Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-xc2tv Total loading time: 0 Render date: 2025-12-18T15:57:47.801Z Has data issue: false hasContentIssue false

10 - Bilingualism as a Dynamic Experience and Its Effects on Brain Structure, Function, and Metabolism

from Part IVA - Building Cognitive Brain Reserve and the Importance of Proficiency

Published online by Cambridge University Press:  12 December 2025

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

Recent theoretical and methodological advances have led to a vivid interest in the study of bilingualism as a cognitively challenging neuroplastic experience. There is wide consensus that handling more than one language can cause substantial neural changes to the bilingual brain, in order for it to adapt to deal with this cognitive challenge- after all, it is well know that all language remain active, and compete, in the bilingual mind. However, we have just started to understand the underlying neural mechanisms. This chapter provides a comprehensive overview of contemporary evidence on the neuroplastic effects of bilingualism on brain structure, function and metabolism, focusing on effects that are domain general and not linked to performance on linguistic or other cognitive tasks. Particular attention is paid to more contemporary approaches that treat bilingualism not as a binary factor but as a continuum of experiences, and how these can inform theoretical approaches to bilingualism-induced neuroplasticity. The available evidence on how these neuroplastic effects interact with brain development, healthy ageing and progressive neurodegeneration is also reviewed. Suggestions are provided on how to move the field forward, including by providing new theories that can be tested with modern neuroimaging techniques.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abutalebi, J., Canini, M., Della Rosa, P. A., Sheung, L. P., Green, D. W., & Weekes, B. S. (2014). Bilingualism protects anterior temporal lobe integrity in aging. Neurobiology of Aging, 35(9), 21262133. https://doi.org/10.1016/j.neurobiolaging.2014.03.010CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. W. (2016). Neuroimaging of language control in bilinguals: Neural adaptation and reserve. Bilingualism: Language and Cognition, 19(04), 110. https://doi.org/10.1017/S1366728916000225CrossRefGoogle Scholar
Abutalebi, J., Guidi, L., Borsa, V., Canini, M., Della Rosa, P. A., Parris, B. A., & Weekes, B. S. (2015). Bilingualism provides a neural reserve for aging populations. Neuropsychologia, 69, 201210. https://doi.org/10.1016/j.neuropsychologia.2015.01.040CrossRefGoogle ScholarPubMed
Abutalebi, J., Rosa, P. A. D., Castro Gonzaga, A. K., Keim, R., Costa, A., & Perani, D. (2013). The role of the left putamen in multilingual language production. Brain and Language, 125(3), 307315. https://doi.org/10.1016/j.bandl.2012.03.009CrossRefGoogle ScholarPubMed
Alrwaita, N., Houston-Price, C., & Pliatsikas, C. (2022). The effects of using two varieties of one language on cognition: Evidence from bidialectalism and diglossia. Linguistic Approaches to Bilingualism, 13(6), 830853. https://doi.org/10.1075/lab.21044.alrCrossRefGoogle Scholar
Anderson, J. A. E., Grundy, J. G., De Frutos, J., Barker, R. M., Grady, C., & Bialystok, E. (2018). Effects of bilingualism on white matter integrity in older adults. NeuroImage, 167, 143150. https://doi.org/10.1016/j.neuroimage.2017.11.038CrossRefGoogle Scholar
Anderson, J. A. E., Mak, L., Keyvani Chahi, A., & Bialystok, E. (2018). The language and social background questionnaire: Assessing degree of bilingualism in a diverse population. Behavior Research Methods, 50(1), 250263. https://doi.org/10.3758/s13428-017-0867-9CrossRefGoogle Scholar
Archila-Suerte, P., Woods, E. A., Chiarello, C., & Hernandez, A. E. (2018). Neuroanatomical profiles of bilingual children. Developmental Science, 21(5), e12654. https://doi.org/10.1111/desc.12654CrossRefGoogle ScholarPubMed
Aveledo, F., Higueras, Y., Marinis, T., Bose, A., Pliatsikas, C., Meldaña-Rivera, A., Martínez-Ginés, M. L., García-Domínguez, J. M., Lozano-Ros, A., Cuello, J. P., & Goicochea-Briceño, H. (2021). Multiple sclerosis and bilingualism: Some initial findings. Linguistic Approaches to Bilingualism, 11(4), 551577. https://doi.org/10.1075/lab.18037.aveCrossRefGoogle Scholar
