Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-zv5th Total loading time: 0 Render date: 2025-12-01T06:30:16.713Z Has data issue: false hasContentIssue false

14b - Radiation Modifiers: Enhancement of Therapeutic Effects

from Chapter 14 - High Energy Forms: Employing the Spectrum of Energy as Surgical Adjuvants

Published online by Cambridge University Press:  aN Invalid Date NaN

Benjamin Hartley
Affiliation:
Weill Cornell Medical Center
Philip E. Stieg
Affiliation:
Weill Cornell Medical College
Rohan Ramakrishna
Affiliation:
Weill Cornell Medical College
Michael L. J. Apuzzo
Affiliation:
Adjunct of Yale Medical School and Weill Cornell Medical College
Get access

Summary

Therapeutic radiation is essential for cancer treatment, particularly in brain tumors. Modern advancements such as linear accelerators, MRI/PET/CT imaging, and intensity-modulated radiotherapy (IMRT) have improved precision and reduced normal tissue toxicity. Radiation modifiers, agents that enhance tumor cell killing or protect normal tissues, have been developed to optimize radiation therapy. Historical approaches include oxygen therapy and nitroimidazole compounds, while contemporary strategies involve radiosensitizing chemotherapy, molecular agents, and nanotechnology. Future developments focus on targeted molecular agents, tumor-treating fields (TTF), ketogenic diets, and immunotherapy. Despite progress, managing brain tumors remains challenging due to normal tissue toxicity and the need for further research to enhance therapeutic outcomes.

