Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-d5hhr Total loading time: 0 Render date: 2025-11-29T11:11:22.363Z Has data issue: false hasContentIssue false

14a - Photons and Particles

from Chapter 14 - High Energy Forms: Employing the Spectrum of Energy as Surgical Adjuvants

Published online by Cambridge University Press:  aN Invalid Date NaN

Benjamin Hartley
Affiliation:
Weill Cornell Medical Center
Philip E. Stieg
Affiliation:
Weill Cornell Medical College
Rohan Ramakrishna
Affiliation:
Weill Cornell Medical College
Michael L. J. Apuzzo
Affiliation:
Adjunct of Yale Medical School and Weill Cornell Medical College
Get access

Summary

The concept of radiosurgery was first introduced by Lars Leksell in 1951. Throughout the decades, the indications for stereotactic radiosurgery (SRS) and available SRS technology have expanded. Currently, SRS is indicated for selected patients with malignant and benign brain tumors such as metastases, recurrent glioblastoma and WHO Grade II meningioma, vestibular schwannoma, WHO Grade I meningioma, recurrent non-functioning and functioning pituitary adenoma. SRS is also indicated for patients with cerebral vascular malformations, cranial nerve neuralgias, and for patients suffering from obsessive compulsive disorder refractory to medications. Though the indications of SRS and the number of SRS procedures performed annually increase, SRS literature is limited mainly to retrospective studies providing low Level of evidence. Moreover, exposure to SRS procedures during neurosurgical training seems inadequate. Therefore, development of randomized studies and national or international SRS registries, and adequate training of neurosurgical residents to improve patient care is necessary.

Information

Type
Chapter
Information
Neurosurgery
Beyond the Cutting Edge
, pp. 269 - 283
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Clarke, RH, Horsley, SV. THE CLASSIC: On a Method of Investigating the Deep Ganglia and Tracts of the Central Nervous System (Cerebellum). Clin Orthop Relat Res. 2007;463:36. doi:10.1097/BLO.0b013e31814d4d99.CrossRefGoogle ScholarPubMed
Spiegel, EA, Wycis, HT, Marks, M, Lee, AJ. Stereotaxic Apparatus for Operations on the Human Brain. Science. 1947;106(2754):349–50. doi:10.1126/science.106.2754.349.CrossRefGoogle ScholarPubMed
Owen, H, Holder, D, Alonso, J, MacKay, R. Technologies for Delivery of Proton and Ion Beams for Radiotherapy. Int J Mod Phys A. 2014;29(14):1441002. doi:10.1142/S0217751X14410024.CrossRefGoogle Scholar
Tobiasj, CA, Lawrencej, H, Born, L, et al. Pituitary Irradiation with High-Energy Proton Beams A Preliminary Report. Cancer Res. 1958;18:19.Google Scholar
Leksell, L, Leksell, D, Schwebel, J. Stereotaxis and Nuclear Magnetic Resonance. J Neurol Neurosurg Psychiatry. 1985;48(1):1418.10.1136/jnnp.48.1.14CrossRefGoogle ScholarPubMed
Gondi, V, Bauman, G, Bradfield, L, et al. Radiation Therapy for Brain Metastases: An ASTRO Clinical Practice Guideline. Pract Radiat Oncol. 2022;12(4):265–82. doi:10.1016/j.prro.2022.02.003.CrossRefGoogle ScholarPubMed
