academy of Sciences, 108(39), 1642816433. https://doi.org/10.1073/pnas.1112937108CrossRefGoogle ScholarPubMed
Fedorenko, E., McDermott, J. H., Norman-Haignere, S., & Kanwisher, N. (2012). Sensitivity to musical structure in the human brain. Journal of Neurophysiology, 108(12), 32893300. https://doi.org/10.1152/jn.00209.2012CrossRefGoogle ScholarPubMed
Fedorenko, E., Patel, A., Casasanto, D., Winawer, J., & Gibson, E. (2009). Structural integration in language and music: Evidence for a shared system. Memory & Cognition, 37(1), 19. https://doi.org/10.3758/MC.37.1.1CrossRefGoogle ScholarPubMed
Fiebach, C. J., Schlesewsky, M., Lohmann, G., von Cramon, D. Y., & Friederici, A. D. (2005). Revisiting the role of Broca’s area in sentence processing: Syntactic integration versus syntactic working memory. Human Brain Mapping, 24(2), 7991. https://doi.org/10.1002/hbm.20070CrossRefGoogle ScholarPubMed
Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12(6), 499504. https://doi.org/10.1111/1467-9280.003CrossRefGoogle ScholarPubMed
François, C., Jaillet, F., Takerkart, S., & Schön, D. (2014). Faster sound stream segmentation in musicians than in nonmusicians. PLoS ONE, 9(7), e101340. https://doi.org/10.1371/journal.pone.0101340CrossRefGoogle ScholarPubMed
François, C., & Schön, D. (2014). Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: The role of musical practice. Hearing Research, 308, 122128. https://doi.org/10.1016/j.heares.2013.08.018CrossRefGoogle ScholarPubMed
Francois, C., & Schön, D. (2011). Musical expertise boosts implicit learning of both musical and linguistic structures. Cerebral Cortex, 21(10), 23572365. https://doi.org/10.1093/cercor/bhr022CrossRefGoogle ScholarPubMed
Friederici, A. D. (2003). The role of left inferior frontal and superior temporal cortex in sentence comprehension: Localizing syntactic and semantic processes. Cerebral Cortex, 13(2), 170177. https://doi.org/10.1093/cercor/13.2.170CrossRefGoogle ScholarPubMed
Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R., Friederici, A. D., & Koelsch, S. (2009). Universal recognition of three basic emotions in music. Current Biology, 19(7), 573576. https://doi.org/10.1016/j.cub.2009.02.058CrossRefGoogle ScholarPubMed
Furl, N., Kumar, S., Alter, K., Durrant, S., Shawe-Taylor, J., & Griffiths, T. D. (2011). Neural prediction of higher-order auditory sequence statistics. Neuroimage, 54(3), 22672277. https://doi.org/10.1016/j.neuroimage.2010.10.038CrossRefGoogle ScholarPubMed
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3–4), 455479. https://doi.org/10.1080/02643290442000310CrossRefGoogle ScholarPubMed
Ganis, G., Kutas, M., & Sereno, M. I. (1996). The search for “common sense”: An electrophysiological study of the comprehension of words and pictures in reading. Journal of Cognitive Neuroscience, 8(2), 89106. https://doi.org/10.1162/jocn.1996.8.2.89CrossRefGoogle ScholarPubMed
Gervain, J., Vines, B. W., Chen, L. M., Seo, R. J., Hensch, T. K., Werker, J. F., & Young, A. H. (2013). Valproate reopens critical-period learning of absolute pitch. Frontiers in Systems Neuroscience, 7. https://doi.org/10.3389/fnsys.2013.00102CrossRefGoogle ScholarPubMed
Geschwind, N. (1970). The organization of language and the brain: Language disorders after brain damage help in elucidating the neural basis of verbal behavior. Science, 170(3961), 940944. https://doi.org/10.1126/science.170.3961.940CrossRefGoogle Scholar
Gibbs, R. W. (2003). Embodied experience and linguistic meaning. Brain and Language, 84(1), 115. https://doi.org/10.1016/S0093–934X(02)00517-5CrossRefGoogle ScholarPubMed
Gleitman, L. (1990). The structural sources of verb meanings. Language Acquisition, 1(1), 355.10.1207/s15327817la0101_2CrossRefGoogle Scholar
Glucksberg, S., & Keysar, B. (1990). Understanding metaphorical comparisons: Beyond similarity. Psychological Review, 97(1), 318. https://doi.org/10.1037/0033-295X.97.1.3CrossRefGoogle Scholar
Grodzinsky, Y., & Friederici, A. D. (2006). Neuroimaging of syntax and syntactic processing. Current Opinion in Neurobiology, 16(2), 240246. https://doi.org/10.1016/j.conb.2006.03.007CrossRefGoogle ScholarPubMed
Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca’s region and beyond. Current Opinion in Neurobiology, 28, 136141. https://doi.org/10.1016/j.conb.2014.07.013CrossRefGoogle ScholarPubMed