Information

Type
Chapter
Information
Neurosurgery
Beyond the Cutting Edge
, pp. 284 - 293
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Atun, Rifat et al. Expanding global access to radiotherapy. Lancet Oncol. 16(10):1153–86.Google Scholar
Citrin, DE, Mitchell, JB. Altering the response to radiation: sensitizers and protectors. Semin Oncol. 2014 Dec;41(6):848–59. doi: 10.1053/j.seminoncol.2014.09.013. Epub 2014 Oct 7. PMID: 25499642; PMCID: PMC4270009.CrossRefGoogle ScholarPubMed
Barnett, GC, West, CM, Dunning, AM, Elliott, RM, Coles, CE, Pharoah, PD, Burnet, NG. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer. 2009 Feb;9(2):134–42. doi: 10.1038/nrc2587. Epub 2009 Jan 16. PMID: 19148183; PMCID: PMC2670578.CrossRefGoogle ScholarPubMed
Glide-Hurst, CK, Chetty, IJ. Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies. J Thorac Dis. 2014 Apr;6(4):303–18. doi: 10.3978/j.issn.2072-1439.2013.11.10. PMID: 24688775; PMCID: PMC3968554.Google ScholarPubMed
Dimitrios Colevas, A. and others, For the Radiation Modifier Working Group of the National Cancer Institute. Development of investigational radiation modifiers. JNCI: J Natl Cancer Inst. 2003;95(9):646–51, https://doi.org/10.1093/jnci/95.9.646Google Scholar
Allison, RR. Radiobiological modifiers in clinical radiation oncology: current reality and future potential. Future Oncol. 2014 Dec;10(15):2359–79. doi: 10.2217/fon.14.174. PMID: 25525845.CrossRefGoogle ScholarPubMed
Gray, LH. Oxygenation in radiotherapy. I. Radiobiological considerations. Br J Radiol. 1957 Aug;30(356):403–6. doi: 10.1259/0007-1285-30-356-403. PMID: 13446401.CrossRefGoogle ScholarPubMed
Churchill-Davidson, I, Sanger, C, Thomlinson, RH. High pressure oxygen and radiotherapy. Lancet 1955;1:1091–5.Google Scholar
Gutin, PH, Wara, WM, Phillips, TL., Wilson, CB. Hypoxic cell radiosensitizers in the treatment of malignant brain tumors. Neurosurgery. 1980;6(5):567–76.Google ScholarPubMed
Wardman, P. Nitroimidazoles as hypoxic cell radiosensitizers and hypoxia probes: misonidazole, myths and mistakes. Br J Radiol. 2019 Jan;92(1093):20170915. doi: 10.1259/bjr.20170915. Epub 2018 Mar 20. PMID: 29303355; PMCID: PMC6435051.Google ScholarPubMed
Jeon, J, Lee, S, Kim, H, Kang, H, Youn, H, Jo, S, Youn, B, Kim, HY. Revisiting platinum-based anticancer drugs to overcome gliomas. Int J Mol Sci. 2021 May;22(10):5111. doi: 10.3390/ijms22105111. PMID: 34065991; PMCID: PMC8151298.CrossRefGoogle ScholarPubMed
Ferrari, B, Roda, E, Priori, EC, De Luca, F, Facoetti, A, Ravera, M, Brandalise, F, Locatelli, CA, Rossi, P, Bottone, MG. A new platinum-based prodrug candidate for chemotherapy and its synergistic effect with hadrontherapy: novel strategy to treat glioblastoma. Front Neurosci. 2021 Mar;15:589906. doi: 10.3389/fnins.2021.589906. PMID: 33828444; PMCID: PMC8019820.CrossRefGoogle ScholarPubMed
Wachsberger, PR, Lawrence, RY, Liu, Y, Rice, B, Daskalakis, C, Dicker, AP. Epidermal growth factor receptor mutation status and rad51 determine the response of glioblastoma to multimodality therapy with cetuximab, temozolomide, and radiation. Front Oncol. 2013 Feb;3:13. doi: 10.3389/fonc.2013.00013. PMID: 23383403; PMCID: PMC3563086.CrossRefGoogle ScholarPubMed
Stupp, R, Mason, WP, van den Bent, MJ, Weller, M, Fisher, B, Taphoorn, MJ, Belanger, K, Brandes, AA, Marosi, C, Bogdahn, U, Curschmann, J, Janzer, RC, Ludwin, SK, Gorlia, T, Allgeier, A, Lacombe, D, Cairncross, JG, Eisenhauer, E, Mirimanoff, RO; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005 Mar;352(10):987–96. doi: 10.1056/NEJMoa043330.Google Scholar
Niyazi, M, Harter, PN, Hattingen, E, Rottler, M, von Baumgarten, L, Proescholdt, M, Belka, C, Lauber, K, Mittelbronn, M. Bevacizumab and radiotherapy for the treatment of glioblastoma: brothers in arms or unholy alliance? Oncotarget. 2016 Jan;7(3):2313–28. doi: 10.18632/oncotarget.6320. PMID: 26575171; PMCID: PMC4823037.CrossRefGoogle ScholarPubMed
Omuro, A, Brandes, AA, Carpentier, AF, Idbaih, A, Reardon, DA, Cloughesy, T, Sumrall, A, Baehring, J, van den Bent, M, Bähr, O, Lombardi, G, Mulholland, P, Tabatabai, G, Lassen, U, Sepulveda, JM, Khasraw, M, Vauleon, E, Muragaki, Y, Di Giacomo, AM, Butowski, N, Roth, P, Qian, X, Fu, AZ, Liu, Y, Potter, V, Chalamandaris, AG, Tatsuoka, K, Lim, M, Weller, M. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: An international randomized phase III trial. Neuro Oncol. 2023 Jan;25(1):123–34. doi: 10.1093/neuonc/noac099. PMID: 35419607; PMCID: PMC9825306.CrossRefGoogle ScholarPubMed
Hegi, ME, Diserens, AC, Gorlia, T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med. 2005;352:9971003.10.1056/NEJMoa043331CrossRefGoogle ScholarPubMed
Stupp, R, Hegi, ME, Mason, WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomized phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009; 10:459–66.10.1016/S1470-2045(09)70025-7CrossRefGoogle Scholar