Brown, PD, Jaeckle, K, Ballman, KV, et al. Effect of Radiosurgery Alone vs Radiosurgery with Whole Brain Radiation Therapy on Cognitive Function in Patients with 1 to 3 Brain Metastases: A Randomized Clinical Trial. JAMA. 2016;316(4):401–9. doi:10.1001/jama.2016.9839.CrossRefGoogle Scholar
Aoyama, H, Shirato, H, Tago, M, et al. Stereotactic Radiosurgery Plus Whole-Brain Radiation Therapy vs Stereotactic Radiosurgery Alone for Treatment of Brain Metastases: A Randomized Controlled Trial. JAMA. 2006;295(21):2483–91. doi:10.1001/jama.295.21.2483.CrossRefGoogle ScholarPubMed
Chang, EL, Wefel, JS, Hess, KR, et al. Neurocognition in Patients with Brain Metastases Treated with Radiosurgery or Radiosurgery Plus Whole-brain Irradiation: A Randomised Controlled Trial. Lancet Oncol. 2009;10(11):1037–44. doi:10.1016/S1470-2045(09)70263-3.CrossRefGoogle ScholarPubMed
Hong, AM, Fogarty, GB, Dolven-Jacobsen, K, et al. Adjuvant Whole-Brain Radiation Therapy Compared With Observation After Local Treatment of Melanoma Brain Metastases: A Multicenter, Randomized Phase III Trial. J Clin Oncol. 2019;37(33):3132–41. doi:10.1200/JCO.19.01414.CrossRefGoogle ScholarPubMed
Kocher, M, Soffietti, R, Abacioglu, U, et al. Adjuvant Whole-Brain Radiotherapy Versus Observation After Radiosurgery or Surgical Resection of One to Three Cerebral Metastases: Results of the EORTC 22952–26001 Study. J Clin Oncol. 2011;29(2):134–41. doi:10.1200/JCO.2010.30.1655.CrossRefGoogle ScholarPubMed
Yamamoto, M, Serizawa, T, Shuto, T, et al. Stereotactic Radiosurgery for Patients with Multiple Brain Metastases (JLGK0901): A Multi-institutional Prospective Observational Study. Lancet Oncol. 2014;15(4):387–95. doi:10.1016/S1470-2045(14)70061-0.CrossRefGoogle ScholarPubMed
Hughes, RT, Masters, AH, McTyre, ER, et al. Initial SRS for Patients With 5 to 15 Brain Metastases: Results of a Multi-Institutional Experience. Int J Radiat Oncol. 2019;104(5):1091–8. doi:10.1016/j.ijrobp.2019.03.052.CrossRefGoogle ScholarPubMed
Serizawa, T, Yamamoto, M, Higuchi, Y, et al. Local Tumor Progression Treated with Gamma Knife Radiosurgery: Differences Between Patients with 2–4 versus 5–10 Brain Metastases Based on an Update of a Multi-institutional Prospective Observational Study (JLGK0901). J Neurosurg. 2019;132(5):1480–9. doi:10.3171/2019.1.JNS183085.Google Scholar
Yamamoto, M, Serizawa, T, Higuchi, Y, et al. A Multi-institutional Prospective Observational Study of Stereotactic Radiosurgery for Patients With Multiple Brain Metastases (JLGK0901 Study Update): Irradiation-related Complications and Long-term Maintenance of Mini-Mental State Examination Scores. Int J Radiat Oncol. 2017;99(1):3140. doi:10.1016/j.ijrobp.2017.04.037.CrossRefGoogle ScholarPubMed
Shuto, T, Akabane, A, Yamamoto, M, et al. Multiinstitutional Prospective Observational Study of Stereotactic Radiosurgery for Patients with Multiple Brain Metastases from Non–small Cell Lung Cancer (JLGK0901 study–NSCLC). J Neurosurg. 2018;129(Suppl1):8694. doi:10.3171/2018.7.GKS181378.CrossRefGoogle ScholarPubMed
Yomo, S, Serizawa, T, Yamamoto, M, et al. The Impact of EGFR-TKI Use on Clinical Outcomes of Lung Adenocarcinoma Patients with Brain Metastases After Gamma Knife Radiosurgery: A Propensity Score-Matched Analysis Based on Extended JLGK0901 Dataset (JLGK0901-EGFR-TKI). J Neurooncol. 2019;145(1):151–7. doi:10.1007/s11060-019-03282-0.CrossRefGoogle ScholarPubMed
