To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Outside of our fellow mammals, our next closest relatives are reptiles. As both birds and mammals are warm blooded (endothermic) and have four-chambered hearts, one might be tempted to think that the sister group to mammals would be birds. But the story is much more complicated than that, especially because birds are actually reptiles.
Reptiles include four main lineages: (1) turtles, (2) lizards and snakes, (3) crocodilians, and (4) dinosaurs, including birds. Indeed, birds are reptiles – birds are a surviving lineage descended from bipedal predatory dinosaurs! In decades past, there were five “classes” of vertebrates (animal groups with backbones): fishes, amphibians, mammals, reptiles, and birds. In fact, many basic treatments still list these groups. For example, Encyclopedia Britannica still has an article entitled: “Five Vertebrate Groups.” But there are major problems with two of these old groups: neither fishes nor scaly reptiles are monophyletic.
I have argued that one of the major misconceptions about evolution and the tree of life is that some species or lineages are considered more “primitive” than others – this chapter will delve more deeply into this misconception and one of its key causes. Across the tree of life, certain lineages – including the platypus, lungfishes, and mosses – are frequently labeled as more primitive than other members of their groups. Mammals provide several good case studies demonstrating the reasons for this longstanding misperception. Researchers, journalists, and filmmakers all seem obsessed with discussing certain lineages that somehow seem primitive to them. This misconception about primitive lineages is problematic for two major reasons. First, it leads to a general misunderstanding of evolution, which can lead to fundamental misunderstandings across all of biology, including human health.
Fossils provide a unique window into how evolution has unfolded. In particular, transitions in the fossil record provide compelling evidence for how major evolutionary changes have happened. One of the most well-known transitions is from fish-like vertebrates to the first land vertebrates – our earliest tetrapod ancestors. (The word tetrapod refers to the groups of vertebrates with four legs, namely mammals, reptiles, and amphibians.) Paleontologists had known that transitional fossils connecting aquatic and terrestrial vertebrates must exist. There were abundant fossils of vertebrates with fins from around 400 mya, and there were abundant fossils of terrestrial tetrapods with limbs from around 350 mya. But key fossils were missing – those that could show details of how the evolutionary crawl onto land had occurred.
If we think of ourselves as the “highest” forms of life, we often think of Bacteria as the “lowest” forms of life. We also think of Bacteria as ancient, “primitive,” and ancestral. As discussed for many other extant branches of the tree of life, these views are misleading. But these views may be especially hard to jettison when thinking of Bacteria – aren’t they more ancestral than we are? But we must always come back to this idea: Bacteria are not our ancestors – they are extant cousins. As will be detailed below, all lineages of organisms descended from the LUCA; the major lineages of life did not descend from Bacteria.
The clade Bacteria includes species that are ecologically essential (e.g., as decomposers that impact the carbon cycle) and that comprise key organisms of our microbiome (e.g., the symbiotic Bacteria normally found on our skin and in our digestive tracts). Bacteria also cause many diseases, including stomach ulcers (Helicobacter pylori), tetanus (Clostridium tetani), and acne (Cutibacterium acnes).
This chapter begins with the strong statement that fish do not exist as a true evolutionary group. Of the five traditional “classes” of vertebrates, fishes are the most problematic. The concept “fish” is wildly paraphyletic. In contrast, extant amphibians form a monophyletic clade. Mammals are also a true evolutionary group. In the previous chapter we learned that the former paraphyletic group Reptilia can be fixed by recognizing that birds are reptiles.
But there is no simple fix for fishes. One possible solution is to say that all tetrapods are fishes too. In other words, you and I and frogs and birds would all be fishes. That could work and it does reflect true evolutionary relationships, but it makes the former concept fishes fairly useless. Another solution is to recognize at least six separate lineages as distinct monophyletic groups.
For decades, biologists have assumed that our most distant animal cousins were sponges (Porifera). This seemed to make a lot of sense, because sponges are very different from us and from all other animals. Sponges do not have different types of tissues, such as skin, muscles, and nerves. Their colonies of cells form the colorful but irregular shapes that are common on coral reefs. There is no way to cut a sponge into two equal halves – adult sponges are asymmetrical. Surely animals such as this must be very distantly related to us, no? (Note that for this chapter, I have switched things up to talk about our most distant animal relatives first.)
But beginning around 2010, new data began to emerge suggesting that another group of animals, the comb jellies, might be our most distant animal relatives. Comb jellies, also known as ctenophores (Ctenophora), are aquatic organisms with generally translucent gel-filled bodies.
