To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Industrial upper limb exoskeletons offload the upper limb during overhead tasks to help prevent musculoskeletal disorders to the shoulder. Although numerous studies showed reduced shoulder muscle activity during upper limb exoskeleton use for overhead postures, it remains unknown whether and how upper limb exoskeletons provide support over a large shoulder workspace beyond overhead work. Therefore, this study evaluated the Ottobock Paexo Shoulder over a large shoulder workspace from overhead to hip height with shoulder abduction and adduction. Upper body kinematics, muscle activity, and subjective user feedback were obtained by three-dimensional motion capture, surface EMG, and questionnaires, respectively, and captured while participants performed static and dynamic work tasks with an electric screwdriver. Participants completed these tasks (1) without the exoskeleton, (2) with a disengaged exoskeleton, (3) with moderate exoskeleton support, and (4) with high exoskeleton support. Exoskeleton support reduced deltoid muscle activity (−9 to −24 s%, p ≤ .001) in postures with an abducted shoulder, including nonoverhead postures. Exoskeleton support modestly decreased shoulder flexion (−3 to −5°, p ≤ .001) and increased shoulder abduction (2 to 5°, p ≤ .032), but the movement patterns during the dynamic task were unaffected. Additionally, exoskeleton-related effects increased with increasing support, but the subjective perception of change also increased, and perceived comfort decreased. Our results indicate that the tested exoskeleton provides support beyond overhead work and that there is a trade-off between exoskeleton support and subjective perception. Accordingly, further optimization of user–exoskeleton interaction is warranted for long-term prevention of musculoskeletal disorders in overhead workers.
Passive wearable devices are widely used for fitness and have also become fashionable. There is increasing interest in adding functionality, such as knee stability, to these compact devices, which are more convenient for daily wear than separate devices like braces or exoskeletons. This study designed and assessed flexion taping passive wearable devices (FTPW). The design emphasized providing adequate flexion moment capacity and controlling varus/valgus movement to prevent knee injuries. In this research, 20 healthy women performed single leg drop (SLD) and step-up (SU) tests with and without muscle fatigue. Knee joint angle, muscle activation, metabolic cost, and blood flow were measured across FTPW, passive wearable devices without flexion taping (PW), and control shorts (Ctrl). In the SLD test after muscle fatigue, FTPW produced a significantly larger knee flexion angle during landing. In the SU test, before and after fatigue, knee varus angle was notably higher with FTPW. Additionally, FTPW showed reduced knee flexor fatigue, indicated by smaller median frequency shifts, and improved blood flow compared to PW. No significant differences in respiratory exchange ratio were detected among the three conditions. Overall, FTPW demonstrated strong potential to enhance knee kinematics, muscle activation, and blood flow, pointing to benefits for both performance improvement and injury prevention. By delivering focused support in a compact format, FTPW may serve as an innovative passive wearable solution that supports daily movement, comfort, and daily activities. This emphasizes the device’s promise as an alternative to bulkier knee aids, merging style and functionality effectively.
Lightweight, adjustable, and affordable devices are needed to enable the next generation of effective, wearable adjuncts for rehabilitation. Used at home or in a rehabilitation setting, these devices have the potential to reduce compound pressures on hospitals and social care systems. Despite recent developments in soft wearable robots, many of these devices restrict the range of motion and lack quantitative assessment of moment transfer to the wearer. The decoupled design of our wearable device for upper-limb rehabilitation successfully delivers almost the full range of motion to the user, with a mean maximum flexion angle of 149° (SD = 8.5). In this article, for the first time, we show that in tests involving a wide range of participants, 82% of the moment produced by the actuator is applied to the wearer. This testing of elbow flexion moment transfer supports the effectiveness of the device. This research is a step toward effective pneumatic soft robotic wearable devices that are adaptable to a wide range of users – a necessary prerequisite for their widespread adoption in health care.
Exoskeletons that make running easier could increase users’ physical activity levels and provide related health benefits. In this paper, we present the design of a portable, powered ankle exoskeleton that assists running and uses lightweight and compact twisted string actuators. It has limited durability at this stage of development, but preliminary results of its power to mass density and potential for reducing the metabolic cost of running are promising. The exoskeleton can provide high peak power of 700 W per leg, 7 times more than prior twisted-string devices, and high peak torques of 43 Nm. Kinetostatic and dynamic models were used to select mass-optimal components, producing a device that weighs 1.8 kg per leg and 2.0 kg in a backpack. We performed preliminary tests on a single participant to evaluate the exoskeleton performance during both treadmill running and outdoor running. The exoskeleton reduced metabolic energy use by 10.8% during treadmill running tests and reduced cost of transport by 7.7% during outdoor running tests compared to running without the device. Unfortunately, the twisted string wore out quickly, lasting an average of 4 min 50 s before breaking. This exoskeleton shows promise for making running easier if string life challenges can be addressed.
