Skip to main content Accessibility help
×
Hostname: page-component-7857688df4-qjfxt Total loading time: 0 Render date: 2025-11-18T06:42:26.473Z Has data issue: false hasContentIssue false

Chapter 25 - Sleep Issues in Dementia

from Section 3 - Treatment of the Dementias

Published online by Cambridge University Press:  17 November 2025

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Neurologic practice has classically focused on the diagnosis and management of problematic daytime symptoms associated with dementia. This chapter discusses the assessment tools and diagnostic schemes for sleep-related issues in patients with dementia. It emphasizes the importance of recognizing and treating sleep disturbances in these patients to improve their quality of life. The chapter also highlights the association between sleep disorders and neurodegenerative diseases, such as Alzheimer’s disease and Lewy body disease.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Borbély, AA, Daan, S, Wirz-Justice, A, Deboer, T. The two-process model of sleep regulation: a reappraisal. J Sleep Res 2016;25.10.1111/jsr.12371CrossRefGoogle ScholarPubMed
Achermann, P, Dijk, DJ, Brunner, DP, Borbély, AA. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res Bull 1993;31:97113.10.1016/0361-9230(93)90016-5CrossRefGoogle Scholar
Peng, W, Wu, Z, Song, K, et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 2020;369.10.1126/science.abb0556CrossRefGoogle ScholarPubMed
Deboer, T. Circadian regulation of sleep in mammals. Curr Opin Physiol 2020;15:8995.10.1016/j.cophys.2019.12.015CrossRefGoogle Scholar
Saper, C, Scammell, T, Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005;437:12571263.10.1038/nature04284CrossRefGoogle ScholarPubMed
Patke, A, Young, M, Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2019;21:6784.10.1038/s41580-019-0179-2CrossRefGoogle ScholarPubMed
Hattar, S, Liao, H, Takao, M, Berson, D, Yau, K. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 2002;295:10651070.10.1126/science.1069609CrossRefGoogle ScholarPubMed
Chou, T, Scammell, TE, Gooley, J, et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 2003;23:1069110702.10.1523/JNEUROSCI.23-33-10691.2003CrossRefGoogle Scholar
Bass, J, Takahashi, J. Circadian integration of metabolism and energetics. Science 2010;330:13491354.10.1126/science.1195027CrossRefGoogle ScholarPubMed
Iber, C, Ancoli-Israel, S, Chesson, A, Quan, S, Medicine ftAAoS. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Westchester, IL: American Academy of Sleep Medicine, 2007.Google Scholar
Pace-Schott, EF, Hobson, JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 2022;3:591605.CrossRefGoogle Scholar
España, RA, Scammell, TE. Sleep neurobiology from a clinical perspective. Sleep 2011;34:845858.Google ScholarPubMed
Anaclet, C, Pedersen, N, Ferrari, L, et al. Basal forebrain control of wakefulness and cortical rhythms. Nature Comm 2015;6:114.10.1038/ncomms9744CrossRefGoogle ScholarPubMed
Oh, J, Petersen, C, Walsh, C, et al. The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatr 2019;24:12841295.CrossRefGoogle ScholarPubMed
Scammell, TE, Arrigoni, E, Lipton, JO. Neural circuitry of wakefulness and sleep. Neuron 2017;93:747765.10.1016/j.neuron.2017.01.014CrossRefGoogle ScholarPubMed
Lu, J, Sherman, D, Devor, M, Saper, C. A putative flip-flop switch for control of REM sleep. Nature 2006;441:589594.10.1038/nature04767CrossRefGoogle ScholarPubMed
Hassani, O, Lee, M, Henny, P, Jones, B. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J Neurosci 2009;29:1182811840.10.1523/JNEUROSCI.1259-09.2009CrossRefGoogle ScholarPubMed
Anaclet, C, Ferrari, L, Arrigoni, E, et al. The GABAergic parafacial zone is a medullary slow wave sleep–promoting center. Nature Neurosci 2014;17:12171224.10.1038/nn.3789CrossRefGoogle ScholarPubMed
Morairty, SR, Dittrich, L, Pasumarthi, RK, et al. A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proc Natl Acad Sci U S A 2013;110:2027220277.10.1073/pnas.1314762110CrossRefGoogle ScholarPubMed
Boeve, B, Silber, M, Saper, C, et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 2007;130:27702788.10.1093/brain/awm056CrossRefGoogle ScholarPubMed
Boeve, B. REM sleep behavior disorder: updated review of the core features, the REM sleep behavior disorder-neurodegenerative disease association, evolving concepts, controversies, and future directions. Ann N Y Acad Sci 2010;1184:1756.10.1111/j.1749-6632.2009.05115.xCrossRefGoogle ScholarPubMed