According to Aristotle and Linnaeus, there were only two “kingdoms” – Plantae and Animalia. In the 1800s, Haeckel carved kingdom “Protista” off of Linnaeus’ Plantae. Kingdoms for Fungi and Bacteria (Monera) were later added. By the time I was in secondary school, I learned a five-kingdom system. The five “kingdoms” that I learned are still frequently used in biology lessons: animals, plants, fungi, protists, and bacteria. But we now know that a five-kingdom story is so simplified as to be misleading, and it tells us very little about the broad tree of life. Back then, in the 1900s, our limited understanding made things seem more simple, but recent DNA sequence data indicate that the groupings are much more complex.
The five-kingdom system was first proposed in 1969. (1) Animalia were multicellular creatures that eat other organisms. (2) Fungi were generally multicellular decomposers that fed by a network of filamentous cells. (3) Plantae included especially the land plants.
Chimpanzees are not our ancestors! Rather, they are our closest living cousins. Approximately 7 mya there was a species of ape in Africa, the common ancestor that you and I share with the chimps. That species was not a chimpanzee – we know that thousands of changes in DNA have occurred in the descendant lineages since that ancestor. And many resulting skeletal and biological changes have occurred in both the human lineage and the chimpanzee lineage since that ancestor.
The idea that humans descended from chimpanzees is one of the most common misconceptions about evolution. The notion that we evolved from chimps fits well with the concept of the ladder of progress. We might think that chimpanzees are more “primitive” than we are, so if evolution were a progression toward more “advanced” forms, then we might think that the other living apes evolved first, and that we evolved from those apes. We might think that chimpanzees and gorillas are older species, and that Homo sapiens is a younger species that evolved more recently.
Imagine looking out on the plains of Africa sometime several hundred thousand years ago. You see a group of people – perhaps a family group with grandparents, parents, adolescents, and younger children. You can sense their connection to you – they are fellow humans and you recognize the key features that we all share today. Perhaps some of them are sharing meat from a gazelle they have killed. Others might be gathering fruit or seeds. The children might be running around chasing one another. Imagine a young woman in that clan, perhaps in her early twenties. She could be a woman that you and I and every other living human can trace our ancestry back to. Such a woman lived in East Africa approximately 150,000 years ago; she is a common ancestor that you and I share, along with every other human currently alive on Earth. We all inherited a key piece of our DNA from her. This is a segment of DNA that you inherited from your mother, and she from her mother, and she from her mother … all the way back to this woman who lived perhaps in present-day Kenya, Tanzania, or Ethiopia. She has been nicknamed “mitochondrial Eve.”
All species on Earth share common ancestry – we are all part of the same family tree. The tree of life is a representation of how all those species are related to one another. All living species on Earth are the product of billions of years of evolution, so all are evolutionary equals in that way. However, we tend to think of life in a hierarchical way. We think there are lower animals and higher animals. We may incorrectly think that species of bacteria are old and primitive, and that humans are recent and advanced. Many news articles about evolution can feed into the perceptions that some species are younger, more advanced, or more evolved. But all of those perceptions are misleading. Each of these present-day species are our evolutionary cousins. All species alive today are the product of the same 3.5 billion years of evolutionary change, each adapting to their own environment. (Note that species are the units of evolution, frequently defined based on the distinctiveness of their appearance and genetics, and often on their ability to interbreed and produce fertile offspring.)
Studying complexes of cryptic or pseudocryptic species opens new horizons for the understanding of speciation processes, an important yet vague issue for the digeneans. We investigated a hemiuroidean trematode Lecithaster salmonis across a wide geographic range including the northern European seas (White, Barents, and Pechora), East Siberian Sea, and the Pacific Northwest (Sea of Okhotsk and Sea of Japan). The goals were to explore the genetic diversity within L. salmonis through mitochondrial (cox1 and nad5 genes) and ribosomal (ITS1, ITS2, 28S rDNA) marker sequences, to study morphometry of maritae, and to revise the life cycle data. Mitochondrial markers showed that L. salmonis is likely divided into six lineages (referred to as operational taxonomic units, OTUs), which often occur in sympatry, sometimes in a single host specimen. Variation in rDNA was not consistent with that in the mitochondrial markers. Morphometric analysis of maritae was performed for four out of six OTUs; it showed that some OTUs had significant differences from the others, but some did not. The effect of host species on the morphometric characteristics cannot be excluded. Intramolluscan stages were identified for two OTUs; they differed clearly by the structure of cercariae and also by the species of the first intermediate host. The case of L. salmonis is instructive in how different criteria for species delimitation can contradict each other. We regard this as a sign of recent or ongoing speciation and suggest using the name Lecithaster cf. salmonis. The most promising criteria to differentiate genetic lineages within L. cf. salmonis are first intermediate hosts and morphological characteristics of the cercariae: shape of the delivery tube and caudal cyst, and length of the filamentous appendage.