Recent advancements in wearable robots have focused on developing soft, compliant, and lightweight structures to provide comfort for the users and to achieve the primary function of assisting body motions. The interaction forces induced by physical human-robot interaction (pHRI) not only cause skin discomfort or pain due to relatively high localized pressures but also degrade the wearability and the safety of the wearer’s joints by unnaturally altering the joint reaction forces (JRFs) and the joint reaction moments (JRMs). Although the correlation between excessive JRFs/JRMs and joint-related conditions has been reported by researchers, the biomechanical effects of forces and moments caused by the pHRI of a wearable robot on the wearer’s joints remain under-analyzed. In this study, we propose a method of measuring and analyzing these interactions and effects, using a custom-designed soft, three-degree-of-freedom (DOF) force sensor. The sensor is made of four Hall effect sensors and a neodymium magnet embedded in a silicone elastomer structure, enabling simultaneous measurement of normal and two-axis shear forces by detecting the distance changes between the magnet and each Hall effect sensor. These sensors are embedded in contact pads of a commercial wearable robot and measure the interaction forces, used for calculating JRF and JRM. We also propose a modified inverse dynamics approach that allows us to consider the physical interactions between the robot and the human body. The proposed method of sensing and analysis provides the potential to enhance the design of future wearable robots, ensuring long-term safety.
Designing optimal assistive wearable devices is a complex task, often addressed using human-in-the-loop optimization and biomechanical modeling approaches. However, as the number of design parameters increases, the growing complexity and dimensionality of the design space make identifying optimal solutions more challenging. Predictive simulation, which models movement without relying on experimental data, provides a powerful tool for anticipating the effects of assistive devices on the human body and guiding the design process. This study aims to introduce a design optimization platform that leverages predictive simulation of movement to identify the optimal parameters for assistive wearable devices. The proposed approach is specifically capable of dealing with the challenges posed by high-dimensional design spaces. The proposed framework employs a two-layered optimization approach, with the inner loop solving the predictive simulation of movement and the outer loop identifying the optimal design parameters of the device. It is utilized for designing a knee exoskeleton with a damper to assist level-ground and downhill gait, achieving a significant reduction in normalized knee load peak value by $ 37\% $ for level-ground and by $ 53\% $ for downhill walking, along with a decrease in the cost of transport. The results indicate that the optimal device applies damping torques to the knee joint during the Stance phase of both movement scenarios, with different optimal damping coefficients. The optimization framework also demonstrates its capability to reliably and efficiently identify the optimal solution. It offers valuable insight for the initial design of assistive wearable devices and supports designers in efficiently determining the optimal parameter set.
Specialists globally employ various clinical scales and instruments to assess balance, gait, and motor functions in children with cerebral palsy (CP). Selecting appropriate assessment tools is essential for planning studies, developing effective treatment strategies, and tracking clinical outcomes. Given the diversity in assessment needs – whether evaluating dynamic, functional, or static balance – there is a need to identify the most suitable tools for each aspect. Therefore, the primary objective of this review is to critically analyze current clinical and instrument-based assessment methods in the literature to determine the most effective approaches for pediatric CP. This systematic review retrieved 1,812 papers, of which only 23 met the inclusion criteria and presented assessment methods for evaluating balance and motor functions in pediatric CP. These methods were further organized into clinical and instrument-based assessment groups. Among clinical examinations, the Pediatric Balance Scale and Gross Motor Function Measures were considered gold standards and featured in eight studies. In contrast, postural sway measured with the Biodex Balance System, Gait Stability Indices from the GAITRite system, and EMG sensing were the predominant instrument-based observations. Despite this variety, a consensus on the best assessment methods remains lacking. This review highlights the potential of integrating AI-driven metrics that combine clinical and instrument-based data to enhance precision and individualized care. Future research should focus on creating integrated, individualized profiles to better capture the unique capabilities of children with CP, enabling more personalized and effective intervention strategies.
With a broader range of entries than any other reference book on stage directors, this Encyclopedia showcases the extraordinary diversity of theatre as a national and international artistic medium. Since the mid nineteenth century, stage directors have been simultaneously acclaimed as prime artists of the theatre and vilified as impediments to effective performance. Their role may be contentious but they continue to exert powerful influence over how contemporary theatre is made and engaged with. Each of the entries - numbering over 1,000 - summarises a stage director's career and comments on the distinctive characteristics of their work, alluding to broader traditions where relevant. With an introduction discussing the evolution of the director's role across the globe and bibliographic references guiding further reading, this volume will be an invaluable reference work for stage directors, actors, designers, choreographers, researchers, and students of theatre seeking to better understand how directors work across different cultural traditions.