Berken, J. A., Chai, X. J., Chen, J.-K., Gracco, V. L., & Klein, D. (2016). Effects of early and late bilingualism on resting-state functional connectivity. Journal of Neuroscience, 36(4), 11651172. https://doi.org/10.1523/JNEUROSCI.1960-15.2016CrossRefGoogle ScholarPubMed
Berken, J. A., Gracco, V. L., Chen, J.-K., & Klein, D. (2016). The timing of language learning shapes brain structure associated with articulation. Brain Structure and Function, 221(7), 35913600. https://doi.org/10.1007/s00429-015-1121-9CrossRefGoogle ScholarPubMed
Berkes, M., Bialystok, E., Craik, F. I. M., Troyer, A., & Freedman, M. (2020). Conversion of mild cognitive impairment to Alzheimer disease in monolingual and bilingual patients. Alzheimer Disease & Associated Disorders, 34(3), 225230. https://doi.org/10.1097/WAD.0000000000000373CrossRefGoogle ScholarPubMed
Berkes, M., Calvo, N., Anderson, J. A. E., & Bialystok, E. (2021). Poorer clinical outcomes for older adult monolinguals when matched to bilinguals on brain health. Brain Structure and Function, 226(2), 415424. https://doi.org/10.1007/s00429-020-02185-5CrossRefGoogle ScholarPubMed
Bialystok, E. (2017). The bilingual adaptation: How minds accommodate experience. Psychological Bulletin, 143(3), 233262. https://doi.org/10.1037/bul0000099CrossRefGoogle ScholarPubMed
Bialystok, E. (2021). Bilingualism: Pathway to cognitive reserve. Trends in Cognitive Sciences, 25(5), 355364. https://doi.org/10.1016/j.tics.2021.02.003CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F. I. M., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16(4), 240250. https://doi.org/10.1016/j.tics.2012.03.001CrossRefGoogle ScholarPubMed
Bice, K., Yamasaki, B. L., & Prat, C. S. (2020). Bilingual language experience shapes resting-state brain rhythms. Neurobiology of Language, 1(3), 288318. https://doi.org/10.1162/nol_a_00014CrossRefGoogle ScholarPubMed
Brito, N. H., & Noble, K. G. (2018). The independent and interacting effects of socioeconomic status and dual-language use on brain structure and cognition. Developmental Science, 21(6), e12688. https://doi.org/10.1111/desc.12688CrossRefGoogle ScholarPubMed
Burgaleta, M., Sanjuán, A., Ventura-Campos, N., Sebastian-Galles, N., & Ávila, C. (2016). Bilingualism at the core of the brain. Structural differences between bilinguals and monolinguals revealed by subcortical shape analysis. NeuroImage, 125, 437445. https://doi.org/10.1016/j.neuroimage.2015.09.073CrossRefGoogle ScholarPubMed
Claussenius-Kalman, H., Hernandez, A. E., & Li, P. (2021). Expertise, ecosystem, and emergentism: Dynamic developmental bilingualism. Brain and Language, 222, 105013. https://doi.org/10.1016/j.bandl.2021.105013CrossRefGoogle ScholarPubMed
Claussenius‐Kalman, H. L., Vaughn, K. A., Archila‐Suerte, P., & Hernandez, A. E. (2020a). Age of acquisition impacts the brain differently depending on neuroanatomical metric. Human Brain Mapping, 41(2), 484502. https://doi.org/10.1002/hbm.24817CrossRefGoogle ScholarPubMed
Claussenius‐Kalman, H. L., Vaughn, K. A., Archila‐Suerte, P., & Hernandez, A. E. (2020b). Highly proficient, balanced bilingualism is related to thinner cortex in two cognitive control regions. Annals of the New York Academy of Sciences, nyas.14491. https://doi.org/10.1111/nyas.14491CrossRefGoogle Scholar
Costumero, V., Marin-Marin, L., Calabria, M., Belloch, V., Escudero, J., Baquero, M., Hernandez, M., Ruiz de Miras, J., Costa, A., Parcet, M. A., & Ávila, C. (2020). A cross-sectional and longitudinal study on the protective effect of bilingualism against dementia using brain atrophy and cognitive measures. Alzheimer’s Research & Therapy, 12(1), 11. https://doi.org/10.1186/s13195-020-0581-1CrossRefGoogle ScholarPubMed
Dash, T., Joanette, Y., & Ansaldo, A. I. (2022). Exploring attention in the bilingualism continuum: A resting-state functional connectivity study. Brain and Language, 224, 105048. https://doi.org/10.1016/j.bandl.2021.105048CrossRefGoogle ScholarPubMed
de Frutos-Lucas, J., López-Sanz, D., Cuesta, P., Bruña, R., de la Fuente, S., Serrano, N., López, M. E., Delgado-Losada, M. L., López-Higes, R., Marcos, A., & Maestú, F. (2020). Enhancement of posterior brain functional networks in bilingual older adults. Bilingualism: Language and Cognition, 23(2), 387400. https://doi.org/10.1017/S1366728919000178CrossRefGoogle Scholar