Hedger, S. C., Nusbaum, H. C., & Hoeckner, B. (2013). Conveying movement in music and prosody. PLoS ONE, 8(10), e76744. https://doi.org/10.1371/journal.pone.0076744CrossRefGoogle ScholarPubMed
Higham, T., Basell, L., Jacobi, R., Wood, R., Ramsey, C. B., & Conard, N. J. (2012). Τesting models for the beginnings of the Aurignacian and the advent of figurative art and music: The radiocarbon chronology of Geißenklösterle. Journal of Human Evolution, 62(6), 664676. https://doi.org/10.1016/j.jhevol.2012.03.003CrossRefGoogle ScholarPubMed
Hockett, C. F. (1958). A course in modern linguistics. Language Learning, 8(3–4), 7375. https://doi.org/10.1111/j.1467-1770.1958.tb00870.xCrossRefGoogle Scholar
Hockett, C. F. (1960). The origin of speech. Scientific American, 203(3), 8896. https://doi.org/10.1038/scientificamerican0960–88CrossRefGoogle ScholarPubMed
Honing, H., ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music: Cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664), 20140088. https://doi.org/10.1098/rstb.2014.0088CrossRefGoogle ScholarPubMed
Humphries, C., Liebenthal, E., & Binder, J. R. (2010). Tonotopic organization of human auditory cortex. NeuroImage, 50(3), 12021211. https://doi.org/10.1016/j.neuroimage.2010.01.046CrossRefGoogle ScholarPubMed
Imai, M., & Kita, S. (2014). The sound symbolism bootstrapping hypothesis for language acquisition and language evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1651), 20130298. https://doi.org/10.1098/rstb.2013.0298CrossRefGoogle ScholarPubMed
Jakobson, R. (1965). Quest for the essence of language. Diogenes, 13(51), 2137. https://doi.org/10.1177/039219216501305103CrossRefGoogle Scholar
Jakobson, R. (1995). On Language (ed. Waugh, L. R.). Harvard University Press.Google Scholar
Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21(1), 6099. https://doi.org/10.1016/0010-0285(89)90003-0CrossRefGoogle ScholarPubMed
Jusczyk, P. W., & Bertoncini, J. (1988). Viewing the development of speech perception as an innately guided learning process. Language and Speech, 31(3), 217238. https://doi.org/10.1177/002383098803100301CrossRefGoogle Scholar
Juslin, P. N. (2000). Cue utilization in communication of emotion in music performance: Relating performance to perception. Journal of Experimental Psychology: Human Perception and Performance, 26(6), 17971812. https://doi.org/10.1037/0096-1523.26.6.1797Google ScholarPubMed
Kim, K. H., Relkin, N. R., Lee, K. M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388(6638), 171174. https://doi.org/10.1038/40623CrossRefGoogle ScholarPubMed
Koelsch, S., Kasper, E., Sammler, D., Schulze, K., Gunter, T., & Friederici, A. D. (2004). Music, language and meaning: Brain signatures of semantic processing. Nature Neuroscience, 7(3), 302307. https://doi.org/10.1038/nn1197CrossRefGoogle ScholarPubMed
Köhler, W. (1929). Gestalt Psychology: An Introduction to New Concepts in Modern Psychology. Liveright.Google Scholar
Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11(8), 599605. https://doi.org/10.1038/nrn2882CrossRefGoogle ScholarPubMed
Kuhl, P. K., Conboy, B. T., Padden, D., Nelson, T., & Pruitt, J. (2005). Early speech perception and later language development: Implications for the “critical period”. Language Learning and Development, 1(3–4), 237264. https://doi.org/10.1080/15475441.2005.9671948CrossRefGoogle Scholar
Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9(2), F13F21. https://doi.org/10.1111/j.1467-7687.2006.00468.xCrossRefGoogle ScholarPubMed
Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences, 100(15), 90969101. https://doi.org/10.1073/pnas.1532872100CrossRefGoogle ScholarPubMed
Kunert, R., Willems, R. M., Casasanto, D., Patel, A. D., & Hagoort, P. (2015). Music and language syntax interact in Broca’s Area: An fMRI study. PLoS ONE, 10(11), e0141069. https://doi.org/10.1371/journal.pone.0141069CrossRefGoogle ScholarPubMed
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62(1), 621647. https://doi.org/10.1146/annurev.psych.093008.131123CrossRefGoogle ScholarPubMed
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203205. https://doi.org/10.1126/science.7350657CrossRefGoogle ScholarPubMed
Landau, B., & Gleitman, L. R. (2009/1985). Language and Experience: Evidence from the Blind Child (Vol. 8). Harvard University Press.Google Scholar