Higuchi, Y, Yamamoto, M, Serizawa, T, et al. Stereotactic Radiosurgery in Elderly Patients With Brain Metastases: Comparison with Non-elderly Patients Using Database of a Multi-institutional Prospective Observational Study (JLGK0901-Elderly). J Neurooncol. 2019;144(2):393402. doi:10.1007/s11060-019-03242-8.CrossRefGoogle ScholarPubMed
Mahajan, A, Ahmed, S, McAleer, MF, et al. Post-operative Stereotactic Radiosurgery Versus Observation for Completely Resected Brain Metastases: A Single-centre, Randomised, Controlled, Phase 3 Trial. Lancet Oncol. 2017;18(8):1040–8. doi:10.1016/S1470-2045(17)30414-X.CrossRefGoogle ScholarPubMed
Souhami, L, Seiferheld, W, Brachman, D, et al. Randomized Comparison of Stereotactic Radiosurgery Followed by Conventional Radiotherapy with Carmustine to Conventional Radiotherapy with Carmustine for Patients with Glioblastoma Multiforme: Report of Radiation Therapy Oncology Group 93–05 Protocol. Int J Radiat Oncol Biol Phys. 2004;60(3):853–60. doi:10.1016/j.ijrobp.2004.04.011.CrossRefGoogle ScholarPubMed
Niranjan, A, Kano, H, Iyer, A, Kondziolka, D, Flickinger, JC, Lunsford, LD. Role of Adjuvant or Salvage Radiosurgery in the Management of Unresected Residual or Progressive Glioblastoma Multiforme in the Pre-bevacizumab Era. J Neurosurg. 2015;122(4):757–65. doi:10.3171/2014.11.JNS13295.CrossRefGoogle ScholarPubMed
Bunevicius, A, Pikis, S, Kondziolka, D, et al. Stereotactic Radiosurgery for Glioblastoma Considering Tumor Genetic Profiles: An International Multicenter Study. J Neurosurg. Published online November 5, 2021:19. doi:10.3171/2021.7.JNS211277.CrossRefGoogle Scholar
Cuneo, KC, Vredenburgh, JJ, Sampson, JH, et al. Safety and Efficacy of Stereotactic Radiosurgery and Adjuvant Bevacizumab in patients with Recurrent Malignant Gliomas. Int J Radiat Oncol Biol Phys. 2012;82(5):2018–24. doi:10.1016/j.ijrobp.2010.12.074.CrossRefGoogle ScholarPubMed
Park, KJ, Kano, H, Iyer, A, et al. Salvage Gamma Knife Stereotactic Radiosurgery Followed by Bevacizumab for Recurrent Glioblastoma Multiforme: A Case-Control Study. J Neurooncol. 2012;107(2):323–33. doi:10.1007/s11060-011-0744-9.CrossRefGoogle ScholarPubMed
Clark, GM, McDonald, AM, Nabors, LB, et al. Hypofractionated Stereotactic Radiosurgery with Concurrent Bevacizumab for Recurrent Malignant Gliomas: The University Of Alabama at Birmingham Experience. Neuro-Oncol Pract. 2014;1(4):172–7. doi:10.1093/nop/npu028.CrossRefGoogle ScholarPubMed
Santacroce, A, Walier, M, Régis, J, et al. Long-term Tumor Control of Benign Intracranial Meningiomas After Radiosurgery in a Series of 4565 Patients. Neurosurgery. 2012;70(1):32–9. doi:10.1227/NEU.0b013e31822d408a.CrossRefGoogle Scholar
Marchetti, M, Sahgal, A, De Salles, AAF, et al. Stereotactic Radiosurgery for Intracranial Noncavernous Sinus Benign Meningioma: International Stereotactic Radiosurgery Society Systematic Review, Meta-Analysis and Practice Guideline. Neurosurgery. 2020;87(5):879–90. doi:10.1093/neuros/nyaa169.CrossRefGoogle ScholarPubMed