Del Maschio, N., Fedeli, D., Sulpizio, S., & Abutalebi, J. (2019). The relationship between bilingual experience and gyrification in adulthood: A cross-sectional surface-based morphometry study. Brain and Language, 198, 104680. https://doi.org/10.1016/j.bandl.2019.104680CrossRefGoogle ScholarPubMed
Del Maschio, N., Sulpizio, S., Gallo, F., Fedeli, D., Weekes, B. S., & Abutalebi, J. (2018). Neuroplasticity across the lifespan and aging effects in bilinguals and monolinguals. Brain and Cognition, 125, 118126. https://doi.org/10.1016/j.bandc.2018.06.007CrossRefGoogle ScholarPubMed
Del Maschio, N., Sulpizio, S., Toti, M., Caprioglio, C., Del Mauro, G., Fedeli, D., & Abutalebi, J. (2020). Second language use rather than second language knowledge relates to changes in white matter microstructure. Journal of Cultural Cognitive Science, 4 (2), 165175. https://doi.org/10.1007/s41809-019-00039-zCrossRefGoogle Scholar
Della Rosa, P. A., Videsott, G., Borsa, V. M., Canini, M., Weekes, B. S., Franceschini, R., & Abutalebi, J. (2013). A neural interactive location for multilingual talent. Cortex, 49(2), 605608. https://doi.org/10.1016/j.cortex.2012.12.001CrossRefGoogle ScholarPubMed
DeLuca, V., Rothman, J., Bialystok, E., & Pliatsikas, C. (2019). Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proceedings of the National Academy of Sciences, 116(15), 75657574. https://doi.org/10.1073/pnas.1811513116CrossRefGoogle ScholarPubMed
DeLuca, V., Rothman, J., & Pliatsikas, C. (2019). Linguistic immersion and structural effects on the bilingual brain: A longitudinal study. Bilingualism: Language and Cognition, 22(5), 11601175. https://doi.org/10.1017/S1366728918000883CrossRefGoogle Scholar
DeLuca, V., Segaert, K., Mazaheri, A., & Krott, A. (2020). Understanding bilingual brain function and structure changes? U bet! A unified bilingual experience trajectory model. Journal of Neurolinguistics, 56, 100930. https://doi.org/10.1016/j.jneuroling.2020.100930CrossRefGoogle Scholar
DeLuca, V., & Voits, T. (2022). Bilingual experience affects white matter integrity across the lifespan. Neuropsychologia, 169, 108191. https://doi.org/10.1016/j.neuropsychologia.2022.108191CrossRefGoogle ScholarPubMed
Duncan, H. D., Nikelski, J., Pilon, R., Steffener, J., Chertkow, H., & Phillips, N. A. (2018). Structural brain differences between monolingual and multilingual patients with mild cognitive impairment and Alzheimer disease: Evidence for cognitive reserve. Neuropsychologia, 109, 270282. https://doi.org/10.1016/j.neuropsychologia.2017.12.036CrossRefGoogle ScholarPubMed
Ehling, R., Amprosi, M., Kremmel, B., Bsteh, G., Eberharter, K., Zehentner, M., Steiger, R., Tuovinen, N., Gizewski, E. R., Benke, T., Berger, T., Spöttl, C., Brenneis, C., & Scherfler, C. (2019). Second language learning induces grey matter volume increase in people with multiple sclerosis. PLoS ONE, 14(12), e0226525. https://doi.org/10.1371/journal.pone.0226525CrossRefGoogle ScholarPubMed
Elmer, S., Hänggi, J., & Jäncke, L. (2014). Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters. Cortex, 54, 179189. https://doi.org/10.1016/j.cortex.2014.02.014CrossRefGoogle ScholarPubMed
Fedeli, D., Del Maschio, N., Sulpizio, S., Rothman, J., & Abutalebi, J. (2021). The bilingual structural connectome: Dual-language experiential factors modulate distinct cerebral networks. Brain and Language, 220, 104978. https://doi.org/10.1016/j.bandl.2021.104978CrossRefGoogle ScholarPubMed
Felton, A., Vazquez, D., Ramos-Nunez, A. I., Greene, M. R., Macbeth, A., Hernandez, A. E., & Chiarello, C. (2017). Bilingualism influences structural indices of interhemispheric organization. Journal of Neurolinguistics, 42, 111. https://doi.org/10.1016/j.jneuroling.2016.10.004CrossRefGoogle ScholarPubMed
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700711. https://doi.org/10.1038/nrn2201CrossRefGoogle ScholarPubMed
Gallo, F., DeLuca, V., Prystauka, Y., Voits, T., Rothman, J., & Abutalebi, J. (2022). Bilingualism and aging: Implications for (delaying) neurocognitive decline. Frontiers in Human Neuroscience, 16, 819105. https://doi.org/10.3389/fnhum.2022.819105CrossRefGoogle ScholarPubMed
Gallo, F., Myachykov, A., Shtyrov, Y., & Abutalebi, J. (2020). Cognitive and brain reserve in bilinguals: Field overview and explanatory mechanisms. Journal of Cultural Cognitive Science, 4(2), 127143. https://doi.org/10.1007/s41809-020-00058-1CrossRefGoogle Scholar