Landau, B., Gleitman, L. R., & Landau, B. (2009). Language and Experience: Evidence from the Blind Child (Vol. 8). Harvard University Press.Google Scholar
Larrouy-Maestri, P., Harrison, P. M. C., & Müllensiefen, D. (2019). The mistuning perception test: A new measurement instrument. Behavior Research Methods, 51(2), 663675. https://doi.org/10.3758/s13428-019-01225-1CrossRefGoogle Scholar
Lenneberg, E. H. (1967). Biological Foundations of Language. John Wiley & Sons.10.1080/21548331.1967.11707799CrossRefGoogle Scholar
Lerdahl, F. (2013). Musical syntax and its relation to linguistic syntax. In Arbib, M. A. (Ed.), Language, Music, and the Brain (pp. 257272). The MIT Press. https://doi.org/10.7551/mitpress/9780262018104.003.0010CrossRefGoogle Scholar
Lerdahl, F., & Jackendoff, R. (1983). A Generative Theory of Tonal Music (Repr.). MIT Press.Google Scholar
Liu, J., Hilton, C. B., Bergelson, E., & Mehr, S. A. (2023). Language experience predicts music processing in a half-million speakers of fifty-four languages. Current Biology, 33(10), 19161925.10.1016/j.cub.2023.03.067CrossRefGoogle Scholar
Lupyan, G., & Winter, B. (2018). Language is more abstract than you think, or, why aren’t languages more iconic? Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170137. https://doi.org/10.1098/rstb.2017.0137CrossRefGoogle ScholarPubMed
Luria, A. R., Tsvetkova, L. S., & Futer, D. S. (1965). Aphasia in a composer. Journal of the Neurological Sciences, 2(3), 288292. https://doi.org/10.1016/0022-510X(65)90113-9CrossRefGoogle Scholar
Lynch, M. P., & Eilers, R. E. (1992). A study of perceptual development for musical tuning. Perception & Psychophysics, 52(6), 599608. https://doi.org/10.3758/BF03211696CrossRefGoogle ScholarPubMed
Lynch, M. P., Eilers, R. E., Oller, D. K., & Urbano, R. C. (1990). Innateness, experience, and music perception. Psychological Science, 1(4), 272276. https://doi.org/10.1111/j.1467-9280.1990.tb00213.xCrossRefGoogle Scholar
Lytle, S. R., Garcia-Sierra, A., & Kuhl, P. K. (2018). Two are better than one: Infant language learning from video improves in the presence of peers. Proceedings of the National Academy of Sciences, 115(40), 98599866. https://doi.org/10.1073/pnas.1611621115CrossRefGoogle ScholarPubMed
Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca’s area: An MEG study. Nature Neuroscience, 4(5), 540545. https://doi.org/10.1038/87502CrossRefGoogle ScholarPubMed
Magne, C., Schön, D., & Besson, M. (2006). Musician children detect pitch violations in both music and language better than nonmusician children: Behavioral and electrophysiological approaches. Journal of Cognitive Neuroscience, 18(2), 199211. https://doi.org/10.1162/jocn.2006.18.2.199CrossRefGoogle ScholarPubMed
Mankel, K., & Bidelman, G. M. (2018). Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proceedings of the National Academy of Sciences, 115(51), 1312913134. https://doi.org/10.1073/pnas.1811793115CrossRefGoogle ScholarPubMed
Mattock, K., & Burnham, D. (2006). Chinese and English infants’ tone perception: Evidence for perceptual reorganization. Infancy, 10(3), 241265. https://doi.org/10.1207/s15327078in1003_3CrossRefGoogle Scholar
Mattock, K., Molnar, M., Polka, L., & Burnham, D. (2008). The developmental course of lexical tone perception in the first year of life. Cognition, 106(3), 13671381. https://doi.org/10.1016/j.cognition.2007.07.002CrossRefGoogle ScholarPubMed
McDermott, J., & Hauser, M. (2005). The origins of music: Innateness, uniqueness, and evolution. Music Perception, 23(1), 2959. https://doi.org/10.1525/mp.2005.23.1.29CrossRefGoogle Scholar
McMullen, E., & Saffran, J. R. (2004). Music and language: A developmental comparison. Music Perception, 21(3), 289311. https://doi.org/10.1525/mp.2004.21.3.289CrossRefGoogle Scholar
Mehler, J., Jusczyk, P., Lambertz, G., Halsted, N., Bertoncini, J., & Amiel-Tison, C. (1988). A precursor of language acquisition in young infants. Cognition, 29(2), 143178. https://doi.org/10.1016/0010-0277(88)90035-2CrossRefGoogle ScholarPubMed
Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S., … & Glowacki, L. (2019). Universality and diversity in human song. Science, 366(6468), eaax0868. https://doi.org/10.1126/science.aax0868CrossRefGoogle ScholarPubMed