Boeve, B. Idiopathic REM sleep behaviour disorder in the development of Parkinson’s disease. Lancet Neurol 2013;12:469482.10.1016/S1474-4422(13)70054-1CrossRefGoogle ScholarPubMed
Carrier, J, Viens, I, Poirier, G, et al. Sleep slow wave changes during the middle years of life. Eur J Neurosci 2011;33:758766.10.1111/j.1460-9568.2010.07543.xCrossRefGoogle ScholarPubMed
Farajnia, S, Deboer, T, Rohling, J, Meijer, J, Michel, S. Aging of the suprachiasmatic clock. Neuroscientist 2014;20:4455.10.1177/1073858413498936CrossRefGoogle ScholarPubMed
Rolls, A. Hypothalamic control of sleep in aging. Neuromolecular Med 2012;14:139153.10.1007/s12017-012-8175-0CrossRefGoogle ScholarPubMed
Romanella, SM, Roe, D, Tatti, E, et al. The sleep side of aging and Alzheimer’s disease. Sleep Med 2021;77:209225.10.1016/j.sleep.2020.05.029CrossRefGoogle ScholarPubMed
Da Mesquita, S, Fu, Z, Kipnis, J. The meningeal lymphatic system: a new player in neurophysiology. Neuron 2018;100:375388.10.1016/j.neuron.2018.09.022CrossRefGoogle ScholarPubMed
Hauglund, N, Pavan, C, Nedergaard, M. Cleaning the sleeping brain – the potential restorative function of the glymphatic system. Curr Opin Physiol 2020;15:16.10.1016/j.cophys.2019.10.020CrossRefGoogle Scholar
Rasmussen, MK, Mestre, H, Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol 2018;17:10161024.10.1016/S1474-4422(18)30318-1CrossRefGoogle ScholarPubMed
Iliff, JJ, Wang, M, Liao, Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012;4:147ra111.10.1126/scitranslmed.3003748CrossRefGoogle ScholarPubMed
Xie, L, Kang, H, Xu, Q, et al. Sleep drives metabolite clearance from the adult brain. Science 2013;342:373377.10.1126/science.1241224CrossRefGoogle ScholarPubMed
Hablitz, LM, Vinitsky, HS, Sun, Q, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv 2019;5:eaav5447.10.1126/sciadv.aav5447CrossRefGoogle ScholarPubMed
Benveniste, H, Heerdt, PM, Fontes, M, Rothman, DL, Volkow, ND. Glymphatic system function in relation to anesthesia and sleep states. Anesth Analg 2019;128:747758.10.1213/ANE.0000000000004069CrossRefGoogle ScholarPubMed
Hablitz, LM, Plá, V, Giannetto, M, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Comm 2020;11:4411.10.1038/s41467-020-18115-2CrossRefGoogle ScholarPubMed
Fultz, NE, Bonmassar, G, Setsompop, K, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 2019;366:628631.10.1126/science.aax5440CrossRefGoogle ScholarPubMed
Patel, T, Habimana-Griffin, L, Gao, X, et al. Dural lymphatics regulate clearance of extracellular tau from the CNS. Mol Neurodegener 2019;14:11.10.1186/s13024-019-0312-xCrossRefGoogle ScholarPubMed
Roh, JH, Huang, Y, Bero, AW, et al. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med 2012;4:150ra122.10.1126/scitranslmed.3004291CrossRefGoogle ScholarPubMed
Reddy, OC, van der Werf, YD. The sleeping brain: harnessing the power of the glymphatic system through lifestyle choices. Brain Sci 2020;10:868.10.3390/brainsci10110868CrossRefGoogle ScholarPubMed
Kryger, M, Roth, T, Goldstein, C. Principles and Practice of Sleep Medicine, 7th ed. Elsevier, 2022.Google Scholar
Grenberg, G, Watson, R, Deptula, D. Neuropsychological dysfunction in sleep apnea. Sleep 1987;10:254362.10.1093/sleep/10.3.254CrossRefGoogle Scholar
Engelman, H, Martin, S, Deary, J, Douglas, N. Effect of continuous positive airway pressure treatment on daytime function in sleep apnea/hypopnea syndrome. Lancet 1994;343:572575.10.1016/S0140-6736(94)91522-9CrossRefGoogle Scholar
Engelman, H, Martin, S, Deary, J, Douglas, N. Effect of CPAP therapy on daytime function in patients with mild sleep apnea/hypopnea syndrome. Thorax 1997;52:114119.10.1136/thx.52.2.114CrossRefGoogle Scholar
Engelman, H, Martin, S, Kingshott, R, et al. Randomized placebo controlled trial of daytime function after continuous positive airway pressure (CPAP) therapy for the sleep apnea/hypopnoea syndrome. Thorax 1998;53:341345.10.1136/thx.53.5.341CrossRefGoogle Scholar
Engelman, H, Kingshott, R, Wraith, P, et al. Randomized placebo-controlled crossover trial of continuous positive airway pressure for mild sleep apnea/hypopnea syndrome. Am J Respir Crit Care Med 1999;159:461467.10.1164/ajrccm.159.2.9803121CrossRefGoogle Scholar
Ferguson, K, Ono, T, Lowe, A, Keenan, S, Fleetham, J. A randomized crossover study of an oral appliance vs nasal continuous positive airway pressure in the treatment of mild-moderate obstructive sleep apnea. Chest 1996;109:12691275.10.1378/chest.109.5.1269CrossRefGoogle ScholarPubMed