Gallo, F., Novitskiy, N., Myachykov, A., & Shtyrov, Y. (2021). Individual differences in bilingual experience modulate executive control network and performance: Behavioral and structural neuroimaging evidence. Bilingualism: Language and Cognition, 24(2), 293304. https://doi.org/10.1017/S1366728920000486CrossRefGoogle Scholar
García-Pentón, L., Fernández García, Y., Costello, B., Duñabeitia, J. A., & Carreiras, M. (2016). The neuroanatomy of bilingualism: How to turn a hazy view into the full picture. Language, Cognition and Neuroscience, 31(3), 303327. https://doi.org/10.1080/23273798.2015.1068944CrossRefGoogle Scholar
Goksan, S., Argyri, F., Clayden, J. D., Liegeois, F., & Wei, L. (2020). Early childhood bilingualism: Effects on brain structure and function. F1000Research, 9, 370. https://doi.org/10.12688/f1000research.23216.1CrossRefGoogle ScholarPubMed
Gold, B. T. (2016). Lifelong bilingualism, cognitive reserve and Alzheimer’s disease: A review of findings. Linguistic Approaches to Bilingualism, 6(1–2), 171189. https://doi.org/10.1075/lab.14028.golCrossRefGoogle Scholar
Gold, B. T., Johnson, N. F., & Powell, D. K. (2013). Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging. Neuropsychologia, 51(13), 28412846. https://doi.org/10.1016/j.neuropsychologia.2013.09.037CrossRefGoogle ScholarPubMed
Grady, C. L., Luk, G., Craik, F. I. M., & Bialystok, E. (2015). Brain network activity in monolingual and bilingual older adults. Neuropsychologia, 66, 170181. https://doi.org/10.1016/j.neuropsychologia.2014.10.042CrossRefGoogle ScholarPubMed
Grundy, J. G., Anderson, J. A. E., & Bialystok, E. (2017). Neural correlates of cognitive processing in monolinguals and bilinguals: Neural correlates of bilingualism. Annals of the New York Academy of Sciences, 1396(1), 183201. https://doi.org/10.1111/nyas.13333CrossRefGoogle Scholar
Gullifer, J. W., Chai, X. J., Whitford, V., Pivneva, I., Baum, S., Klein, D., & Titone, D. (2018). Bilingual experience and resting-state brain connectivity: Impacts of L2 age of acquisition and social diversity of language use on control networks. Neuropsychologia, 117, 123134. https://doi.org/10.1016/j.neuropsychologia.2018.04.037CrossRefGoogle ScholarPubMed
Gullifer, J. W., & Titone, D. (2020). Characterizing the social diversity of bilingualism using language entropy. Bilingualism: Language and Cognition, 23(2), 283294. https://doi.org/10.1017/S1366728919000026CrossRefGoogle Scholar
Hämäläinen, S., Sairanen, V., Leminen, A., & Lehtonen, M. (2017). Bilingualism modulates the white matter structure of language-related pathways. NeuroImage, 152, 249257. https://doi.org/10.1016/j.neuroimage.2017.02.081CrossRefGoogle ScholarPubMed
Heim, S., Stumme, J., Bittner, N., Jockwitz, C., Amunts, K., & Caspers, S. (2019). Bilingualism and “brain reserve”: A matter of age. Neurobiology of Aging, 81, 157165. https://doi.org/10.1016/j.neurobiolaging.2019.05.021CrossRefGoogle ScholarPubMed
Hernandez, A. E., Claussenius-Kalman, H. L., Ronderos, J., Castilla-Earls, A. P., Sun, L., Weiss, S. D., & Young, D. R. (2019). Neuroemergentism: A framework for studying cognition and the brain. Journal of Neurolinguistics, 49, 214223. https://doi.org/10.1016/j.jneuroling.2017.12.010CrossRefGoogle ScholarPubMed
Jafari, Z., Perani, D., Kolb, B. E., & Mohajerani, M. H. (2021). Bilingual experience and intrinsic functional connectivity in adults, aging, and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1, nyas.14666. https://doi.org/10.1111/nyas.14666Google Scholar
Kaiser, A., Eppenberger, L. S., Smieskova, R., Borgwardt, S., Kuenzli, E., Radue, E.-W., Nitsch, C., & Bendfeldt, K. (2015). Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00638CrossRefGoogle ScholarPubMed
Klein, D., Mok, K., Chen, J.-K., & Watkins, K. E. (2014). Age of language learning shapes brain structure: A cortical thickness study of bilingual and monolingual individuals. Brain and Language, 131, 2024. https://doi.org/10.1016/j.bandl.2013.05.014CrossRefGoogle ScholarPubMed
Korenar, M., & Pliatsikas, C. (2023). L2 acquisition and neuroplasticity: Insights from the dynamic restructuring model. In The Routledge Handbook of Second Language Acquisition and Neurolinguistics. Routledge.Google Scholar
Korenar, M., Treffers-Daller, J., & Pliatsikas, C. (2023). Dynamic effects of bilingualism on brain structure map onto general principles of experience-based neuroplasticity. Scientific Reports, 13, 3428. https://doi.org/10.1038/s41598-023-30326-3CrossRefGoogle ScholarPubMed