Meisel, J. M. (2013). Language Acquisition and Change: A Morphosyntactic Perspective. Edinburgh University Press.Google Scholar
Meyer, L. B. (1956). Emotion and Meaning in Music (Paperback ed., [Nachdr.]). University of Chicago Press.Google Scholar
Miller, J. L., & Volaitis, L. E. (1989). Effect of speaking rate on the perceptual structure of a phonetic category. Perception & Psychophysics, 46(6), 505512. https://doi.org/10.3758/BF03208147CrossRefGoogle ScholarPubMed
Mithen, S. J. (2005). The Singing Neanderthals: The Origins of Music, Language, Mind and Body. Weidenfeld & Nicolson.Google Scholar
Monaghan, P., Shillcock, R. C., Christiansen, M. H., & Kirby, S. (2014). How arbitrary is language? Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1651), 20130299. https://doi.org/10.1098/rstb.2013.0299CrossRefGoogle ScholarPubMed
Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011a). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 14251433. https://doi.org/10.1177/095679761141699CrossRefGoogle ScholarPubMed
Moreno, S., & Bidelman, G. M. (2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 308, 8497. https://doi.org/10.1016/j.heares.2013.09.012ACrossRefGoogle ScholarPubMed
Moreno, S., Friesen, D., & Bialystok, E. (2011b). Effect of music training on promoting preliteracy skills: Preliminary causal evidence. Music Perception, 29(2), 165172. https://doi.org/10.1525/mp.2011.29.2.165CrossRefGoogle Scholar
Moreno, S., Marques, C., Santos, A., Santos, M., Castro, S. L., & Besson, M. (2009). Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cerebral Cortex, 19(3), 712723. https://doi.org/10.1093/cercor/bhn120ACrossRefGoogle ScholarPubMed
Murphy, G. L. (1996). On metaphoric representation. Cognition, 60(2), 173204. https://doi.org/10.1016/0010-0277(96)00711-1CrossRefGoogle ScholarPubMed
Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences, 104(40), 1589415898. https://doi.org/10.1073/pnas.0701498104CrossRefGoogle ScholarPubMed
Naigles, L. (1990). Children use syntax to learn verb meanings. Journal of Child Language, 17(2), 357374.10.1017/S0305000900013817CrossRefGoogle ScholarPubMed
Naigles, L. R., & Swensen, L. D. (2007). Syntactic supports for word learning. In Hoff, E. & Shatz, M. (Eds.), Blackwell Handbook of Language Development (pp. 212231). Blackwell Publishing. https://doi.org/10.1002/9780470757833.ch11CrossRefGoogle Scholar
Narmour, E. (1990). The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model. University of Chicago Press.Google Scholar
Nazzi, T., Bertoncini, J., & Mehler, J. (1998). Language discrimination by newborns: Toward an understanding of the role of rhythm. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 756.Google ScholarPubMed
Nazzi, T., & Ramus, F. (2003). Perception and acquisition of linguistic rhythm by infants. Speech Communication, 41(1), 233243. https://doi.org/10.1016/S0167-6393(02)00106-1CrossRefGoogle Scholar
Nettl, B. (1999). An ethnomusicologist contemplates universals in musical sound and musical culture. In Wallin, N. L., Merker, B., & Brown, S. (Eds.), The Origins of Music (pp. 463472). The MIT Press. https://doi.org/10.7551/mitpress/5190.003.0032CrossRefGoogle Scholar
Neville, H., Nicol, J. L., Barss, A., Forster, K. I., & Garrett, M. F. (1991). Syntactically based sentence processing classes: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 3(2), 151165. https://doi.org/10.1162/jocn.1991.3.2.151CrossRefGoogle ScholarPubMed
Neville, H. J., Coffey, S. A., Lawson, D. S., Fischer, A., Emmorey, K., & Bellugi, U. (1997). Neural systems mediating American Sign Language: Effects of sensory experience and age of acquisition. Brain and Language, 57(3), 285308. https://doi.org/10.1006/brln.1997.1739CrossRefGoogle ScholarPubMed
Newport, E. (2006). Language development, critical periods in. In Nadel, L. (Ed.), Encyclopedia of Cognitive Science (p. s00506). John Wiley & Sons, Ltd.https://doi.org/10.1002/0470018860.s00506Google Scholar
Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Science, 14(1), 1128. https://doi.org/10.1016/0364-0213(90)90024-QCrossRefGoogle Scholar
Niedeggen, M., & Rösler, F. (1999). N400 effects reflect activation spread during retrieval of arithmetic facts. Psychological Science, 10(3), 271276. https://doi.org/10.1111/1467-9280.00149CrossRefGoogle Scholar