Threespine sticklebacks, numerous species of disease-causing bacteria, and Darwin’s finches have all shown rapid evolutionary change in response to changing environments. Evolutionary ecologists use a variety of genetic and molecular approaches to study evolutionary change in these and other species. Gene flow, genetic drift, mutation, and natural selection can cause evolutionary change within a population, but natural selection is the only evolutionary process that can lead to adaptation. The benefits and costs of adaptations are environment-dependent and reflect evolutionary tradeoffs, so a trait may be beneficial in one environmental context and costly in a second. Natural selection may lead to speciation when genetic divergence is maintained either by physical barriers to gene flow, or by assortative mating of similar genotypes within a population. Evolutionary ecologists compare morphological, behavioral, and, most commonly, molecular characters in related groups of organisms, and use similarities in these characters to create phylogenetic trees that reflect evolutionary relationships.
Adsorption of Mo(VI) on 2-0.2-μm size fraction of sodium-saturated kaolinite at 25 ± 2°C and at a constant pH of 7.00 ± 0.05 was studied. The kaolinite sample was pretreated to remove any surface oxide and hydroxide coatings. The initial concentrations of Mo in solution ranged from 1 to 11 mg/liter in a NaClO4 background electrolyte at a constant ionic strength of 0.09 ± 0.01. Calculations of speciation using the GEOCHEM computer program indicated that under experimental conditions Mo(VI) was mainly in the MoO42− form. The experimental conditions were also shown to fulfill the requirements for applying the Langmuir equation in interpreting adsorption data. The Langmuir parameter for the adsorption maximum, n°, and the affinity parameter, were computed to be 3.33 × 10−4 mole/ mole of adsorbent and 5.969 × 105, respectively. The large affinity parameter indicated that the Na-saturated kaolinite surface has a very high affinity for MoO42− ions relative to ClO4− ions.
Interactions with bentonite are important in the chemical speciation and fate of heavy metals in soils and other ecosystems. The interactions of Zn with bentonite were studied using X-ray diffraction (XRD), dehydration, kinetic and sequential extraction procedures. The species and activity of Zn retained by bentonite were affected markedly by pH. The Zn(OH)+ was retained by bentonite prepared at pH ≥ 6.9. The extent of dehydration of Zn(OH)+-bentonite was higher than that for Zn-bentonite. At a relative humidity of 55.5%, the basal spacing of the Zn(OH)+-bentonite was from 1.21 to 1.26 nm with 1 water sheet and that of the Zn-bentonite was 1.51 nm with 2 water sheets. The greater affinity of Zn(OH)+ for bentonite than Zn was associated with a lower degree of hydration. When an aqueous suspension of Ca-bentonite was incubated with soluble Zn, the concentration of Zn retained by the Ca-bentonite was linearly related to the square root of time. The rate of the interaction was controlled probably by the interlayer diffusion and subsequently by the diffusion into the ditrigonal cavities in bentonite. The Zn retained by bentonite was dehydrated in situ so as to increase the bonding of Zn with surfaces of bentonite. With hydrothermal treatment the retained Zn could diffuse easily into the cavities and transform increasingly to the residual forms that are associated with the entrapped form.
This investigation was carried out to study the effect of different concentrations of citric acid and glycine, which are common in freshwaters, on the kinetics of the adsorption of Hg by kaolinite under various pH conditions. The data indicate that Hg adsorption by kaolinite at different concentrations of citric acid and glycine obeyed multiple first order kinetics. In the absence of the organic acids, the rate constants of the initial fast process were 46 to 75 times faster than those of the slow adsorption process in the pH range of 4.00 to 8.00. Citric acid had a significant retarding effect on both the fast and slow adsorption process at pHs of 6.0 and 8.0. It had a significant promoting effect on the fast and slow adsorption process at pH 4.00. Glycine had a pronounced enhancing effect on the rate of Hg adsorption by kaolinite during the fast process. The rise in pH of the system further increased the effect of glycine on Hg adsorption. The magnitude of the retarding/promoting effect upon the rate of Hg adsorption was evidently dependent upon the pH, structure and functionality of organic acids, and molar ratio of the organic acid/Hg. The data obtained suggest that low-molecular-weight organic acids merit close attention in studying the kinetics and mechanisms of the binding of Hg by sediment particulates and the subsequent food chain contamination.