Gilbert, MR, Wang, M, Aldape, KD, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 2013;31:4085–91.10.1200/JCO.2013.49.6968CrossRefGoogle ScholarPubMed
Zhuang, HQ, Bo, QF, Yuan, ZY, Wang, J, Zhao, LJ, Wang, P. The different radiosensitivity when combining erlotinib with radiation at different administration schedules might be related to activity variations in c-MET-PI3 K-AKT signal transduction. Onco Targets Ther. 2013 May;6:603–8. doi: 10.2147/OTT.S44505. PMID: 23745052; PMCID: PMC3671795.Google Scholar
Mellinghoff, IK, Wang, MY, Vivanco, I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. New Engl J Med. 2005;353(19):2012–24.10.1056/NEJMoa051918CrossRefGoogle ScholarPubMed
Prados, MD, Chang, SM, Butowski, N, et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol. 2009;27:579–84.10.1200/JCO.2008.18.9639CrossRefGoogle ScholarPubMed
Mathen, P, Rowe, L, Mackey, M, Smart, D, Tofilon, P, Camphausen, K. Radiosensitizers in the temozolomide era for newly diagnosed glioblastoma. Neurooncol Pract. 2020 Jun;7(3):268–76. doi: 10.1093/nop/npz057. Epub 2019 Nov 30. PMID: 32537176; PMCID: PMC7274183.Google ScholarPubMed
Matsui, JK, Perlow, HK, Ritter, AR, Upadhyay, R, Raval, RR, Thomas, EM, Beyer, SJ, Pillainayagam, C, Goranovich, J, Ong, S, Giglio, P, Palmer, JD. Small molecules and immunotherapy agents for enhancing radiotherapy in glioblastoma. Biomedicines. 2022 Jul;10(7):1763. doi: 10.3390/biomedicines10071763. PMID: 35885067; PMCID: PMC9313399.CrossRefGoogle ScholarPubMed
Sim, HW, Galanis, E, Khasraw, M. PARP inhibitors in glioma: a review of therapeutic opportunities. Cancers (Basel). 2022 Feb;14(4):1003. doi: 10.3390/cancers14041003. PMID: 35205750; PMCID: PMC8869934.CrossRefGoogle ScholarPubMed
Tancredi, A, Gusyatiner, O, Bady, P, Buri, MC, Lomazzi, R, Chiesi, D, Messerer, M, Hegi, ME. BET protein inhibition sensitizes glioblastoma cells to temozolomide treatment by attenuating MGMT expression. Cell Death Dis. 2022 Dec;13(12):1037. doi: 10.1038/s41419-022-05497-y. PMID: 36513631; PMCID: PMC9747918.CrossRefGoogle ScholarPubMed
Jenkins, EPW, Finch, A, Gerigk, M, Triantis, IF, Watts, C, Malliaras, GG. Electrotherapies for glioblastoma. Adv Sci (Weinh). 2021 Sep;8(18):e2100978. doi: 10.1002/advs.202100978. Epub 2021 Jul 22. PMID: 34292672; PMCID: PMC8456216.Google ScholarPubMed
Fabian, D, Guillermo Prieto Eibl, MDP, Alnahhas, I, Sebastian, N, Giglio, P, Puduvalli, V, Gonzalez, J, Palmer, JD. Treatment of glioblastoma (GBM) with the addition of tumor-treating fields (TTF): a review. Cancers (Basel). 2019 Feb;11(2):174. doi: 10.3390/cancers11020174. PMID: 30717372; PMCID: PMC6406491.CrossRefGoogle ScholarPubMed
Clontz, AD. Ketogenic therapies for glioblastoma: understanding the limitations in transitioning from mice to patients. Front Nutr. 2023 Mar;10:1110291. doi: 10.3389/fnut.2023.1110291. PMID: 36960210; PMCID: PMC10029602.CrossRefGoogle ScholarPubMed
Woolf, EC, Scheck, AC. The ketogenic diet for the treatment of malignant glioma. J Lipid Res. 2015 Jan;56(1):510. doi: 10.1194/jlr.R046797. Epub 2014 Feb 6. PMID: 24503133; PMCID: PMC4274070.CrossRefGoogle ScholarPubMed
Kut, C, Kleinberg, L. Radiotherapy, lymphopenia and improving the outcome for glioblastoma: a narrative review. Chin Clin Oncol. 2023 Feb;12(1):4. doi: 10.21037/cco-22-94. PMID: 36922353.CrossRefGoogle ScholarPubMed
Martikainen, M, Essand, M. Virus-based immunotherapy of glioblastoma. Cancers (Basel). 2019 Feb;11(2):186. doi: 10.3390/cancers11020186. PMID: 30764570; PMCID: PMC6407011.CrossRefGoogle ScholarPubMed
Storozynsky, QT, Agopsowicz, KC, Noyce, RS, Bukhari, AB, Han, X, Snyder, N, Umer, BA, Gamper, AM, Godbout, R, Evans, DH, Hitt, MM. Radiation combined with oncolytic vaccinia virus provides pronounced antitumor efficacy and induces immune protection in an aggressive glioblastoma model. Cancer Lett. 2023 May;562:216169. doi: 10.1016/j.canlet.2023.216169. Epub 2023 Apr 14. PMID: 37061120.CrossRefGoogle Scholar
Martinez-Velez, N, Marigil, M, García-Moure, M, Gonzalez-Huarriz, M, Aristu, JJ, Ramos-García, LI, Tejada, S, Díez-Valle, R, Patiño-García, A, Becher, OJ, Gomez-Manzano, C, Fueyo, J, Alonso, MM. Delta-24-RGD combined with radiotherapy exerts a potent antitumor effect in diffuse intrinsic pontine glioma and pediatric high grade glioma models. Acta Neuropathol Commun. 2019 Apr;7(1):64. doi: 10.1186/s40478-019-0714-6. PMID: 31036068; PMCID: PMC6487528.CrossRefGoogle ScholarPubMed
Hainfeld, JF, Slatkin, DN, Smilowitz, HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49(18):N309-N315. doi:10.1088/0031-9155/49/18/N09.CrossRefGoogle ScholarPubMed
Li, R, Wang, H, Liang, Q, Chen, L, Ren, J. Radiotherapy for glioblastoma: clinical issues and nanotechnology strategies. Biomater Sci. 2022 Feb;10(4):892908. doi: 10.1039/d1bm01401 c. PMID: 34989724.CrossRefGoogle ScholarPubMed

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×