Norman-Haignere, S., Kanwisher, N. G., & McDermott, J. H. (2015). Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron, 88(6), 12811296. https://doi.org/10.1016/j.neuron.2015.11.035CrossRefGoogle ScholarPubMed
Nygaard, L. C., Cook, A. E., & Namy, L. L. (2009). Sound to meaning correspondences facilitate word learning. Cognition, 112(1), 181186. https://doi.org/10.1016/j.cognition.2009.04.001CrossRefGoogle ScholarPubMed
Oyama, S. (1976). A sensitive period for the acquisition of a nonnative phonological system. Journal of Psycholinguistic Research, 5, 261283. https://doi.org/10.1007/BF01067377CrossRefGoogle Scholar
Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6(7), 674681. https://doi.org/10.1038/nn1082CrossRefGoogle ScholarPubMed
Patel, A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00142CrossRefGoogle ScholarPubMed
Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J. (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717733. https://doi.org/10.1162/089892998563121CrossRefGoogle ScholarPubMed
Patel, A. D., Iversen, J. R., Wassenaar, M., & Hagoort, P. (2008). Musical syntactic processing in agrammatic Broca’s aphasia. Aphasiology, 22(7–8), 776789. https://doi.org/10.1080/02687030701803804CrossRefGoogle Scholar
Patel, A. D., Peretz, I., Tramo, M., & Labreque, R. (1998). Processing prosodic and musical patterns: A neuropsychological investigation. Brain and Language, 61(1), 123144. https://doi.org/10.1006/brln.1997.1862CrossRefGoogle ScholarPubMed
Paulmann, S., & Uskul, A. K. (2014). Cross-cultural emotional prosody recognition: Evidence from Chinese and British listeners. Cognition and Emotion, 28(2), 230244. https://doi.org/10.1080/02699931.2013.812033CrossRefGoogle ScholarPubMed
Peelle, J. E., & Davis, M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00320CrossRefGoogle ScholarPubMed
Penfield, W. (1965). Conditioning the uncommitted cortex for language learning. Brain, 88(4), 787798.10.1093/brain/88.4.787CrossRefGoogle ScholarPubMed
Perani, D., Dehaene, S., Grassi, F., Cohen, L., Cappa, S. F., Dupoux, E., … & Mehler, J. (1996). Brain processing of native and foreign languages. NeuroReport – International Journal for Rapid Communications of Research in Neuroscience, 7(15), 24392444.10.1097/00001756-199611040-00007CrossRefGoogle ScholarPubMed
Peretz, I., & Hyde, K. L. (2003). What is specific to music processing? Insights from congenital amusia. Trends in Cognitive Sciences, 7(8), 362367. https://doi.org/10.1016/S1364-6613(03)00150-5CrossRefGoogle ScholarPubMed
Peretz, I., Kolinsky, R., Tramo, M., Labrecque, R., Hublet, C., Demeurisse, G., & Belleville, S. (1994). Functional dissociations following bilateral lesions of auditory cortex. Brain, 117(6), 12831301. https://doi.org/10.1093/brain/117.6.1283CrossRefGoogle ScholarPubMed
Peretz, I., Saffran, J., Schön, D., & Gosselin, N. (2012). Statistical learning of speech, not music, in congenital amusia. Annals of the New York Academy of Sciences, 1252(1), 361366. https://doi.org/10.1111/j.1749-6632.2011.06429.xCrossRefGoogle Scholar
Perniss, P., Thompson, R. L., & Vigliocco, G. (2010). Iconicity as a general property of language: Evidence from spoken and signed languages. Frontiers in Psychology, 1. https://doi.org/10.3389/fpsyg.2010.00227CrossRefGoogle ScholarPubMed
Perruchet, P., & Poulin-Charronnat, B. (2013). Challenging prior evidence for a shared syntactic processor for language and music. Psychonomic Bulletin & Review, 20(2), 310317. https://doi.org/10.3758/s13423-012-0344-5CrossRefGoogle ScholarPubMed
Pichon, S., & Kell, C. A. (2013). Affective and sensorimotor components of emotional prosody generation. The Journal of Neuroscience, 33(4), 16401650. https://doi.org/10.1523/JNEUROSCI.3530-12.2013CrossRefGoogle ScholarPubMed
Pinker, S. (1997). Words and rules in the human brain. Nature, 387(6633), 547548. https://doi.org/10.1038/42347CrossRefGoogle ScholarPubMed
Pinker, S. (1999). How the Mind Works (1. publ). Norton.Google ScholarPubMed
Pinker, S., & Jackendoff, R. (2005). The faculty of language: What’s special about it? Cognition, 95(2), 201236. https://doi.org/10.1016/j.cognition.2004.08.004CrossRefGoogle Scholar
Querleu, D., Renard, X., Versyp, F., Paris-Delrue, L., & Crèpin, G. (1988). Fetal hearing. European Journal of Obstetrics & Gynecology and Reproductive Biology, 28(3), 191212. https://doi.org/10.1016/0028-2243(88)90030-5CrossRefGoogle ScholarPubMed