Ferguson, K, Ono, T, Lowe, A, et al. A short term controlled trial of an adjustable oral appliance for the treatment of mild to moderate obstructive sleep apnea. Thorax 1997;52:362368.10.1136/thx.52.4.362CrossRefGoogle Scholar
Borak, J, Cieslicki, J, Koziej, M, Matuszewski, A, Zielinski, J. Effect of CPAP treatment on psychological status in patients with severe obstructive sleep apnea. J Sleep Res 1996;5:123127.CrossRefGoogle Scholar
Clark, G, Blumenfeld, L, Yoffe, N, Peled, E, Lavie, P. A crossover study comparing the efficacy of continuous positive airway pressure with anterior mandibular positioning devices on patients with obstructive sleep apnea. Chest 1996;109:14771483.10.1378/chest.109.6.1477CrossRefGoogle ScholarPubMed
Jenkinson, C, Stradling, J, Petersen, S. Comparison of three measures of quality of life outcome in the evaluation of continuous positive airway pressure for sleep apnea. J Sleep Res 1997;1997:199204.10.1046/j.1365-2869.1997.00043.xCrossRefGoogle Scholar
Jenkinson, C, Davies, R, Mullins, R, Stradling, J. Comparison of therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnea: a randomized prospective parallel trial. Lancet 1999;353:21002105.10.1016/S0140-6736(98)10532-9CrossRefGoogle ScholarPubMed
Kribbs, N, Pack, A, Kline, L, et al. Effects of one night without nasal CPAP treatment on sleep and sleepiness in patients with obstructive sleep apnea. Am Rev Respir Dis 1993;147:11621168.10.1164/ajrccm/147.5.1162CrossRefGoogle ScholarPubMed
Kullen, A, Stepnowsky, C, Parker, L, Ancoli-Israel, S. Cognitive impairment and sleep disordered breathing. Sleep Res 1993;22:224.Google Scholar
Montplaisir, J, Bedard, M, Richer, F, Rouleau, I. Neurobehavioral manifestations in obstructive sleep apnea syndrome before and after treatment with continuous positive airway pressure. Sleep 1992;15:517519.10.1093/sleep/15.suppl_6.S17CrossRefGoogle ScholarPubMed
Redline, S, Adams, N, Strauss, M, et al. Improvement of mild sleep disordered breathing with CPAP compared with conservative therapy. Am J Respir Crit Care Med 1998;157:858865.10.1164/ajrccm.157.3.9709042CrossRefGoogle ScholarPubMed
Weaver, T, Chugh, D, Maislin, G, et al. Changes in functional status after 3 months of CPAP treatment. Am J Respir Crit Care Med 1998;157:A53.Google Scholar
Bedard, M, Montplaisir, J, Malo, J, Richer, F, Rouleau, I. Persistent neuropsychological deficits and vigilance impairment in sleep apnea syndrome after treatment with continuous positive airway pressure (CPAP). J Clin Exp Neuropsychol 1993;15:330341.10.1080/01688639308402567CrossRefGoogle Scholar
Munoz, X, Marti, S, Sumalla, J, Bosch, J, Sampol, G. Acute delirium as a manifestation of obstructive sleep apnea syndrome. Am J Resp Crit Care Med 1998;158:13061307.10.1164/ajrccm.158.4.9801005CrossRefGoogle ScholarPubMed
Lee, J. Recurrent delirium associated with obstructive sleep apnea. Gen Hosp Psychiatry 1998;20:120122.10.1016/S0163-8343(98)00006-1CrossRefGoogle ScholarPubMed
Bliwise, D. Is sleep apnea a cause of reversible dementia in old age? J Am Geriatr Soc 1996;44:14071408.Google ScholarPubMed
Scheltens, P, Visscher, F, Van Keimpema, A, et al. Sleep apnea syndrome presenting with cognitive impairment. Neurology 1991;41:155156.10.1212/WNL.41.1.155CrossRefGoogle ScholarPubMed
Ancoli-Israel, S, Kripke, D, Klauber, M, et al. Sleep-disordered breathing in community-dwelling elderly. Sleep 1991;14:486495.10.1093/sleep/14.6.486CrossRefGoogle ScholarPubMed
Friedman, M, Ibrahim, H, Joseph, N. Staging of obstructive sleep apnea/hypopnea syndrome: a guide to appropriate treatment. Laryngoscope 2004;114:454459.10.1097/00005537-200403000-00013CrossRefGoogle ScholarPubMed
Chung, F, Yegneswaran, B, Liao, P, et al. STOP questionnaire: a tool to screen patients for obstructive sleep apnea. Anesthesiology 2008;108:812821.10.1097/ALN.0b013e31816d83e4CrossRefGoogle ScholarPubMed
Beninati, W, Harris, C, Herold, D, Shepard, JJ. The effect of snoring and obstructive sleep apnea on the sleep quality of bed partners. Mayo Clin Proc 1999;74:955958.10.1016/S0025-6196(11)63991-8CrossRefGoogle ScholarPubMed
Chong, M, Ayalon, L, Marler, M, et al. Continuous positive airway pressure reduces subjective daytime sleepiness in patients with mild to moderate Alzheimer’s disease with sleep disordered breathing. J Am Geriatr Soc 2006;54:777781.10.1111/j.1532-5415.2006.00694.xCrossRefGoogle ScholarPubMed