Upper-limb occupational exoskeletons reduce injuries during overhead work. Previous studies focused on muscle activation with and without exoskeletons, but their impact on shoulder fatigue remains unclear. Additionally, no studies have explored how exoskeleton support levels affect fatigue. This study investigates the effects of assistive profiles on muscular and cardiovascular fatigue. Electromyographic (EMG) and electrocardiographic signals were collected to compute EMG median frequency (MDF), heart rate (HR), and heart rate variability (HRV). Fatigue was assessed using three MDF and HR metrics: relative change ($ {\mathrm{MDF}}_{\Delta} $,$ {\mathrm{HR}}_{\Delta} $), slope ($ {\mathrm{MDF}}_{\mathrm{slope}} $,$ \mathrm{H}{\mathrm{R}}_{\mathrm{slope}} $), and intercept ($ {\mathrm{MDF}}_{\mathrm{intercept}} $,$ \mathrm{H}{\mathrm{R}}_{\mathrm{intercept}} $) of the linear regression. Results showed$ {\mathrm{MDF}}_{\Delta} $decreased 64% (p = 0.0020) with higher assistance compared to no exoskeleton; $ {\mathrm{HR}}_{\Delta} $ decreased 40% (p < 0.0273) with lower assistance, $ {\mathrm{MDF}}_{\mathrm{slope}} $ decreased up to 67% (p = 0.0039) and $ \mathrm{H}{\mathrm{R}}_{\mathrm{slope}} $ by 43% (p < 0.0098) with higher and medium assistance. HRV metrics included root mean square of successive differences (RMSSD) and low-frequency to high-frequency power ratio (LF/HF). RMSSD indicated parasympathetic dominance, while rising LF/HF ratio suggested physiological strain. Findings support occupational exoskeletons as ergonomic tools for reducing fatigue.
Adjusting the assistive torque of upper limb occupational exoskeletons is essential to optimize their effectiveness and user acceptance in companies. This adjustment enables a balance to be struck between the expected benefits and potential undesirable effects associated with their use, particularly for the shoulder joint, which is sensitive to the balance of forces. Despite this, no study has yet evaluated these assistive torques in static and dynamic conditions representative of work situations. The aim of this article is therefore to evaluate these assistive torques under these two conditions, using an isokinetic dynamometer. Angular velocities ranging from 0 to 240°/s and four levels of assistance were investigated. The results showed that the maximum assistive torques in flexion (energy restitution phase) were lower than those in extension (tensioning phase) by 20 to 36% and were median in static conditions. It was also observed that the level of assistance and the exoskeleton opening angles had a strong impact on the assistive torques, unlike the angular velocity in dynamic conditions, which had a minimal effect. Quantifying these assistive torques is crucial for assessing their biomechanical impact and adjusting the exoskeleton’s assistance to the operator and the task performed.
The muscular restructuring and loss of function that occurs during a transfemoral amputation surgery has a great impact on the gait and mobility of the individual. The hip of the residual limb adopts a number of functional roles that would previously be controlled by lower joints. In the absence of active plantar flexors, swing initiation must be achieved through an increased hip flexion moment. The high activity of the residual limb is a major contributor to the discomfort and fatigue experienced by individuals with transfemoral amputations during walking. In other patient populations, both passive and active hip exosuits have been shown to positively affect gait mechanics. We believe an exosuit configured to aid with hip flexion could be well applied to individuals with transfemoral amputation. In this article, we model the effects of such a device during whole-body, subject-specific kinematic simulations of level ground walking. The device is simulated for 18 individuals of K2 and K3 Medicare functional classification levels. A user-specific device profile is generated via a three-axis moment-matching optimization using an interior-point algorithm. We employ two related cost functions that reflect an active and passive form of the device. We hypothesized that the optimal device configuration would be highly variable across subjects but that variance within mobility groups would be lower. From the results, we partially accept this hypothesis, as some parameters had high variance across subjects. However, variance did not consistently trend down when dividing into mobility groups, highlighting the need for user-specific design.