Pikis, S, Bunevicius, A, Sheehan, J. Outcomes from Treatment of Asymptomatic Skull Base Meningioma with Stereotactic Radiosurgery. Acta Neurochir (Wien). 2021;163(1):83–8. doi:10.1007/s00701-020-04648-4.CrossRefGoogle ScholarPubMed
Sheehan, J, Pikis, S, Islim, AI, et al. An International Multicenter Matched Cohort Analysis of Incidental Meningioma Progression During Active Surveillance or After Stereotactic Radiosurgery: The IMPASSE Study. Neuro-Oncol. 2022;24(1):116–24. doi:10.1093/neuonc/noab132.CrossRefGoogle ScholarPubMed
Mantziaris, G, Pikis, S, Samanci, Y, et al. Stereotactic Radiosurgery Versus Active Surveillance for Asymptomatic, Skull-Based Meningiomas: An International, Multicenter Matched Cohort Study. J Neurooncol. 2022;156(3):509–18. doi:10.1007/s11060-021-03923-3.CrossRefGoogle ScholarPubMed
Pikis, S, Mantziaris, G, Samanci, Y, et al. Stereotactic Radiosurgery for Incidentally Discovered Cavernous Sinus Meningiomas: A Multi-institutional Study. World Neurosurg. 2022;158:e675–80. doi:10.1016/j.wneu.2021.11.037.CrossRefGoogle ScholarPubMed
Mantziaris, G, Pikis, S, Bunevicius, A, et al. Stereotactic Radiosurgery for Asymptomatic Petroclival Region Meningiomas: A Focused Analysis from the IMPASSE Study. Acta Neurochir (Wien). 2022;164(1):273–9. doi:10.1007/s00701-021-05056-y.CrossRefGoogle ScholarPubMed
Pikis, S, Mantziaris, G, Islim, AI, et al. Stereotactic Radiosurgery Versus Active Surveillance for Incidental, Convexity Meningiomas: A Matched Cohort Analysis from the IMPASSE Study. J Neurooncol. 2022;157(1):121–8. doi:10.1007/s11060-022-03953-5.CrossRefGoogle ScholarPubMed
Pikis, S, Mantziaris, G, Bunevicius, A, et al. Stereotactic Radiosurgery Compared With Active Surveillance for Asymptomatic, Parafalcine, and Parasagittal Meningiomas: A Matched Cohort Analysis From the IMPASSE Study. Neurosurgery. 2022;90(6):750–7. doi:10.1227/neu.0000000000001924.CrossRefGoogle ScholarPubMed
Milano, MT, Sharma, M, Soltys, SG, et al. Radiation-Induced Edema After Single-Fraction or Multifraction Stereotactic Radiosurgery for Meningioma: A Critical Review. Int J Radiat Oncol. 2018;101(2):344–57. doi:10.1016/j.ijrobp.2018.03.026.CrossRefGoogle ScholarPubMed
Wolf, A, Naylor, K, Tam, M, et al. Risk of Radiation-associated Intracranial Malignancy After Stereotactic Radiosurgery: A Retrospective, Multicentre, Cohort Study. Lancet Oncol. 2019;20(1):159–64. doi:10.1016/S1470-2045(18)30659-4.CrossRefGoogle ScholarPubMed
Shepard, MJ, Xu, Z, Kearns, K, et al. Stereotactic Radiosurgery for Atypical (World Health Organization II) and Anaplastic (World Health Organization III) Meningiomas: Results From a Multicenter, International Cohort Study. Neurosurgery. 2021;88(5):980–8. doi:10.1093/neuros/nyaa553.CrossRefGoogle ScholarPubMed
Vlachogiannis, P, Gudjonsson, O, Montelius, A, et al. Hypofractionated High-energy Proton-beam Irradiation is an Alternative Treatment for WHO grade I Meningiomas. Acta Neurochir (Wien). 2017;159(12):2391–400. doi:10.1007/s00701-017-3352-4.CrossRefGoogle Scholar
Halasz, LM, Bussière, MR, Dennis, ER, et al. Proton Stereotactic Radiosurgery for the Treatment of Benign Meningiomas. Int J Radiat Oncol Biol Phys. 2011;81(5):1428–35. doi:10.1016/j.ijrobp.2010.07.1991.CrossRefGoogle ScholarPubMed