Ayalon, L, Ancoli-Israel, S, Stepnowsky, C, et al. Adherence to continuous positive airway pressure treatment in patients with Alzheimer’s disease and obstructive sleep apnea. Am J Geriatr Psychiatry 2006;14:176180.10.1097/01.JGP.0000192484.12684.cdCrossRefGoogle ScholarPubMed
Colrain, I, Brooks, S, Black, J. A pilot evaluation of a nasal expiratory resistance device for the treatment of obstructive sleep apnea. J Clin Sleep Med 2008;4:426433.10.5664/jcsm.27277CrossRefGoogle ScholarPubMed
Sleeper, G, Rashidi, M, Strohl, K, et al. Comparison of expiratory pressures generated by four different EPAP devices in a laboratory bench setting. Sleep Med 2022;96:8792.10.1016/j.sleep.2022.05.004CrossRefGoogle Scholar
Thomas, R, Terzano, M, Parrino, L, Weiss, J. Obstructive sleep-disordered breathing with a dominant cyclic alternating pattern–a recognizable polysomnographic variant with practical clinical implications. Sleep 2004;27:229234.10.1093/sleep/27.2.229CrossRefGoogle ScholarPubMed
Pusalavidyasagar, S, Olson, E, Gay, P, Morgenthaler, T. Treatment of complex sleep apnea syndrome: a retrospective comparative review. Sleep Med 2006;7:474479.10.1016/j.sleep.2006.04.005CrossRefGoogle ScholarPubMed
Morgenthaler, T, Gay, P, Gordon, N, Brown, L. Adaptive servoventilation versus noninvasive positive pressure ventilation for central, mixed, and complex sleep apnea syndromes. Sleep 2007;30:468475.10.1093/sleep/30.4.468CrossRefGoogle ScholarPubMed
Allen, RP, Picchietti, DL, Auerbach, M, et al. Evidence-based and consensus clinical practice guidelines for the iron treatment of restless legs syndrome/Willis-Ekbom disease in adults and children: an IRLSSG task force report. Sleep Med 2018;41:2744.10.1016/j.sleep.2017.11.1126CrossRefGoogle ScholarPubMed
Vitiello, M, Prinz, P. Alzheimer’s disease. Sleep and sleep/wake patterns. Clin Geriatr Med 1989;5(2):289299.10.1016/S0749-0690(18)30679-7CrossRefGoogle ScholarPubMed
Vitiello, M, Prinz, P, Williams, D, Frommlet, M, Ries, R. Sleep disturbances in patients with mild stage Alzheimer’s disease. J Gerontol 1990;45:M131M138.10.1093/geronj/45.4.M131CrossRefGoogle ScholarPubMed
Bliwise, D, Carroll, J, Lee, K, Nekich, J, Dement, W. Sleep and “sundowning” in nursing home patients with dementia. Psych Res 1993;48:277292.10.1016/0165-1781(93)90078-UCrossRefGoogle ScholarPubMed
Ancoli-Israel, S, Klauber, M, Jones, D, et al. Variations in circadian rhythms of activity, sleep, and light exposure related to dementia in nursing-home patients. Sleep 1997;20:1823.Google ScholarPubMed
Kang, J, Lim, M, Bateman, R, et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 2009;326:10051007.10.1126/science.1180962CrossRefGoogle ScholarPubMed
Lim, A, Kowgier, M, Yu, L, Buchman, A, Benett, D. Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in order persons. Sleep 2013;36:10271032.10.5665/sleep.2802CrossRefGoogle Scholar
Skene, D, Swaab, D. Melatonin rhythmicity: effect of age and Alzheimer’s disease. Exp Gerontol 2003;38:199206.10.1016/S0531-5565(02)00198-5CrossRefGoogle ScholarPubMed
Singer, C, MacArthur, A, Hughes, R, Sack, R, Lewy, A. High dose melatonin and sleep in the elderly. Sleep Research 1995;24A:151.Google Scholar
Brusco, L, Fainstein, I, Marquez, M, Cardinali, D. Effect of melatonin in selected populations of sleep-disturbed patients. Biol Signal Recep 1999;8:126131.10.1159/000014580CrossRefGoogle ScholarPubMed
Singer, C, Tractenberg, R, Kaye, J, et al. A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease. Sleep 2003;26:893901.10.1093/sleep/26.7.893CrossRefGoogle ScholarPubMed
Hozumi, S, Okawa, M, Mishima, K, et al. Phototherapy for elderly patients with dementia and sleep-wake rhythm disorders – a comparison between morning and evening light exposure. Japan J Psych Neurol 1990;44:813814.Google Scholar
Lyketsos, C, Lindell Veiel, L, Baker, A, Steele, C. A randomized, controlled trial of bright light therapy for agitated behaviors in dementia patients residing in long-term care. Internat J Ger Psychiatry 1999;14:520525.10.1002/(SICI)1099-1166(199907)14:7<520::AID-GPS983>3.0.CO;2-M3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Satlin, A, Volicer, L, Ross, V, Herz, L, Campbell, S. Bright light treatment of behavioral and sleep disturbances in patients with Alzheimer’s disease. Am J Psychiatry 1992;149:10281032.Google ScholarPubMed