Kousaie, S., Chai, X. J., Sander, K. M., & Klein, D. (2017). Simultaneous learning of two languages from birth positively impacts intrinsic functional connectivity and cognitive control. Brain and Cognition, 117, 4956. https://doi.org/10.1016/j.bandc.2017.06.003CrossRefGoogle ScholarPubMed
Kowoll, M. E., Degen, C., Gorenc, L., Küntzelmann, A., Fellhauer, I., Giesel, F., Haberkorn, U., & Schröder, J. (2016). Bilingualism as a contributor to cognitive reserve? Evidence from cerebral glucose metabolism in mild cognitive impairment and Alzheimer’s disease. Frontiers in Psychiatry, 7(APR), 16. https://doi.org/10.3389/fpsyt.2016.00062CrossRefGoogle ScholarPubMed
Kroll, J. F., & Bialystok, E. (2013). Understanding the consequences of bilingualism for language processing and cognition. Journal of Cognitive Psychology, 25(5), 497514. https://doi.org/10.1080/20445911.2013.799170CrossRefGoogle ScholarPubMed
Lehtonen, M., Soveri, A., Laine, A., Järvenpää, J., de Bruin, A., & Antfolk, J. (2018). Is bilingualism associated with enhanced executive functioning in adults? A meta-analytic review. Psychological Bulletin, 144(4), 394425. https://doi.org/10.1037/bul0000142CrossRefGoogle ScholarPubMed
Leivada, E., Duñabeitia, J. A., Westergaard, M., & Rothman, J. (2021). On the phantom-like appearance of bilingualism effects on cognition: (How) should we proceed? Bilingualism: Language and Cognition, 24(1), 197210. https://doi.org/10.1017/S1366728920000358CrossRefGoogle Scholar
Li, L., Abutalebi, J., Emmorey, K., Gong, G., Yan, X., Feng, X., Zou, L., & Ding, G. (2017). How bilingualism protects the brain from aging: Insights from bimodal bilinguals: Bimodal bilingualism prevents brain aging. Human Brain Mapping, 38(8), 41094124. https://doi.org/10.1002/hbm.23652CrossRefGoogle Scholar
Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301324. https://doi.org/10.1016/j.cortex.2014.05.001CrossRefGoogle ScholarPubMed
Li, X., Ng, K. K., Wong, J. J. Y., Lee, J. W., Zhou, J. H., & Yow, W. Q. (2021). Bilingual language entropy influences executive functions through functional connectivity and signal variability. Brain and Language, 222, 105026. https://doi.org/10.1016/j.bandl.2021.105026CrossRefGoogle ScholarPubMed
Liu, X., Tu, L., Chen, X., Wang, J., Li, M., Lu, Z., & Huang, R. (2021). Effect of AoA-L2 on L1 and L2 networks in early and late bilinguals. International Journal of Bilingualism, 25(6), 136700692110330. https://doi.org/10.1177/13670069211033026CrossRefGoogle Scholar
Lövdén, M., Wenger, E., Mårtensson, J., Lindenberger, U., & Bäckman, L. (2013). Structural brain plasticity in adult learning and development. Neuroscience & Biobehavioral Reviews, 37(9), 22962310. https://doi.org/10.1016/j.neubiorev.2013.02.014CrossRefGoogle ScholarPubMed
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. The Journal of Neuroscience, 31(46), 1680816813. https://doi.org/10.1523/JNEUROSCI.4563-11.2011CrossRefGoogle ScholarPubMed
Luk, G., Mesite, L., & Leon Guerrero, S. (2020). Onset age of second language acquisition and fractional anisotropy variation in multilingual young adults. Journal of Neurolinguistics, 56, 100937. https://doi.org/10.1016/j.jneuroling.2020.100937CrossRefGoogle Scholar
Luk, G., Pliatsikas, C., & Rossi, E. (2020). Brain changes associated with language development and learning: A primer on methodology and applications. System, 89, 102209. https://doi.org/10.1016/j.system.2020.102209CrossRefGoogle Scholar
Marin-Marin, L., Costumero, V., Ávila, C., & Pliatsikas, C. (2022). Dynamic effects of immersive bilingualism on cortical and subcortical grey matter volumes. Frontiers in Psychology, 13. www.frontiersin.org/articles/10.3389/fpsyg.2022.88622210.3389/fpsyg.2022.886222CrossRefGoogle ScholarPubMed
Marin‐Marin, L., Costumero, V., Belloch, V., Escudero, J., Baquero, M., Parcet, M. ‐A., & Ávila, C. (2020). Effects of bilingualism on white matter atrophy in mild cognitive impairment: A diffusion tensor imaging study. European Journal of Neurology, 27(4), 603608. https://doi.org/10.1111/ene.14135CrossRefGoogle Scholar
Marin-Marin, L., Palomar-García, M.-Á., Miró-Padilla, A., Adrián-Ventura, J., Aguirre, N., Villar-Rodríguez, E., & Costumero, V. (2021). Bilingualism’s effects on resting-state functional connectivity in mild cognitive impairment. Brain Connectivity, 11(1), 3037. https://doi.org/10.1089/brain.2020.0877CrossRefGoogle ScholarPubMed
