To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The finite families of biorthogonal rational functions and orthogonal polynomials of Hahn type are interpreted algebraically in a unified way by considering the three-generated meta Hahn algebra and its finite-dimensional representations. The functions of interest arise as overlaps between eigensolutions of generalized and ordinary eigenvalue problems on the representation space. The orthogonality relations and bispectral properties naturally follow from the framework.
We investigate geometric properties of invariant spatio-temporal random fields $X\colon\mathbb M^d\times \mathbb R\to \mathbb R$ defined on a compact two-point homogeneous space $\mathbb M^d$ in any dimension $d\ge 2$, and evolving over time. In particular, we focus on chi-squared-distributed random fields, and study the large-time behavior (as $T\to +\infty$) of the average on [0,T] of the volume of the excursion set on the manifold, i.e. of $\lbrace X(\cdot, t)\ge u\rbrace$ (for any $u >0$). The Fourier components of X may have short or long memory in time, i.e. integrable or non-integrable temporal covariance functions. Our argument follows the approach developed in Marinucci et al. (2021) and allows us to extend their results for invariant spatio-temporal Gaussian fields on the two-dimensional unit sphere to the case of chi-squared distributed fields on two-point homogeneous spaces in any dimension. We find that both the asymptotic variance and limiting distribution, as $T\to +\infty$, of the average empirical volume turn out to be non-universal, depending on the memory parameters of the field X.
The problem of reconstructing a distribution with bounded support from its moments is practically relevant in many fields, such as chemical engineering, electrical engineering, and image analysis. The problem is closely related to a classical moment problem, called the truncated Hausdorff moment problem (THMP). We call a method that finds or approximates a solution to the THMP a Hausdorff moment transform (HMT). In practice, selecting the right HMT for specific objectives remains a challenge. This study introduces a systematic and comprehensive method for comparing HMTs based on accuracy, computational complexity, and precision requirements. To enable fair comparisons, we present approaches for generating representative moment sequences. The study also enhances existing HMTs by reducing their computational complexity. Our findings show that the performances of the approximations differ significantly in their convergence, accuracy, and numerical complexity and that the decay order of the moment sequence strongly affects the accuracy requirement.
We solve the problem of finding the inverse connection formulae for the generalised Bessel polynomials and their reciprocals, the reverse generalised Bessel polynomials. The connection formulae express monomials in terms of the generalised Bessel polynomials. They enable formulae for the elements of change of basis matrices for both kinds of generalised Bessel polynomials to be derived and proved correct directly.
For the kernel $B_{\kappa ,a}(x,y)$ of the $(\kappa ,a)$-generalized Fourier transform $\mathcal {F}_{\kappa ,a}$, acting in $L^{2}(\mathbb {R}^{d})$ with the weight $|x|^{a-2}v_{\kappa }(x)$, where $v_{\kappa }$ is the Dunkl weight, we study the important question of when $\|B_{\kappa ,a}\|_{\infty }=B_{\kappa ,a}(0,0)=1$. The positive answer was known for $d\ge 2$ and $\frac {2}{a}\in \mathbb {N}$. We investigate the case $d=1$ and $\frac {2}{a}\in \mathbb {N}$. Moreover, we give sufficient conditions on parameters for $\|B_{\kappa ,a}\|_{\infty }>1$ to hold with $d\ge 1$ and any a.
We also study the image of the Schwartz space under the $\mathcal {F}_{\kappa ,a}$ transform. In particular, we obtain that $\mathcal {F}_{\kappa ,a}(\mathcal {S}(\mathbb {R}^d))=\mathcal {S}(\mathbb {R}^d)$ only if $a=2$. Finally, extending the Dunkl transform, we introduce nondeformed transforms generated by $\mathcal {F}_{\kappa ,a}$ and study their main properties.
We consider the spectral analysis of several examples of bilateral birth–death processes and compute explicitly the spectral matrix and the corresponding orthogonal polynomials. We also use the spectral representation to study some probabilistic properties of the processes, such as recurrence, the invariant distribution (if it exists), and the probability current.
In this paper, we present explicit and computable error bounds for the asymptotic expansions of the Hermite polynomials with Plancherel–Rotach scale. Three cases, depending on whether the scaled variable lies in the outer or oscillatory interval, or it is the turning point, are considered separately. We introduce the ‘branch cut’ technique to express the error terms as integrals on the contour taken as the one-sided limit of curves approaching the branch cut. This new technique enables us to derive simple error bounds in terms of elementary functions. We also provide recursive procedures for the computation of the coefficients appearing in the asymptotic expansions.
A joint algebraic interpretation of the biorthogonal Askey polynomials on the unit circle and of the orthogonal Jacobi polynomials is offered. It ties their bispectral properties to an algebra called the meta-Jacobi algebra $m\mathfrak {J}$.
For a finite-dimensional Hopf algebra $\mathsf {A}$, the McKay matrix $\mathsf {M}_{\mathsf {V}}$ of an $\mathsf {A}$-module $\mathsf {V}$ encodes the relations for tensoring the simple $\mathsf {A}$-modules with $\mathsf {V}$. We prove results about the eigenvalues and the right and left (generalized) eigenvectors of $\mathsf {M}_{\mathsf {V}}$ by relating them to characters. We show how the projective McKay matrix $\mathsf {Q}_{\mathsf {V}}$ obtained by tensoring the projective indecomposable modules of $\mathsf {A}$ with $\mathsf {V}$ is related to the McKay matrix of the dual module of $\mathsf {V}$. We illustrate these results for the Drinfeld double $\mathsf {D}_n$ of the Taft algebra by deriving expressions for the eigenvalues and eigenvectors of $\mathsf {M}_{\mathsf {V}}$ and $\mathsf {Q}_{\mathsf {V}}$ in terms of several kinds of Chebyshev polynomials. For the matrix $\mathsf {N}_{\mathsf {V}}$ that encodes the fusion rules for tensoring $\mathsf {V}$ with a basis of projective indecomposable $\mathsf {D}_n$-modules for the image of the Cartan map, we show that the eigenvalues and eigenvectors also have such Chebyshev expressions.