Elastic textiles play a critical role in passive wearable solutions for musculoskeletal load management in both passive exosuits and resistance clothing. These textiles, based on their ability to stretch and retract, can exhibit ambivalence in their load-modulating effects when used in occupational, rehabilitation, exercise, or everyday activity settings. While passive exosuits and resistance garments may appear similar in design, they have opposing goals: to reduce the musculoskeletal load in the case of exosuits and to increase it in the case of resistance clothing. Despite this intrinsic connection, these two approaches have not been extensively linked together. This review aims to fill this gap by examining the common and distinct principles of elastic textiles in passive exosuits and resistance clothing, shedding light on their interactions and the complex dynamics of musculoskeletal load systems. The effectiveness of different designs in passive exosuits that mimic musculoskeletal function and resistance clothing that increase the workload for strength training are critically reviewed. Current challenges in practical implementation and opportunities to improve critical issues, such as preload, thermal comfort, skin friction, and donning and doffing are also highlighted.
This paper investigates a closed-loop visual servo control scheme for controlling the position of a fully constrained cable-driven parallel robot (CDPR) designed for functional rehabilitation tasks. The control system incorporates real-time position correction using an Intel RealSense camera. Our CDPR features four cables exiting from pulleys, driven by AC servomotors, to move the moving platform (MP). The focus of this work is the development of a control scheme for a closed-loop visual servoing system utilizing depth/RGB images. The developed algorithm uses this data to determine the actual Cartesian position of the MP, which is then compared to the desired position to calculate the required Cartesian displacement. This displacement is fed into the inverse kinematic model to generate the servomotor commands. Three types of trajectories (circular, square, and triangular) are used to test the controller’s compliance with its position. Compared to the open-loop control of the robot, the new control system increases positional accuracy and effectively handles cable behavior, various perturbations, and modeling errors. The obtained results showed significant improvements in control performance, notably reduced root mean square error and maximal error in terms of position.
Internal and external rotation of the shoulder is often challenging to quantify in the clinic. Existing technologies, such as motion capture, can be expensive or require significant time to setup, collect data, and process and analyze the data. Other methods may rely on surveys or analog tools, which are subject to interpretation. The current study evaluates a novel, engineered, wearable sensor system for improved internal and external shoulder rotation monitoring, and applies it in healthy individuals. Using the design principles of the Japanese art of kirigami (folding and cutting of paper to design 3D shapes), the sensor platform conforms to the shape of the shoulder with four on-board strain gauges to measure movement. Our objective was to examine how well this kirigami-inspired shoulder patch could identify differences in shoulder kinematics between internal and external rotation as individuals moved their humerus through movement patterns defined by Codman’s paradox. Seventeen participants donned the sensor while the strain gauges measured skin deformation patterns during the participants’ movement. One-dimensional statistical parametric mapping explored differences in strain voltage between the rotations. The sensor detected distinct differences between the internal and external shoulder rotation movements. Three of the four strain gauges detected significant temporal differences between internal and external rotation (all p < .047), particularly for the strain gauges placed distal or posterior to the acromion. These results are clinically significant, as they suggest a new class of wearable sensors conforming to the shoulder can measure differences in skin surface deformation corresponding to the underlying humerus rotation.
Movement scientists have proposed to ground the relation between prosody and gesture in ‘vocal-entangled gestures’, defined as biomechanical linkages between upper limb movement and the respiratory–vocal system. Focusing on spoken language negation, this article identifies an acoustic profile with which gesture is plausibly entangled, specifically linking the articulatory behaviour of onset consonant lengthening with forelimb gesture preparation and facial deformation. This phenomenon was discovered in a video corpus of accented negative utterances from English-language televised dialogues. Eight target examples were selected and examined using visualization software to analyse the correspondence of gesture phase structures (preparation, stroke, holds) with the negation word’s acoustic signal (duration, pitch and intensity). The results show that as syllable–onset consonant lengthens (voiced alveolar /n/ = 300 ms on average) with pitch and intensity increasing (e.g. ‘NNNNNNEVER’), the speaker’s humerus is rotating with palm pronating/adducing while his or her face is distorting. Different facial distortions, furthermore, were found to be entangled with different post-onset phonetic profiles (e.g. vowel rounding). These findings illustrate whole-bodily dynamics and multiscalarity as key theoretical proposals within ecological and enactive approaches to language. Bringing multimodal and entangled treatments of utterances into conversation has important implications for gesture studies.