Van Someren, E, Kessler, A, Mirmiran, M, Swaab, D. Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients. Biol Psychiatry 1997;41:955963.10.1016/S0006-3223(97)89928-3CrossRefGoogle ScholarPubMed
Herring, WJ, Ceesay, P, Snyder, E, et al. Polysomnographic assessment of suvorexant in patients with probable Alzheimer’s disease dementia and insomnia: a randomized trial. Alzheimers Dement 2020;16:541551.10.1002/alz.12035CrossRefGoogle ScholarPubMed
Thannickal, T, Lai, Y, Siegel, J. Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 2007;130:15861595.10.1093/brain/awm097CrossRefGoogle ScholarPubMed
McCarter, SJ, St Louis, EK, Boeve, BF. Sleep disturbances in frontotemporal dementia. Curr Neurol Neurosci Rep 2016;16:85.10.1007/s11910-016-0680-3CrossRefGoogle ScholarPubMed
Boeve, A, Ferman, TJ, Aakre, J, et al. Excessive daytime sleepiness in major dementia syndromes. Am J Alzheimers Dis Other Demen 2019;34:261264.10.1177/1533317519828046CrossRefGoogle ScholarPubMed
Ferman, T, Smith, G, Dickson, D, et al. Abnormal daytime sleepiness in dementia with Lewy bodies compared to Alzheimer’s disease using the Multiple Sleep Latency Test. Alzheimer Res Ther 2014;16:76.10.1186/s13195-014-0076-zCrossRefGoogle Scholar
Gurian, B, Rosowsky, E. Low-dose methylphenidate in the very old. J Geriatr Psychiatry Neurol 1990;3:152154.10.1177/089198879000300305CrossRefGoogle ScholarPubMed
Ben-Itzhak, R, Giladi, N, Gruendlinger, L, Hausdorff, J. Can methylphenidate reduce fall risk in community-living older adults? A double-blind, single-dose cross-over study. J Amer Geriatr Soc 2008;56:695700.10.1111/j.1532-5415.2007.01623.xCrossRefGoogle ScholarPubMed
Lapid, MI, Kuntz, KM, Mason, SS, et al. Efficacy, safety, and tolerability of armodafinil therapy for hypersomnia associated with dementia with Lewy bodies: a pilot study. Dem Geriatr Cog Disord 2017;43:269280.10.1159/000471507CrossRefGoogle ScholarPubMed
Olson, E, Boeve, B, Silber, M. Rapid eye movement sleep behavior disorder: demographic, clinical, and laboratory findings in 93 cases. Brain 2000;123:331339.10.1093/brain/123.2.331CrossRefGoogle ScholarPubMed
Postuma, R, Gagnon, J, Vendette, M, et al. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology 2009;72 12961300.10.1212/01.wnl.0000340980.19702.6eCrossRefGoogle ScholarPubMed
Iranzo, A, Molinuevo, J, Santamaría, J, et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol 2006;5:572577.10.1016/S1474-4422(06)70476-8CrossRefGoogle Scholar
St Louis, EK, Boeve, AR, Boeve, BF. REM sleep behavior disorder in Parkinson’s disease and other synucleinopathies. Mov Disord 2017;32:645658.10.1002/mds.27018CrossRefGoogle ScholarPubMed
St Louis, EK, Boeve, BF. REM sleep behavior disorder: diagnosis, clinical implications, and future directions. Mayo Clin Proc 2017;92:17231736.10.1016/j.mayocp.2017.09.007CrossRefGoogle ScholarPubMed
Boeve, BF, Silber, MH, Ferman, TJ, et al. REM sleep behavior disorder and degenerative dementia: an association likely reflecting Lewy body disease. Neurology 1998;51:363370.10.1212/WNL.51.2.363CrossRefGoogle ScholarPubMed
Boeve, B, Silber, M, Ferman, T, Lucas, J, Parisi, J. Association of REM sleep behavior disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov Disord 2001;16:622630.10.1002/mds.1120CrossRefGoogle ScholarPubMed
Boeve, B, Silber, M, Ferman, T, et al. REM sleep behavior disorder in Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. In Bedard, M, Agid, Y, Chouinard, S, et al., eds. Mental and Behavioral Dysfunction in Movement Disorders. Totowa: Humana Press, 2003; pp. 383397.Google Scholar
Boeve, B, Silber, M, Parisi, J, et al. Synucleinopathy pathology and REM sleep behavior disorder plus dementia or parkinsonism. Neurology 2003;61:4045.10.1212/01.WNL.0000073619.94467.B0CrossRefGoogle ScholarPubMed
Boeve, B, Silber, M, Ferman, T. REM sleep behavior disorder in Parkinson’s disease and dementia with Lewy bodies. J Ger Psychiatry Neurol 2004;17:146157.10.1177/0891988704267465CrossRefGoogle ScholarPubMed
Boeve, B, Molano, J, Ferman, T, et al. Validation of the Mayo Sleep Questionnaire to screen for REM sleep behavior disorder in an aging and dementia cohort. Sleep Med 2011;12:445453.10.1016/j.sleep.2010.12.009CrossRefGoogle Scholar
Boeve, B, Molano, J, Ferman, T, et al. Validation of the Mayo Sleep Questionnaire to screen for REM sleep behavior disorder in a community-based sample. J Clin Sleep Med 2013;9:475480.10.5664/jcsm.2670CrossRefGoogle Scholar