As a consequence of treatments with glycine solutions, glycine molecules enter the interlayer of both Ca- and Cd-rich montmorillonite. Measurements of d value suggest that at low glycine concentration (0.01 and 0.1 M glycine solutions) a “flat” arrangement of the glycine molecules occurs in the interlayer. In contrast, intercalation of more than one monolayer of glycine molecules occurs for the montmorillonite treated with a higher concentration of glycine (1 M glycine solution).
Interlayer complexation of glycine occurs only for the Cd-rich form of montmorillonite, whereas no complexation is observed for Ca-rich montmorillonite. Both nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) results suggest that the adsorbed glycine, which fully protonates in the interlayer of montmorillonite to give the GlyH2− species, interacts with the interlayer Cd2+ to form the CdGlyx complex mainly through the carboxylate group. The interlayer cadmium, present as both Cd2+ and CdCl−, is complexed by the ligand glycine. In contrast, the cadmium adsorbed on the external surfaces of montmorillonite does not interact with the ligand. Complexation of CdCl+ only occurs for large amounts of adsorption of glycine (e.g., for samples treated with 1 M glycine solution).
Water is essential for humans, animals, and plants; pollutants, usually derived from anthropogenic activities, can have a serious effect on its quality. Heavy metals are significant pollutants and are often highly toxic to living organisms, even at very low concentrations. Among the numerous removal techniques proposed, adsorption onto suitable adsorbent materials is considered to be one of the most promising. The objective of the current study was to determine the effectiveness of halloysite nanotubes (HNT) functionalized with organic amino or thiol groups as adsorbent materials to decontaminate polluted waters, using the removal of Hg2+ ions, one of the most dangerous heavy metals, as the test case. The effects of pH, ionic strength (I), and temperature of the metal ion solution on the adsorption ability and affinity of both materials were evaluated. To this end, adsorption experiments were carried out with no ionic medium and in NaNO3 and NaCl at I = 0.1 mol L−1, in the pH range 3–5 and in the temperature range 283.15–313.15 K. Kinetic and thermodynamic aspects of adsorption were considered by measuring the metal ion concentrations in aqueous solution. Various equations were used to fit experimental data, and the results obtained were explained on the basis of both the adsorbent’s characterization and the Hg2+ speciation under the given experimental conditions. Thiol and amino groups enhanced the adsorption capability of halloysite for Hg2+ ions in the pH range 3–5. The pH, the ionic medium, and the ionic strength of aqueous solution all play an important role in the adsorption process. A physical adsorption mechanism enhanced by ion exchange is proposed for both functionalized materials.
Chapter one offers a constructive proposal of an Aristotelian-Thomistic model of metaphysics of evolutionary transitions, grounded in the categories of hylomorphism, virtual presence, disposition of matter, and accidental and substantial changes. The final part of this chapter concentrates on the classical principle of proportionate causation and the question of whether the proposed metaphysical model of evolutionary changes contradicts it.
Chapter seven addresses the difficulty of the theological interpretation of evolutionary biology in delineating a precise account of the concurrence of divine and contingent causes engaged in speciation. Invoking Aquinas’s famous distinction between God’s primary and principal causation and the secondary and instrumental causation of creatures, a constructive model of the concurrence of divine and natural causes in evolutionary transformations is offered.
Every textbook of biology will supply a number of ‘modes of speciation’, the ways in which new species evolve. But the issues in dispute among the biologists themselves are rather odd. The adoption of evolutionary theory by biologists has had a great impact on how species are understood. From the idea that kinds of living beings were created and at best had devolved to localised varieties, now species were the target of a ‘mechanical’ or ‘physiological’ explanation: they came into being. And under Darwin’s version of the evolutionary account (initially known as the ‘development theory’, since the Latin word evolutio means ‘development’), species were made from other, allied (which means ‘closely related’), species. The processes and causes of new species set up the ‘species question’ that Darwin and other naturalists were seeking to answer.