Ramachandran, V. S., & Hubbard, E. M. (2001). Synaesthesia: A window into perception, thought and language. Journal of Consciousness Studies, 8(12), 334.Google Scholar
Rivera-Gaxiola, M., Silva-Pereyra, J., & Kuhl, P. K. (2005). Brain potentials to native and non-native speech contrasts in 7- and 11-month-old American infants. Developmental Science, 8(2), 162172. https://doi.org/10.1111/j.1467-7687.2005.00403.xCrossRefGoogle ScholarPubMed
Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 906914. https://doi.org/10.1002/wcs.78Google ScholarPubMed
Saffran, J. R. (2001). Words in a sea of sounds: The output of infant statistical learning. Cognition, 81(2), 149169. https://doi.org/10.1016/S0010-0277(01)00132-9CrossRefGoogle Scholar
Saffran, J. R. (2003). Musical learning and language development. Annals of the New York Academy of Sciences, 999(1), 397401. https://doi.org/10.1196/annals.1284.050CrossRefGoogle ScholarPubMed
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996a). Statistical learning by 8-month-old infants. Science, 274(5294), 19261928. https://doi.org/10.1126/science.274.5294.1926CrossRefGoogle ScholarPubMed
Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70(1), 2752. https://doi.org/10.1016/S0010-0277(98)00075-4CrossRefGoogle Scholar
Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69, 181203. https://doi.org/10.1146/annurev-psych-122216-011805CrossRefGoogle ScholarPubMed
Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996b). Word segmentation: The role of distributional cues. Journal of Memory and Language, 35(4), 606621. https://doi.org/10.1006/jmla.1996.0032CrossRefGoogle Scholar
Scherer, K. R. (1995). Expression of emotion in voice and music. Journal of Voice, 9(3), 235248. https://doi.org/10.1016/S0892-1997(05)80231-0CrossRefGoogle ScholarPubMed
Shepherd, J., & Wicke, P. (1997). Music and Cultural Theory. Polity Press.Google Scholar
Shintel, H., Nusbaum, H. C., & Okrent, A. (2006). Analog acoustic expression in speech communication. Journal of Memory and Language, 55(2), 167177. https://doi.org/10.1016/j.jml.2006.03.002CrossRefGoogle Scholar
Sidhu, D. M., Westbury, C., Hollis, G., & Pexman, P. M. (2021). Sound symbolism shapes the English language: The maluma/takete effect in English nouns. Psychonomic Bulletin & Review, 28(4), 13901398. https://doi.org/10.3758/s13423-021-01883-3CrossRefGoogle ScholarPubMed
Siegelman, N., Bogaerts, L., Elazar, A., Arciuli, J., & Frost, R. (2018). Linguistic entrenchment: Prior knowledge impacts statistical learning performance. Cognition, 177, 198213. https://doi.org/10.1016/j.cognition.2018.04.011CrossRefGoogle ScholarPubMed
Silvén, M., Voeten, M., Kouvo, A., & Lundén, M. (2014). Speech perception and vocabulary growth: A longitudinal study of Finnish-Russian bilinguals and Finnish monolinguals from infancy to three years. International Journal of Behavioral Development, 38(4), 323332. https://doi.org/10.1177/0165025414533748CrossRefGoogle Scholar
Slevc, L. R., & Patel, A. D. (2011). Meaning in music and language: Three key differences. Physics of Life Reviews, 8(2), 110111. https://doi.org/10.1016/j.plrev.2011.05.003Google ScholarPubMed
Slevc, L. R., Rosenberg, J. C., & Patel, A. D. (2009). Making psycholinguistics musical: Self-paced reading time evidence for shared processing of linguistic and musical syntax. Psychonomic Bulletin & Review, 16(2), 374381. https://doi.org/10.3758/16.2.374CrossRefGoogle ScholarPubMed
Smit, E. A., Milne, A. J., Sarvasy, H. S., & Dean, R. T. (2022). Emotional responses in Papua New Guinea show negligible evidence for a universal effect of major versus minor music. PLoS ONE, 17(6), e0269597. https://doi.org/10.1371/journal.pone.0269597CrossRefGoogle ScholarPubMed
Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416(6876), 8790. https://doi.org/10.1038/416087aCrossRefGoogle ScholarPubMed
Sohail, J., & Johnson, E. K. (2016). How transitional probabilities and the edge effect contribute to listeners’ phonological bootstrapping success. Language Learning and Development, 12(2), 105115. https://doi.org/10.1080/15475441.2015.1073153CrossRefGoogle Scholar
Steinbeis, N., Koelsch, S., & Sloboda, J. A. (2006). The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological, and neural responses. Journal of Cognitive Neuroscience, 18(8), 13801393. https://doi.org/10.1162/jocn.2006.18.8.1380CrossRefGoogle ScholarPubMed