Flickinger, JC, Kondziolka, D, Niranjan, A, Maitz, A, Voynov, G, Lunsford, LD. Acoustic Neuroma Radiosurgery with Marginal Tumor Doses of 12 to 13 gy. Int J Radiat Oncol. 2004;60(1):225–30. doi:10.1016/j.ijrobp.2004.02.019.CrossRefGoogle ScholarPubMed
Pikis, S, Mantziaris, G, Kormath Anand, R, et al. Stereotactic Radiosurgery for Koos Grade IV Vestibular Schwannoma: A Multi-institutional Study. J Neurosurg. Published online June 3, 2022:18. doi:10.3171/2022.4.JNS22203.CrossRefGoogle Scholar
Dumot, C, Pikis, S, Mantziaris, G, et al. Stereotactic Radiosurgery for Koos Grade IV Vestibular Schwannoma in Young Patients: A Multi-institutional Study. J Neurooncol. 2022;160(1):201–8. doi:10.1007/s11060-022-04134-0.CrossRefGoogle Scholar
Weber, DC, Chan, AW, Bussiere, MR, et al. Proton Beam Radiosurgery for Vestibular Schwannoma: Tumor Control and Cranial Nerve Toxicity. Neurosurgery. 2003;53(3):577–88. doi:10.1227/01.NEU.0000079369.59219.C0.CrossRefGoogle ScholarPubMed
Vernimmen, FJAI, Mohamed, Z, Slabbert, JP, Wilson, J. Long-term Results of Stereotactic Proton Beam Radiotherapy for Acoustic Neuromas. Radiother Oncol. 2009;90(2):208–12. doi:10.1016/j.radonc.2008.11.004.CrossRefGoogle ScholarPubMed
Kotecha, R, Sahgal, A, Rubens, M, et al. Stereotactic Radiosurgery for Non-functioning Pituitary Adenomas: Meta-analysis and International Stereotactic Radiosurgery Society Practice Opinion. Neuro-Oncol. 2020;22(3):318–32. doi:10.1093/neuonc/noz225.Google ScholarPubMed
Liščák, R, Vladyka, V, Marek, J, Šimonová, G, Vymazal, J. Gamma Knife Radiosurgery for Endocrine-inactive Pituitary Adenomas. Acta Neurochir (Wien). 2007;149(10):9991006. doi:10.1007/s00701-007-1253-7.CrossRefGoogle ScholarPubMed
Ironside, N, Snyder, H, Xu, Z, et al. Effect of Distance from Target on Hypopituitarism After Stereotactic Radiosurgery for Pituitary Adenomas. J Neurooncol. 2022;158(1):4150. doi:10.1007/s11060-022-04007-6.CrossRefGoogle ScholarPubMed
Pomeraniec, IJ, Kano, H, Xu, Z, et al. Early versus Late Gamma Knife Radiosurgery Following Transsphenoidal Surgery for Nonfunctioning Pituitary Macroadenomas: A Multicenter Matched-Cohort Study. J Neurosurg. 2017;129(3):648–57. doi:10.3171/2017.5.JNS163069.Google ScholarPubMed
Mantziaris, G, Pikis, S, Chytka, T, et al. Adjuvant Versus On-progression Gamma Knife Radiosurgery for Residual Nonfunctioning Pituitary Adenomas: A Matched-Cohort Analysis. J Neurosurg. Published online November 18, 2022:17. doi:10.3171/2022.10.JNS221873.CrossRefGoogle Scholar
Farnworth, MT, Yuen, KCJ, Chapple, KM, et al. Evolution of Postoperative Pituitary Adenoma Resection Cavities Assessed by Magnetic Resonance Imaging and Implications Regarding Radiotherapy Timing and Modality. Clin Imaging. 2022;82:110–16. doi:10.1016/j.clinimag.2021.11.004.CrossRefGoogle ScholarPubMed
Mathieu, D, Kotecha, R, Sahgal, A, et al. Stereotactic Radiosurgery for Secretory Pituitary Adenomas: Systematic Review and International Stereotactic Radiosurgery Society Practice Recommendations. J Neurosurg. 2022;136(3):801–12. doi:10.3171/2021.2.JNS204440.CrossRefGoogle ScholarPubMed