Iranzo, A, Santamaria, J. Severe obstructive sleep apnea/hypopnea mimicking REM sleep behavior disorder. Sleep 2005;28:203206.10.1093/sleep/28.2.203CrossRefGoogle ScholarPubMed
McCarter, S, Boswell, C, St Louis, E, et al. Treatment outcomes in REM sleep behavior disorder. Sleep Med 2013;14:237242.10.1016/j.sleep.2012.09.018CrossRefGoogle ScholarPubMed
Schenck, C, Mahowald, M. REM sleep behavior disorder: clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. Sleep 2002;25:120138.10.1093/sleep/25.2.120CrossRefGoogle ScholarPubMed
Gagnon, J, Postuma, R, Montplaisir, J. Update on the pharmacology of REM sleep behavior disorder. Neurology 2006;67:742747.10.1212/01.wnl.0000233926.47469.73CrossRefGoogle ScholarPubMed
Kunz, D, Bes, F. Melatonin as a therapy in REM sleep behavior disorder patients: An open-labeled pilot study on the possible influence of melatonin on REM-sleep regulation. Mov Disord 1999;14:507511.10.1002/1531-8257(199905)14:3<507::AID-MDS1021>3.0.CO;2-83.0.CO;2-8>CrossRefGoogle ScholarPubMed
Boeve, B, Silber, M, Ferman, T. Melatonin for treatment of REM sleep behavior disorder in neurologic disorders: results in 14 patients. Sleep Med 2003;4:281284.10.1016/S1389-9457(03)00072-8CrossRefGoogle ScholarPubMed
McGrane, I, Leung, J, St Louis, E, Boeve, B. Melatonin therapy for REM sleep behavior disorder: a critical review of evidence. Sleep Med 2015;16(1):1926.10.1016/j.sleep.2014.09.011CrossRefGoogle ScholarPubMed
Reynolds, C, Kupfer, D, Hoch, C, Sewitch, D. Sleeping pills in the elderly: are they ever justified? J Clin Psychiatry 1985;46:912.Google ScholarPubMed
McCleery, J, Sharpley, AL. Pharmacotherapies for sleep disturbances in dementia. Cochrane Database Syst Rev 2020;11:CD009178.Google ScholarPubMed
Ringman, J, Simmons, J. Treatment of REM sleep behavior disorder with donepezil: a report of three cases. Neurology 2000;55:870–871.10.1212/WNL.55.6.870CrossRefGoogle ScholarPubMed
Onofrj, M, Luciano, AL, Thomas, A, Iacono, D, D’Andreamatteo, G. Mirtazapine induces REM sleep behavior disorder (RBD) in parkinsonism. Neurology 2003;60:113–115.10.1212/01.WNL.0000042084.03066.C0CrossRefGoogle ScholarPubMed
Winkelman, J, James, L. Serotonergic antidepressants are associated with REM sleep without atonia. Sleep 2004;15:317321.10.1093/sleep/27.2.317CrossRefGoogle Scholar
Arnulf, I, Bonnet, AM, Damier, P, et al. Hallucinations, REM sleep, and Parkinson’s disease: a medical hypothesis. Neurology 2000;55:281–288.10.1212/WNL.55.2.281CrossRefGoogle ScholarPubMed
Boeve, B. Dementia with Lewy bodies. In Petersen, R, ed. Continuum (Minneap Minn). Minneapolis: American Academy of Neurology, 2004; pp, 81–112.Google Scholar
McKeith, I, Dickson, D, Lowe, J, et al. Dementia with Lewy bodies: diagnosis and management: third report of the DLB Consortium. Neurology 2005;65:1863–1872.10.1212/01.wnl.0000187889.17253.b1CrossRefGoogle ScholarPubMed
Emre, M, Aarsland, D, Brown, R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 2007;22:16891707.10.1002/mds.21507CrossRefGoogle ScholarPubMed
Boeve, B. Diagnosis and management of the non-Alzheimer dementias. In Noseworthy, J, ed. Neurological Therapeutics: Principles and Practice, 2nd ed. Abingdon: Informa Healthcare, 2006; pp. 31563206.Google Scholar
McKeith, I, Del Ser, T, Spano, P, et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomised, double-blind, placebo-controlled international study. Lancet 2000;356:2031–2036.10.1016/S0140-6736(00)03399-7CrossRefGoogle ScholarPubMed
Emre, M, Aarsland, D, Albanese, A, et al. Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med 2004;351:2509–2518.10.1056/NEJMoa041470CrossRefGoogle ScholarPubMed
Herrmann, N, Rabheru, K, Wang, J, Binder, C. Galantamine treatment of problematic behavior in Alzheimer disease: post-hoc analysis of pooled data from three large trials Am J Geriatr Psychiatry 2005;13:527–534.10.1097/00019442-200506000-00012CrossRefGoogle ScholarPubMed
Cummings, J, Schneider, E, Tariot, P, Graham, S, Group MM-M-S. Behavioral effects of memantine in Alzheimer disease patients receiving donepezil treatment. Neurology 2006;67:57–63.10.1212/01.wnl.0000223333.42368.f1CrossRefGoogle ScholarPubMed
Cummings, J, McRae, T, Zhang, R, Group. D-SS. Effects of donepezil on neuropsychiatric symptoms in patients with dementia and severe behavioral disorders. Am J Geriatr Psychiatry 2006;14:605–612.10.1097/01.JGP.0000221293.91312.d3CrossRefGoogle ScholarPubMed