Low-back pain is a common occupational hazard for industrial workers. Several studies show the advantages of using rigid and soft back-support passive exoskeletons and exosuits (exos) to reduce the low-back loading and risk of injury. However, benefits of using these exos have been shown to be task-specific. Therefore, in this study, we developed a benchmarking approach to assess exos for an industrial workplace at Hankamp Gears B.V. We assessed two rigid (Laevo Flex, Paexo back) and two soft (Auxivo Liftsuit 1.0, and Darwing Hakobelude) exos for tasks resembling the workplace. We measured the assistive moment provided by each exo and their respective influence on muscle activity as well as the user’s perception of comfort and exertion. Ten participants performed four lifting tasks (Static hold, Asymmetric, Squat, and Stoop), while their electromyography and subjective measures were collected. The two rigid exos provided the largest assistance during the Dynamic tasks. Reductions in erector spinae activity were seen to be task-specific, with larger reductions for the two rigid exos. Overall, Laevo Flex offered a good balance between assistive moments, reductions in muscle activity, as well as user comfort and reductions in perceived exertion. Thus, we recommend benchmarking exos for intended use in the industrial workplace. This will hopefully result in a better adoption of the back-support exoskeletons in the workplace and help reduce low-back pain.
Orthotic wrist supports will be beneficial for people with muscular weakness to keep their hand in a neutral rest position and prevent potential wrist contractures. Compensating the weight of the hands is complex since the level of support depends on both wrist and forearm orientations. To explore simplified approaches, two different weight compensation strategies (constant and linear) were compared to the theoretical ideal sinusoidal profile and no compensation in eight healthy subjects using a mechanical wrist support system. All three compensation strategies showed a significant reduction of 47–53% surface electromyography activity in the anti-gravity m. extensor carpi radialis. However, for the higher palmar flexion region, a significant increase of 44–61% in the m. flexor carpi radialis was found for all compensation strategies. No significant differences were observed between the various compensation strategies. Two conclusions can be drawn: (1) a simplified torque profile (e.g., constant or linear) for weight compensation can be considered as equally effective as the theoretically ideal sinusoidal profile and (2) even the theoretically ideal profile provides no perfect support as other factors than weight, such as passive joint impedance, most likely influence the required compensation torque for the wrist joint.
The ability to accurately identify human gait intent is a challenge relevant to the success of many applications in robotics, including, but not limited to, assistive devices. Most existing intent identification approaches, however, are either sensor-specific or use a pattern-recognition approach that requires large amounts of training data. This paper introduces a real-time walking speed intent identification algorithm based on the Mahalanobis distance that requires minimal training data. This data efficiency is enabled by making the simplifying assumption that each time step of walking data is independent of all other time steps. The accuracy of the algorithm was analyzed through human-subject experiments that were conducted using controlled walking speed changes on a treadmill. Experimental results confirm that the model used for intent identification converges quickly (within 5 min of training data). On average, the algorithm successfully detected the change in desired walking speed within one gait cycle and had a maximum of 87% accuracy at responding with the correct intent category of speed up, slow down, or no change. The findings also show that the accuracy of the algorithm improves with the magnitude of the speed change, while speed increases were more easily detected than speed decreases.
Passive ankle-foot prostheses are light-weighted and reliable, but they cannot generate net positive power, which is essential in restoring the natural gait pattern of amputees. Recent robotic prostheses addressed the problem by actively controlling the storage and release of energy generated during the stance phase through the mechanical deformation of elastic elements housed in the device. This study proposes an innovative low-power active prosthetic module that fits on off-the-shelf passive ankle-foot energy-storage-and-release (ESAR) prostheses. The module is placed parallel to the ESAR foot, actively augmenting the energy stored in the foot and controlling the energy return for an enhanced push-off. The parallel elastic actuation takes advantage of the amputee’s natural loading action on the foot’s elastic structure, retaining its deformation. The actuation unit is designed to additionally deform the foot and command the return of the total stored energy. The control strategy of the prosthesis adapts to changes in the user’s cadence and loading conditions to return the energy at a desired stride phase. An early verification on two transtibial amputees during treadmill walking showed that the proposed mechanism could increase the subjects’ dorsiflexion peak of 15.2% and 41.6% for subjects 1 and 2, respectively, and the cadence of about 2%. Moreover, an increase of 26% and 45% was observed in the energy return for subjects 1 and 2, respectively.
This chapter presents an overview of biomechanical forensic analysis (BFA) of injury. Specifically, thefoundational principles of BFA are presented in the context of investigating and analyzing paediatric head injury mechanisms as they relate to two common scenarios encountered in the context of alleged child abuse: shaking and short falls. The chapter highlights the investigative evidence, experimental data, and medical findings upon which a biomechanical forensic analysis relies, and presents a case study and discussion of a short fall and shaking to highlight the evidence base for determining the reasonableness of each injury mechanism and the pitfalls often encountered when such injury mechanisms are considered in allegations of child abuse.