Martínez-Horta, S., Moreu, A., Perez-Perez, J., Sampedro, F., Horta-Barba, A., Pagonabarraga, J., Gomez-Anson, B., Lozano-Martinez, G. A., Lopez-Mora, D. A., Camacho, V., Fernández-León, A., Carrió, I., & Kulisevsky, J. (2019). The impact of bilingualism on brain structure and function in Huntington’s disease. Parkinsonism & Related Disorders, 60, 9297. https://doi.org/10.1016/j.parkreldis.2018.09.017CrossRefGoogle ScholarPubMed
Mechelli, A., Crinion, J. T., Noppeney, U., O’Doherty, J., Ashburner, J., Frackowiak, R. S., & Price, C. J. (2004). Structural plasticity in the bilingual brain. Nature, 431(7010), 757. https://doi.org/10.1038/431757aCrossRefGoogle ScholarPubMed
Mohades, S. G., Struys, E., Van Schuerbeek, P., Mondt, K., Van De Craen, P., & Luypaert, R. (2012). DTI reveals structural differences in white matter tracts between bilingual and monolingual children. Brain Research, 1435, 7280. https://doi.org/10.1016/j.brainres.2011.12.005CrossRefGoogle Scholar
Mohades, S. G., Van Schuerbeek, P., Rosseel, Y., Van De Craen, P., Luypaert, R., & Baeken, C. (2015). White-matter development is different in bilingual and monolingual children: A longitudinal DTI study. PLoS ONE, 10(2), e0117968. https://doi.org/10.1371/journal.pone.0117968CrossRefGoogle ScholarPubMed
Nichols, E. S., & Joanisse, M. F. (2016). Functional activity and white matter microstructure reveal the independent effects of age of acquisition and proficiency on second-language learning. NeuroImage, 143, 1525. https://doi.org/10.1016/j.neuroimage.2016.08.053CrossRefGoogle ScholarPubMed
Olsen, R. K., Pangelinan, M. M., Bogulski, C., Chakravarty, M. M., Luk, G., Grady, C. L., & Bialystok, E. (2015). The effect of lifelong bilingualism on regional grey and white matter volume. Brain Research, 1612, 128139. https://doi.org/10.1016/j.brainres.2015.02.034CrossRefGoogle ScholarPubMed
Olulade, O. A., Jamal, N. I., Koo, D. S., Perfetti, C. A., LaSasso, C., & Eden, G. F. (2016). Neuroanatomical evidence in support of the bilingual advantage theory. Cerebral Cortex, 26(7), 31963204. https://doi.org/10.1093/cercor/bhv152CrossRefGoogle ScholarPubMed
Perani, D., Farsad, M., Ballarini, T., Lubian, F., Malpetti, M., Fracchetti, A., Magnani, G., March, A., & Abutalebi, J. (2017). The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proceedings of the National Academy of Sciences, 114(7), 16901695. https://doi.org/10.1073/pnas.1610909114CrossRefGoogle ScholarPubMed
Pereira Soares, S. M., Kubota, M., Rossi, E., & Rothman, J. (2021). Determinants of bilingualism predict dynamic changes in resting state EEG oscillations. Brain and Language, 223, 105030. https://doi.org/10.1016/j.bandl.2021.105030CrossRefGoogle ScholarPubMed
Pliatsikas, C. (2019). Multilingualism and brain plasticity. In Schwieter, J. W. & Paradis, M. (Eds.), The Handbook of the Neuroscience of Multilingualism (1st ed., pp. 230251). Wiley. https://doi.org/10.1002/9781119387725.ch11CrossRefGoogle Scholar
Pliatsikas, C. (2020). Understanding structural plasticity in the bilingual brain: The dynamic restructuring model. Bilingualism: Language and Cognition, 23(2), 459471. https://doi.org/10.1017/S1366728919000130CrossRefGoogle Scholar
Pliatsikas, C. (2023): Bilingualism and brain structure: insights from healthy ageing and progressive neurodegenerative diseases. In Luk, G. et al. (Eds.), Understanding Language and Cognition through Bilingualism: In Honor of Ellen Bialystok (pp. 301317). John Benjamins.10.1075/sibil.64.14pliCrossRefGoogle Scholar
Pliatsikas, C., Ansaldo, A. I., & Voits, T. (2021). Bilingualism and the declining brain. Linguistic Approaches to Bilingualism, 11(4), 453458. https://doi.org/10.1075/lab.00031.intCrossRefGoogle Scholar
Pliatsikas, C., DeLuca, V., Moschopoulou, E., & Saddy, J. D. (2017). Immersive bilingualism reshapes the core of the brain. Brain Structure and Function, 222(4), 17851795. https://doi.org/10.1007/s00429-016-1307-9CrossRefGoogle ScholarPubMed
Pliatsikas, C., DeLuca, V., & Voits, T. (2020). The many shades of bilingualism: Language experiences modulate adaptations in brain structure. Language Learning, 70(S2), 133149. https://doi.org/10.1111/lang.12386CrossRefGoogle Scholar
Pliatsikas, C., Johnstone, T., & Marinis, T. (2014). Grey matter volume in the cerebellum is related to the processing of grammatical rules in a second language: A structural voxel-based morphometry study. The Cerebellum, 13(1), 5563. https://doi.org/10.1007/s12311-013-0515-6CrossRefGoogle Scholar