We introduce a generalization ${\rm{\pounds}}_d^{(\alpha)}(X)$ of the finite polylogarithms ${\rm{\pounds}}_d^{(0)}(X) = {{\rm{\pounds}}_d}(X) = \sum\nolimits_{k = 1}^{p - 1} {X^k}/{k^d}$, in characteristic p, which depends on a parameter α. The special case ${\rm{\pounds}}_1^{(\alpha)}(X)$ was previously investigated by the authors as the inverse, in an appropriate sense, of a parametrized generalization of the truncated exponential which is instrumental in a grading switching technique for nonassociative algebras. Here, we extend such generalization to ${\rm{\pounds}}_d^{(\alpha)}(X)$ in a natural manner and study some properties satisfied by those polynomials. In particular, we find how the polynomials ${\rm{\pounds}}_d^{(\alpha)}(X)$ are related to the powers of ${\rm{\pounds}}_1^{(\alpha)}(X)$ and derive some consequences.
The Jacobi coefficients $c_{j}^{\ell }\left( \alpha ,\,\beta\right)\,\left( 1\,\le \,j\,\le \,\ell ,\,\alpha ,\,\beta \,>\,-1 \right)$ are linked to the Maclaurin spectral expansion of the Schwartz kernel of functions of the Laplacian on a compact rank one symmetric space. It is proved that these coefficients can be computed by transforming the even derivatives of the Jacobi polynomials $P_{k}^{\left( \alpha ,\,\beta\right)}\,\left( k\,\ge \,0,\,\alpha ,\,\beta \,>\,-1 \right)$ into a spectral sum associated with the Jacobi operator. The first few coefficients are explicitly computed, and a direct trace interpretation of the Maclaurin coefficients is presented.
We propose amixed spectral method for heat transfer in unbounded domains, using generalised Hermite functions and Legendre polynomials. Some basic results on the mixed generalised Hermite-Legendre orthogonal approximation are established, which plays important roles in spectral methods for various problems defined on unbounded domains. As an example, the mixed generalised Hermite-Legendre spectral scheme is constructed for anisotropic heat transfer. Its convergence is proven, and some numerical results demonstrate the spectral accuracy of this approach.
Assume that $A$ is a finite-dimensional algebra over some field, and assume that $A$ is weakly symmetric and indecomposable, with radical cube zero and radical square nonzero. We show that such an algebra of wild representation type does not have a nonprojective module $M$ whose ext-algebra is finite dimensional. This gives a complete classification of weakly symmetric indecomposable algebras which have a nonprojective module whose ext-algebra is finite dimensional. This shows in particular that existence of ext-finite nonprojective modules is not equivalent with the failure of the finite generation condition (Fg), which ensures that modules have support varieties.
We show that if $v$ is a regular semi-classical form (linear functional), then the symmetric form $u$ defined by the relation ${{x}^{2}}\sigma u\,=\,-\lambda v$, where $\left( \sigma f \right)\left( x \right)\,=\,f\left( {{x}^{2}} \right)$ and the odd moments of $u$ are 0, is also regular and semi-classical form for every complex $\lambda $ except for a discrete set of numbers depending on $v$. We give explicitly the three-term recurrence relation and the structure relation coefficients of the orthogonal polynomials sequence associated with $u$ and the class of the form $u$ knowing that of $v$. Weconclude with an illustrative example.
A 𝔻-semiclassical weight is one which satisfies a particular linear, first-order homogeneous equation in a divided-difference operator 𝔻. It is known that the system of polynomials, orthogonal with respect to this weight, and the associated functions satisfy a linear, first-order homogeneous matrix equation in the divided-difference operator termed the spectral equation. Attached to the spectral equation is a structure which constitutes a number of relations such as those arising from compatibility with the three-term recurrence relation. Here this structure is elucidated in the general case of quadratic lattices. The simplest examples of the 𝔻-semiclassical orthogonal polynomial systems are precisely those in the Askey table of hypergeometric and basic hypergeometric orthogonal polynomials. However within the 𝔻-semiclassical class it is entirely natural to define a generalization of the Askey table weights which involve a deformation with respect to new deformation variables. We completely construct the analogous structures arising from such deformations and their relations with the other elements of the theory. As an example we treat the first nontrivial deformation of the Askey–Wilson orthogonal polynomial system defined by the q-quadratic divided-difference operator, the Askey–Wilson operator, and derive the coupled first-order divided-difference equations characterizing its evolution in the deformation variable. We show that this system is a member of a sequence of classical solutions to the q-Painlevé system.
We give an explicit formula for the resultant of Chebyshev polynomials of the first, second, third, and fourth kinds. We also compute the resultant of modified cyclotomic polynomials.
We relate a one-parametric generating function for the squares of Legendre polynomials to an arithmetic hypergeometric series whose parametrisation by a level 7 modular function was recently given by Cooper. By using this modular parametrisation we resolve a subfamily of identities involving $1/ \pi $ which was experimentally observed by Sun.