Wattson, DA, Tanguturi, SK, Spiegel, DY, et al. Outcomes of Proton Therapy for Patients With Functional Pituitary Adenomas. Int J Radiat Oncol. 2014;90(3):532–9. doi:10.1016/j.ijrobp.2014.06.068.CrossRefGoogle ScholarPubMed
Graffeo, CS, Sahgal, A, De Salles, A, et al. Stereotactic Radiosurgery for Spetzler-Martin Grade I and II Arteriovenous Malformations: International Society of Stereotactic Radiosurgery (ISRS) Practice Guideline. Neurosurgery. 2020;87(3):442–52. doi:10.1093/neuros/nyaa004.CrossRefGoogle Scholar
Rubin, BA, Brunswick, A, Riina, H, Kondziolka, D. Advances in Radiosurgery for Arteriovenous Malformations of the Brain. Neurosurgery. 2014;74:S50. doi:10.1227/NEU.0000000000000219.CrossRefGoogle ScholarPubMed
Kano, H, Flickinger, JC, Nakamura, A, et al. How to Improve Obliteration Rates During Volume-staged Stereotactic Radiosurgery for Large Arteriovenous Malformations. J Neurosurg. Published online July 1, 2018:18. doi:10.3171/2018.2.JNS172964.CrossRefGoogle Scholar
Starke, RM, Yen, CP, Ding, D, Sheehan, JP. A Practical Grading Scale for Predicting Outcome After Radiosurgery for Arteriovenous Malformations: Analysis of 1012 Treated Patients. J Neurosurg. 2013;119(4):981–7. doi:10.3171/2013.5.JNS1311.CrossRefGoogle ScholarPubMed
Ding, D, Starke, RM, Sheehan, JP. Radiosurgery for the Management of Cerebral Arteriovenous Malformations. Handb Clin Neurol. 2017;143:6983. doi:10.1016/B978-0-444-63640-9.00007-2.Google ScholarPubMed
Russell, D, Peck, T, Ding, D, et al. Stereotactic Radiosurgery Alone or Combined with Embolization for Brain Arteriovenous Malformations: A Systematic Review and Meta-Analysis. J Neurosurg. 2018;128(5):1338–48. doi:10.3171/2016.11.JNS162382.CrossRefGoogle ScholarPubMed
Byun, J, Kwon, DH, Lee, DH, Park, W, Park, JC, Ahn, JS. Radiosurgery for Cerebral Arteriovenous Malformation (AVM): Current Treatment Strategy and Radiosurgical Technique for Large Cerebral AVM. J Korean Neurosurg Soc. 2020;63(4):415–26. doi:10.3340/jkns.2020.0008.CrossRefGoogle ScholarPubMed
Blomquist, E, Ronne-Engström, E, Borota, L, et al. Positive Correlation Between Occlusion Rate and Nidus Size of Proton Beam Treated Brain Arteriovenous Malformations (AVMs). Acta Oncol. 2016;55(1):105–12. doi:10.3109/0284186X.2015.1043023.CrossRefGoogle ScholarPubMed
Vernimmen, FJAI, Slabbert, JP, Wilson, JA, Fredericks, S, Melvill, R. Stereotactic Proton Beam Therapy for Intracranial Arteriovenous Malformations. Int J Radiat Oncol. 2005;62(1):4452. doi:10.1016/j.ijrobp.2004.09.008.CrossRefGoogle ScholarPubMed
Tuleasca, C, Régis, J, Sahgal, A, et al. Stereotactic Radiosurgery for Trigeminal Neuralgia: A Systematic Review: International Stereotactic Radiosurgery Society Practice Guidelines. J Neurosurg. 2018;130(3):733–57. doi:10.3171/2017.9.JNS17545.Google Scholar
Pollock, BE, Phuong, LK, Gorman, DA, Foote, RL, Stafford, SL. Stereotactic Radiosurgery for Idiopathic Trigeminal Neuralgia. J Neurosurg. 2002;97(2):347–53. doi:10.3171/jns.2002.97.2.0347.CrossRefGoogle ScholarPubMed
Régis, J, Tuleasca, C, Resseguier, N, et al. Long-term Safety and Efficacy of Gamma Knife Surgery in Classical Trigeminal Neuralgia: A 497-Patient Historical Cohort Study. J Neurosurg. 2016;124(4):1079–87. doi:10.3171/2015.2.JNS142144.CrossRefGoogle ScholarPubMed