Strait, D. L., & Kraus, N. (2011). Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise. Frontiers in Psychology, 2, 113. https://doi.org/10.3389/fpsyg.2011.00113CrossRefGoogle ScholarPubMed
Strait, D. L., Kraus, N., Skoe, E., & Ashley, R. (2009). Musical experience and neural efficiency – effects of training on subcortical processing of vocal expressions of emotion. European Journal of Neuroscience, 29(3), 661668. https://doi.org/10.1111/j.1460-9568.2009.06617.xCrossRefGoogle ScholarPubMed
Stromswold, K., Caplan, D., Alpert, N., & Rauch, S. (1996). Localization of syntactic comprehension by positron emission tomography. Brain and Language, 52(3), 452473. https://doi.org/10.1006/brln.1996.0024CrossRefGoogle ScholarPubMed
Swaminathan, S., & Schellenberg, E. G. (2019). Music training and cognitive abilities: Associations, causes, and consequences. In Thaut, M. H. & Hodges, D. A. (Eds.), The Oxford Handbook of Music and the Brain (pp. 644670). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198804123.013.26Google Scholar
Swaminathan, S., & Schellenberg, E. G. (2020). Musical ability, music training, and language ability in childhood. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(12), 23402348. https://doi.org/10.1037/xlm0000798Google ScholarPubMed
Swingley, D. (2005). Statistical clustering and the contents of the infant vocabulary. Cognitive Psychology, 50(1), 86132. https://doi.org/10.1016/j.cogpsych.2004.06.001CrossRefGoogle ScholarPubMed
Tervaniemi, M., & Hugdahl, K. (2003). Lateralization of auditory-cortex functions. Brain Research Reviews, 43(3), 231246. https://doi.org/10.1016/j.brainresrev.2003.08.004CrossRefGoogle ScholarPubMed
Thompson, W. F., Marin, M. M., & Stewart, L. (2012). Reduced sensitivity to emotional prosody in congenital amusia rekindles the musical protolanguage hypothesis. Proceedings of the National Academy of Sciences, 109(46), 1902719032. https://doi.org/10.1073/pnas.1210344109CrossRefGoogle ScholarPubMed
Tierney, A., Dick, F., Deutsch, D., & Sereno, M. (2013). Speech versus song: Multiple pitch-sensitive areas revealed by a naturally occurring musical illusion. Cerebral Cortex, 23(2), 249254. https://doi.org/10.1093/cercor/bhs003CrossRefGoogle ScholarPubMed
Tillmann, B., Bharucha, J. J., & Bigand, E. (2000). Implicit learning of tonality: A self-organizing approach. Psychological Review, 107(4), 885. https://doi.org/10.1037/0033-295X.107.4.885CrossRefGoogle ScholarPubMed
Tillmann, B., Janata, P., & Bharucha, J. J. (2003). Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 16(2), 145161. https://doi.org/10.1016/S0926-6410(02)00245-8CrossRefGoogle ScholarPubMed
Tremblay, P., & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language, 162, 6071. https://doi.org/10.1016/j.bandl.2016.08.004CrossRefGoogle ScholarPubMed
Tsang, C. D., & Conrad, N. J. (2011). Music training and reading readiness. Music Perception, 29(2), 157163. https://doi.org/10.1525/mp.2011.29.2.157CrossRefGoogle Scholar
Turk, M., Turk, I., & Otte, M. (2020). The neanderthal musical instrument from Divje Babe I Cave (Slovenia): A critical review of the discussion. Applied Sciences, 10(4), 1226. https://doi.org/10.3390/app10041226CrossRefGoogle Scholar
Uddin, S., Heald, S. L. M., Van Hedger, S. C., & Nusbaum, H. C. (2018). Hearing sounds as words: Neural responses to environmental sounds in the context of fluent speech. Brain and Language, 179, 5161. https://doi.org/10.1016/j.bandl.2018.02.004CrossRefGoogle ScholarPubMed
Van Hedger, S. C., Heald, S. L. M., & Nusbaum, H. C. (2019). Absolute pitch can be learned by some adults. PLoS ONE, 14(9), e0223047. https://doi.org/10.1371/journal.pone.0223047CrossRefGoogle ScholarPubMed
Van Hedger, S. C., Johnsrude, I. S., & Batterink, L. J. (2022). Musical instrument familiarity affects statistical learning of tone sequences. Cognition, 218, 104949. https://doi.org/10.1016/j.cognition.2021.104949CrossRefGoogle ScholarPubMed
Vasuki, P. R. M., Sharma, M., Demuth, K., & Arciuli, J. (2016). Musicians’ edge: A comparison of auditory processing, cognitive abilities and statistical learning. Hearing Research, 342, 112123. https://doi.org/10.1016/j.heares.2016.10.008CrossRefGoogle Scholar