Pliatsikas, C., & Luk, G. (2016). Executive control in bilinguals: A concise review on fMRI studies. Bilingualism: Language and Cognition, 19(4), 699705. https://doi.org/10.1017/S1366728916000249CrossRefGoogle Scholar
Pliatsikas, C., Meteyard, L., Veríssimo, J., DeLuca, V., Shattuck, K., & Ullman, M. T. (2020). The effect of bilingualism on brain development from early childhood to young adulthood. Brain Structure and Function, 225(7), 21312152. https://doi.org/10.1007/s00429-020-02115-5CrossRefGoogle ScholarPubMed
Pliatsikas, C., Moschopoulou, E., & Saddy, J. D. (2015). The effects of bilingualism on the white matter structure of the brain. Proceedings of the National Academy of Sciences, 112(5), 13341337. https://doi.org/10.1073/pnas.1414183112CrossRefGoogle ScholarPubMed
Pliatsikas, C., Pereira Soares, S. M., Voits, T., Deluca, V., & Rothman, J. (2021). Bilingualism is a long-term cognitively challenging experience that modulates metabolite concentrations in the healthy brain. Scientific Reports, 11(1), 112. https://doi.org/10.1038/s41598-021-86443-4CrossRefGoogle ScholarPubMed
Prat, C. S., Yamasaki, B. L., Kluender, R. A., & Stocco, A. (2016). Resting-state qEEG predicts rate of second language learning in adults. Brain and Language, 157–158, 4450. https://doi.org/10.1016/j.bandl.2016.04.007CrossRefGoogle ScholarPubMed
Raji, C. A., Meysami, S., Merrill, D. A., Porter, V. R., & Mendez, M. F. (2020). Brain structure in bilingual compared to monolingual individuals with Alzheimer’s disease: Proof of concept. Journal of Alzheimer’s Disease, 76(1), 275280. https://doi.org/10.3233/JAD-200200CrossRefGoogle ScholarPubMed
Rosselli, M., Loewenstein, D. A., Curiel, R. E., Penate, A., Torres, V. L., Lang, M., Greig, M. T., Barker, W. W., & Duara, R. (2019). Effects of bilingualism on verbal and nonverbal memory measures in mild cognitive impairment. Journal of the International Neuropsychological Society, 25(1), 1528. https://doi.org/10.1017/S135561771800070XCrossRefGoogle ScholarPubMed
Sala, A., Malpetti, M., Farsad, M., Lubian, F., Magnani, G., Frasca Polara, G., Epiney, J., Abutalebi, J., Assal, F., Garibotto, V., & Perani, D. (2022). Lifelong bilingualism and mechanisms of neuroprotection in Alzheimer dementia. Human Brain Mapping, 43(2), 581592. https://doi.org/10.1002/hbm.25605CrossRefGoogle ScholarPubMed
Schweizer, T. A., Ware, J., Fischer, C. E., Craik, F. I. M., & Bialystok, E. (2012). Bilingualism as a contributor to cognitive reserve: Evidence from brain atrophy in Alzheimer’s disease. Cortex, 48(8), 991996. https://doi.org/10.1016/j.cortex.2011.04.009CrossRefGoogle ScholarPubMed
Smirnov, D. S., Stasenko, A., Salmon, D. P., Galasko, D., Brewer, J. B., & Gollan, T. H. (2019). Distinct structural correlates of the dominant and nondominant languages in bilinguals with Alzheimer’s disease (AD). Neuropsychologia, 132, 107131. https://doi.org/10.1016/j.neuropsychologia.2019.107131CrossRefGoogle ScholarPubMed
Soares, D. P., & Law, M. (2009). Magnetic resonance spectroscopy of the brain: Review of metabolites and clinical applications. Clinical Radiology, 64(1), 1221. https://doi.org/10.1016/j.crad.2008.07.002CrossRefGoogle ScholarPubMed
Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker’s guide to diffusion tensor imaging. Frontiers in Neuroscience, 7, 114. https://doi.org/10.3389/fnins.2013.00031CrossRefGoogle ScholarPubMed
Stern, Y., Albert, M., Barnes, C. A., Cabeza, R., Pascual-Leone, A., & Rapp, P. R. (2023). A framework for concepts of reserve and resilience in aging. Neurobiology of Aging, 124, 100–103. https://doi.org/10.1016/j.neurobiolaging.2022.10.015CrossRefGoogle Scholar
Stocco, A., & Prat, C. S. (2014). Bilingualism trains specific brain circuits involved in flexible rule selection and application. Brain and Language, 137, 5061. https://doi.org/10.1016/j.bandl.2014.07.005CrossRefGoogle ScholarPubMed
Sulpizio, S., Del Maschio, N., Del Mauro, G., Fedeli, D., & Abutalebi, J. (2020). Bilingualism as a gradient measure modulates functional connectivity of language and control networks. NeuroImage, 205, 116306. https://doi.org/10.1016/j.neuroimage.2019.116306CrossRefGoogle ScholarPubMed
Sun, X., Li, L., Ding, G., Wang, R., & Li, P. (2019). Effects of language proficiency on cognitive control: Evidence from resting-state functional connectivity. Neuropsychologia, 129, 263275. https://doi.org/10.1016/j.neuropsychologia.2019.03.020CrossRefGoogle ScholarPubMed