Ju, Y, Lucey, B, Holtzman, D. Sleep and Alzheimer disease pathology – a bidirectional relationship. Nature Rev Neurol 2014;10:115–119.10.1038/nrneurol.2013.269CrossRefGoogle ScholarPubMed
Polsek, D, Gildeh, N, Cash, D, et al. Obstructive sleep apnoea and Alzheimer’s disease: In search of shared pathomechanisms. Neurosci Biobehav Rev 2018;86:142–149.10.1016/j.neubiorev.2017.12.004CrossRefGoogle ScholarPubMed
Yaffe, K, Laffan, A, Litwack Harrison, S, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA 2011;306 613–619.Google ScholarPubMed
Bubu, OM, Brannick, M, Mortimer, J, et al. Sleep, cognitive impairment, and Alzheimer’s disease: a systematic review and meta-analysis. Sleep 2017;40.10.1093/sleep/zsw032CrossRefGoogle ScholarPubMed
Osorio, RS, Gumb, T, Pirraglia, E, et al. Sleep-disordered breathing advances cognitive decline in the elderly. Neurology 2015;84:1964–1971.10.1212/WNL.0000000000001566CrossRefGoogle ScholarPubMed
Lal, C, Ayappa, I, Ayas, N, et al. The link between obstructive sleep apnea and neurocognitive impairment: an official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2022;19:1245–1256.10.1513/AnnalsATS.202205-380STCrossRefGoogle ScholarPubMed
Ju, YE, Finn, MB, Sutphen, CL, et al. Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid. Ann Neurol 2016;80:154–159.10.1002/ana.24672CrossRefGoogle ScholarPubMed
André, C, Rehel, S, Kuhn, E, et al. Association of sleep-disordered breathing with Alzheimer disease biomarkers in community-dwelling older adults: a secondary analysis of a randomized clinical trial. JAMA Neurol 2020;77:716–724.10.1001/jamaneurol.2020.0311CrossRefGoogle ScholarPubMed
Sharma, RA, Varga, AW, Bubu, OM, et al. obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly. A longitudinal study. Am J Respir Crit Care Med 2018;197:933–943.10.1164/rccm.201704-0704OCCrossRefGoogle ScholarPubMed
Bubu, OM, Pirraglia, E, Andrade, AG, et al. Obstructive sleep apnea and longitudinal Alzheimer’s disease biomarker changes. Sleep 2019;42.10.1093/sleep/zsz048CrossRefGoogle ScholarPubMed
Carvalho, D, St. Louis, E, Knopman, D, et al. Excessive daytime sleepiness predicts increased β-amyloid accumulation in non-demented elderly: a longitudinal PiB-PET study. Neurology 2017;88.10.1212/WNL.88.16_supplement.S14.004CrossRefGoogle Scholar
Carvalho, DZ, St Louis, EK, Boeve, BF, et al. Excessive daytime sleepiness and fatigue may indicate accelerated brain aging in cognitively normal late middle-aged and older adults. Sleep Med 2017;32:236–243.10.1016/j.sleep.2016.08.023CrossRefGoogle ScholarPubMed
Carvalho, DZ, St Louis, EK, Knopman, DS, et al. Association of excessive daytime sleepiness with longitudinal beta-amyloid accumulation in elderly persons without dementia. JAMA Neurol 2018;75(6):672680.10.1001/jamaneurol.2018.0049CrossRefGoogle ScholarPubMed
Carvalho, DZ, St Louis, EK, Przybelski, SA, et al. Sleepiness in cognitively unimpaired older adults is associated with CSF biomarkers of inflammation and axonal integrity. Front Aging Neurosci 2022;14:930315.10.3389/fnagi.2022.930315CrossRefGoogle Scholar
Carvalho, DZ, St Louis, EK, Schwarz, CG, et al. Witnessed apneas are associated with elevated tau-PET levels in cognitively unimpaired elderly. Neurology 2020;94:e1793e1802.10.1212/WNL.0000000000009315CrossRefGoogle ScholarPubMed
Fortea, J, Vilaplana, E, Carmona-Iragui, M, et al. Clinical and biomarker changes of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. Lancet 2020;395:19881997.10.1016/S0140-6736(20)30689-9CrossRefGoogle ScholarPubMed
Giménez, S, Altuna, M, Blessing, E, Osorio, RM, Fortea, J. Sleep disorders in adults with Down syndrome. J Clin Med 2021;10.10.3390/jcm10143012CrossRefGoogle ScholarPubMed
Giménez, S, Farre, A, Morente, F, et al. Feasibility and long-term compliance to continuous positive airway pressure treatment in adults with Down syndrome, a genetic form of Alzheimer’s disease. Front Neurosci 2022;16:838412.10.3389/fnins.2022.838412CrossRefGoogle ScholarPubMed
Ferman, TJ, Boeve, BF, Smith, GE, et al. REM sleep behavior disorder and dementia: cognitive differences when compared with AD. Neurology 1999;52:951957.10.1212/WNL.52.5.951CrossRefGoogle ScholarPubMed
Ferman, T, Smith, G, Boeve, B, et al. Neuropsychological differentiation of dementia with Lewy bodies from normal aging and Alzheimer’s disease. Clin Neuropsychol 2006;20.10.1080/13854040500376831CrossRefGoogle ScholarPubMed