Kondziolka, D, Zorro, O, Lobato-Polo, J, et al. Gamma Knife Stereotactic Radiosurgery for Idiopathic Trigeminal Neuralgia: Clinical Article. J Neurosurg. 2010;112(4):758–65. doi:10.3171/2009.7.JNS09694.CrossRefGoogle Scholar
Zhao, ZF, Yang, LZ, Jiang, CL, Zheng, YR, Zhang, JW. Gamma Knife Irradiation-induced Histopathological Changes in the Trigeminal Nerves of Rhesus Monkeys. J Neurosurg. 2010;113(1):3944. doi:10.3171/2010.1.jns091116.CrossRefGoogle ScholarPubMed
Pikis, S, Bunevicius, A, Donahue, J, et al. Diffusivity Metrics Three Months After Upfront Gamma Knife Radiosurgery for Trigeminal Neuralgia May Be Correlated with Pain Relief. World Neurosurg. 2021;153:e220–5. doi:10.1016/j.wneu.2021.06.086.CrossRefGoogle ScholarPubMed
Tohyama, S, Hung, P, Zhong, J, Hodaie, M. Early Postsurgical Diffusivity Metrics for Prognostication of Long-term Pain Relief After Gamma Knife Radiosurgery for Trigeminal Neuralgia. J Neurosurg. 2018;131(2):539–48. doi:10.3171/2018.3.JNS172936.Google ScholarPubMed
Gupta, A, Shepard, MJ, Xu, Z, et al. An International Radiosurgery Research Foundation Multicenter Retrospective Study of Gamma Ventral Capsulotomy for Obsessive Compulsive Disorder. Neurosurgery. 2019;85(6):808–16. doi:10.1093/neuros/nyy536.CrossRefGoogle ScholarPubMed
Rasmussen, SA, Noren, G, Greenberg, BD, et al. Gamma Ventral Capsulotomy in Intractable Obsessive-Compulsive Disorder. Biol Psychiatry. 2018;84(5):355–64. doi:10.1016/j.biopsych.2017.11.034.CrossRefGoogle ScholarPubMed
Kumar, KK, Appelboom, G, Lamsam, L, et al. Comparative Effectiveness of Neuroablation and Deep Brain Stimulation for Treatment-Resistant Obsessive-Compulsive Disorder: A Meta-analytic Study. J Neurol Neurosurg Psychiatry. 2019;90(4):469–73. doi:10.1136/jnnp-2018-319318.CrossRefGoogle ScholarPubMed
Spatola, G, Martinez-Alvarez, R, Martínez-Moreno, N, et al. Results of Gamma Knife Anterior Capsulotomy for Refractory Obsessive-Compulsive Disorder: Results in a Series of 10 Consecutive Patients. J Neurosurg. 2018;131(2):376–83. doi:10.3171/2018.4.JNS171525.Google Scholar
Martínez-Álvarez, R, Martínez-Moreno, N, Torres-Díaz, C, Lara-Almunia, M. SRS for OCD. In: Intracranial Stereotactic Radiosurgery. 3rd ed. CRC Press; 2021.Google Scholar
Samuel, N, Trifiletti, DM, Quinones-Hinojosa, A, Lunsford, LD, Sheehan, J. Stereotactic Radiosurgery Training Patterns Across Neurosurgical Programs: A Multi-national Survey. J Neurooncol. 2021;151(2):325–30. doi:10.1007/s11060-020-03670-x.CrossRefGoogle ScholarPubMed
Lad, M, Gupta, R, Raman, A, et al. Trends in Physician Reimbursements and Procedural Volumes for Radiosurgery Versus Open Surgery in Brain Tumor Care: An Analysis of Medicare Data from 2009 to 2018. J Neurosurg. 2021;136(1):97108. doi:10.3171/2020.11.JNS202284.CrossRefGoogle ScholarPubMed
Sheehan, JP, Kavanagh, BD, Asher, A, Harbaugh, RE. Inception of a National Multidisciplinary Registry for Stereotactic Radiosurgery. J Neurosurg. 2016;124(1):155–62. doi:10.3171/2015.1.JNS142466.CrossRefGoogle ScholarPubMed

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×