Surrain, S., & Luk, G. (2019). Describing bilinguals: A systematic review of labels and descriptions used in the literature between 2005–2015. Bilingualism: Language and Cognition, 22(2), 401415. https://doi.org/10.1017/S1366728917000682CrossRefGoogle Scholar
Thieba, C., Long, X., Dewey, D., & Lebel, C. (2019). Young children in different linguistic environments: A multimodal neuroimaging study of the inferior frontal gyrus. Brain and Cognition, 134, 7179. https://doi.org/10.1016/j.bandc.2018.05.009CrossRefGoogle ScholarPubMed
Titone, D. A., & Tiv, M. (2022). Rethinking multilingual experience through a systems framework of bilingualism. Bilingualism: Language and Cognition, 26(1), 116. https://doi.org/10.1017/S1366728921001127CrossRefGoogle Scholar
Tu, L., Niu, M., Pan, X., Hanakawa, T., Liu, X., Lu, Z., Gao, W., Ouyang, D., Zhang, M., Li, S., Wang, J., Jiang, B., & Huang, R. (2021). Age of acquisition of Mandarin modulates cortical thickness in high-proficient Cantonese–Mandarin bidialectals. Journal of Psycholinguistic Research, 50(4), 723736. https://doi.org/10.1007/s10936-020-09716-5CrossRefGoogle ScholarPubMed
Vaughn, K. A., Nguyen, M. V. H., Ronderos, J., & Hernandez, A. E. (2021). Cortical thickness in bilingual and monolingual children: Relationships to language use and language skill. NeuroImage, 243, 118560. https://doi.org/10.1016/j.neuroimage.2021.118560CrossRefGoogle ScholarPubMed
Voits, T., DeLuca, V., & Abutalebi, J. (2022). The nuance of bilingualism as a reserve contributor: Conveying research to the broader neuroscience community. Frontiers in Psychology, 13. www.frontiersin.org/articles/10.3389/fpsyg.2022.90926610.3389/fpsyg.2022.909266CrossRefGoogle Scholar
Voits, T., Pliatsikas, C., Robson, H., & Rothman, J. (2020). Beyond Alzheimer’s disease: Can bilingualism be a more generalized protective factor in neurodegeneration? Neuropsychologia, 147, 107593. https://doi.org/10.1016/j.neuropsychologia.2020.107593CrossRefGoogle ScholarPubMed
Voits, T., Robson, H., Rothman, J., & Pliatsikas, C. (2022). The effects of bilingualism on hippocampal volume in ageing bilinguals. Brain Structure and Function, 227(3), 979994. https://doi.org/10.1007/s00429-021-02436-zCrossRefGoogle ScholarPubMed
Voits, T., Rothman, J., Aguirre, N., Cattaneo, G., Calabria, M., Costumero, V., Hernández, M., Juncadella Puig, M., Marín-Marín, L., Robson, H., Suades, A., Costa, A., & Pliatsikas, C. (2023). Hippocampal adaptations in mild cognitive impairment patients are modulated by bilingual language experiences. Bilingualism: Language and Cognition, 27(2), 263273. https://doi.org/10.1017/S1366728923000354CrossRefGoogle Scholar
Wang, R., Ke, S., Zhang, Q., Zhou, K., Li, P., & Yang, J. (2020). Functional and structural neuroplasticity associated with second language proficiency: An MRI study of Chinese-English bilinguals. Journal of Neurolinguistics, 56, 100940. https://doi.org/10.1016/j.jneuroling.2020.100940CrossRefGoogle Scholar
Weekes, B. S., Abutalebi, J., Mak, H. K., Borsa, V. M., Soares, S. M. P., Chiu, P.-W., & Zhang, L. (2018). Effect of monolingualism and bilingualism in the anterior cingulate cortex: A proton magnetic resonance spectroscopy study in two centers. Letras de Hoje, 53(1), 512. https://doi.org/dx.doi.org/10.15448/1984-7726.2018.1.30954CrossRefGoogle Scholar
Wenger, E., Brozzoli, C., Lindenberger, U., & Lövdén, M. (2017). Expansion and renormalization of human brain structure during skill acquisition. Trends in Cognitive Sciences, 21(12), 930939. https://doi.org/10.1016/j.tics.2017.09.008CrossRefGoogle ScholarPubMed
Yee, J., Deluca, V., & Pliatsikas, C. (2023): The effects of multilingualism on brain structure, language control and language processing: Insights from MRI. In Cabrelli, J. et al. (Eds.), The Cambridge Handbook of Third Language Acquisition and Processing (pp. 577605). Cambridge University Press.10.1017/9781108957823.023CrossRefGoogle Scholar
Yee, J., Kořenář, M., Sheehan, A., & Pliatsikas, C. (2024). Subcortical malleability as a result of cognitively challenging experiences: the case of bi-/multilingualism. Current Opinion in Behavioral Sciences, 59, 101438. https://doi.org/1016/j.cobeha.2024.101438CrossRefGoogle Scholar
Zou, L., Ding, G., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48(9), 11971206. https://doi.org/10.1016/j.cortex.2011.05.022CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×