Ferman, T, Boeve, B, Smith, G, et al. Inclusion of RBD improves the diagnostic classification of dementia with Lewy bodies. Neurology 2011;77:875882.10.1212/WNL.0b013e31822c9148CrossRefGoogle ScholarPubMed
Molano, J, Boeve, B, Ferman, T, et al. Mild cognitive impairment associated with limbic and neocortical Lewy body disease: a clinicopathological study. Brain 2009;133:540556.10.1093/brain/awp280CrossRefGoogle ScholarPubMed
Schenck, C, Boeve, B, Mahowald, M. Delayed emergence of a parkinsonian disorder or dementia in 81% of older males initially diagnosed with idiopathic REM sleep behavior disorder (RBD): a 16-year update on a previously reported series. Sleep Med 2013;14(8):744748.10.1016/j.sleep.2012.10.009CrossRefGoogle ScholarPubMed
Iranzo, A, Fernandez-Arcos, A, Tolosa, E, et al. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLoS One 2014;9:e89741.10.1371/journal.pone.0089741CrossRefGoogle ScholarPubMed
Postuma, R, Gagnon, J-F, Bertrand, J-A, Marchand, D, Montplaisir, J. Parkinson risk in idiopathic REM sleep behavior disorder. Neurology 2015;84:11041113.10.1212/WNL.0000000000001364CrossRefGoogle ScholarPubMed
Postuma, RB, Iranzo, A, Hu, M, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 2019;142:744759.10.1093/brain/awz030CrossRefGoogle ScholarPubMed
Boeve, B. Predicting the future in idiopathic rapid-eye movement sleep behaviour disorder. Lancet Neurol 2010;9:10401042.10.1016/S1474-4422(10)70221-0CrossRefGoogle ScholarPubMed
Postuma, RB, Gagnon, JF, Montplaisir, JY. REM sleep behavior disorder: from dreams to neurodegeneration. Neurobiol Dis 2012;46:553558.10.1016/j.nbd.2011.10.003CrossRefGoogle ScholarPubMed
Schenck, C, Montplaisir, J, Frauscher, B, et al. Rapid eye movement sleep behavior disorder: devising controlled active treatment studies for symptomatic and neuroprotective therapy-a consensus statement from the International Rapid Eye Movement Sleep Behavior Disorder Study Group. Sleep Med 2013;14:795806.10.1016/j.sleep.2013.02.016CrossRefGoogle ScholarPubMed
Miglis, MG, Adler, CH, Antelmi, E, et al. Biomarkers of conversion to alpha-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol 2021;20:671684.10.1016/S1474-4422(21)00176-9CrossRefGoogle ScholarPubMed
Sixel-Doring, F, Schweitzer, M, Mollenhauer, B, Trenkwalder, C. Polysomnographic findings, video-based sleep analysis and sleep perception in progressive supranuclear palsy. Sleep Med 2009;10:407415.10.1016/j.sleep.2008.05.004CrossRefGoogle ScholarPubMed
Walsh, CM, Ruoff, L, Walker, K, et al. Sleepless night and day, the plight of progressive supranuclear palsy. Sleep 2017;40:zsx154.10.1093/sleep/zsx154CrossRefGoogle ScholarPubMed
Lew, CH, Petersen, C, Neylan, TC, Grinberg, LT. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer’s disease. Sleep Med Rev 2021;60:101541.10.1016/j.smrv.2021.101541CrossRefGoogle ScholarPubMed
Oh, JY, Walsh, CM, Ranasinghe, K, et al. Subcortical neuronal correlates of sleep in neurodegenerative diseases. JAMA Neurol 2022;79:498508.10.1001/jamaneurol.2022.0429CrossRefGoogle ScholarPubMed
Roman, GC, Verma, AK, Zhang, YJ, Fung, SH. Idiopathic normal-pressure hydrocephalus and obstructive sleep apnea are frequently associated: a prospective cohort study. J Neurol Sci 2018;395:164168.10.1016/j.jns.2018.10.005CrossRefGoogle ScholarPubMed
Riedel, CS, Milan, JB, Juhler, M, Jennum, P. Sleep-disordered breathing is frequently associated with idiopathic normal pressure hydrocephalus but not other types of hydrocephalus. Sleep 2022;45.10.1093/sleep/zsab265CrossRefGoogle Scholar
Oliveira, LM, Nitrini, R, Roman, GC. Normal-pressure hydrocephalus: a critical review. Dement Neuropsychol 2019;13:133143.10.1590/1980-57642018dn13-020001CrossRefGoogle ScholarPubMed
Roman, GC, Jackson, RE, Fung, SH, Zhang, YJ, Verma, AK. Sleep-disordered breathing and idiopathic normal-pressure hydrocephalus: recent pathophysiological advances. Curr Neurol Neurosci Rep 2019;19:39.10.1007/s11910-019-0952-9CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.1 AA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.1 of the Web Content Accessibility Guidelines (WCAG), covering newer accessibility requirements and improved user experiences and achieves the intermediate (AA) level of WCAG compliance, covering a wider range of accessibility requirements.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×