Vasuki, P. R. M., Sharma, M., Ibrahim, R., & Arciuli, J. (2017). Statistical learning and auditory processing in children with music training: An ERP study. Clinical Neurophysiology, 128(7), 12701281. https://doi.org/10.1016/j.clinph.2017.04.010CrossRefGoogle Scholar
Wacewicz, S., & Żywiczyński, P. (2015). Language evolution: Why Hockett’s design features are a non-starter. Biosemiotics, 8(1), 2946. https://doi.org/10.1007/s12304-014-9203-2CrossRefGoogle ScholarPubMed
Walker, P., Bremner, J. G., Mason, U., Spring, J., Mattock, K., Slater, A., & Johnson, S. P. (2010). Preverbal infants’ sensitivity to synaesthetic cross-modality correspondences. Psychological Science, 21(1), 2125. https://doi.org/10.1177/0956797609354734CrossRefGoogle ScholarPubMed
Weiss, M. W., & Bidelman, G. M. (2015). Listening to the brainstem: Musicianship enhances intelligibility of subcortical representations for speech. Journal of Neuroscience, 35(4), 16871691. https://doi.org/10.1523/JNEUROSCI.3680-14.2015CrossRefGoogle Scholar
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7(1), 4963. https://doi.org/10.1016/S0163-6383(84)80022-3CrossRefGoogle Scholar
White, E. J., Hutka, S. A., Williams, L. J., & Moreno, S. (2013). Learning, neural plasticity and sensitive periods: Implications for language acquisition, music training and transfer across the lifespan. Frontiers in Systems Neuroscience, 7, 90. https://doi.org/10.3389/fnsys.2013.00090CrossRefGoogle ScholarPubMed
Wong, Y. K., Lui, K. F. H., Yip, K. H. M., & Wong, A. C.-N. (2020). Is it impossible to acquire absolute pitch in adulthood? Attention, Perception, & Psychophysics, 82(3), 14071430. https://doi.org/10.3758/s13414-019-01869-3CrossRefGoogle ScholarPubMed
Yetkin, O., Yetkin, F. Z., Haughton, V. M., & Cox, R. W. (1996). Use of functional MR to map language in multilingual volunteers. American Journal of Neuroradiology, 17(3), 473477.Google ScholarPubMed
Yumoto, M., Uno, A., Itoh, K., Karino, S., Saitoh, O., Kaneko, Y., … & Kaga, K. (2005). Audiovisual phonological mismatch produces early negativity in auditory cortex. Neuroreport, 16(8), 803806.10.1097/00001756-200505310-00005CrossRefGoogle ScholarPubMed
Zatorre, R. J., & Baum, S. R. (2012). Musical melody and speech intonation: Singing a different tune. PLOS Biology, 10(7), e1001372. https://doi.org/10.1371/journal.pbio.1001372CrossRefGoogle ScholarPubMed
Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Sciences, 6(1), 3746. https://doi.org/10.1016/S1364-6613(00)01816-7CrossRefGoogle ScholarPubMed
Zatorre, R. J., Evans, A., Meyer, E., & Gjedde, A. (1992). Lateralization of phonetic and pitch discrimination in speech processing. Science, 256(5058), 846849. https://doi.org/10.1126/science.1589767CrossRefGoogle ScholarPubMed
Zhao, T. C., & Kuhl, P. K. (2016). Musical intervention enhances infants’ neural processing of temporal structure in music and speech. Proceedings of the National Academy of Sciences, 113(19), 52125217. https://doi.org/10.1073/pnas.1603984113CrossRefGoogle ScholarPubMed
Zhao, T. C., Llanos, F., Chandrasekaran, B., & Kuhl, P. K. (2022). Language experience during the sensitive period narrows infants’ sensory encoding of lexical tones: Music intervention reverses it. Frontiers in Human Neuroscience, 16, 941853. https://doi.org/10.3389/fnhum.2022.941853CrossRefGoogle Scholar

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Brain, Language, and Music
  • Edited by Edna Andrews, Duke University, North Carolina, Swathi Kiran, Boston University
  • Book: The Cambridge Handbook of Language and Brain
  • Online publication: 12 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781009202336.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Brain, Language, and Music
  • Edited by Edna Andrews, Duke University, North Carolina, Swathi Kiran, Boston University
  • Book: The Cambridge Handbook of Language and Brain
  • Online publication: 12 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781009202336.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Brain, Language, and Music
  • Edited by Edna Andrews, Duke University, North Carolina, Swathi Kiran, Boston University
  • Book: The Cambridge Handbook of Language and Brain
  • Online publication: 12 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781009202336.022
Available formats
×