Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-11-30T17:19:39.665Z Has data issue: false hasContentIssue false

Chapter 9 - Computer Science: The Computer as a Neurosurgical Tool

from Section III - Areas of Biological and Technical Advances Driving Neurosurgical Innovation

Published online by Cambridge University Press:  aN Invalid Date NaN

Benjamin Hartley
Affiliation:
Weill Cornell Medical Center
Philip E. Stieg
Affiliation:
Weill Cornell Medical College
Rohan Ramakrishna
Affiliation:
Weill Cornell Medical College
Michael L. J. Apuzzo
Affiliation:
Adjunct of Yale Medical School and Weill Cornell Medical College
Get access

Summary

The integration of computers in neurosurgery has revolutionized the field, transitioning it from reliance on anatomical knowledge to leveraging advanced technology for enhanced precision and outcomes. Since the mid-twentieth century, the adoption of computers facilitated significant advancements in diagnosis, surgical precision, and three-dimensional orientation. Technologies such as stereotactic neuro-navigation, virtual reality (VR), intra-operative imaging, and artificial intelligence (AI) have been pivotal. Stereotactic navigation aids real-time visualization during surgery, while VR assists in surgical simulations and planning. Intra-operative imaging such as CT and MRI provides updated visuals for accurate navigation. AI and machine learning enhance diagnosis, risk assessment, and surgical planning. The integration of these technologies has improved patient outcomes, but also presents challenges such as ethical considerations and potential overreliance on AI. The future of neurosurgery will continue to intertwine with technological advancements, requiring neurosurgeons to stay abreast of emerging tools and techniques.

Information

Type
Chapter
Information
Neurosurgery
Beyond the Cutting Edge
, pp. 192 - 208
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Shaikhouni, A, Elder, JB. Computers and neurosurgery. World Neurosurg. 2012;78(5): 392–8. https://doi.org/10.1016/j.wneu.2012.08.020.CrossRefGoogle ScholarPubMed
Bartlett, J. A short history of computers. In Bartlett, J, ed. Programming for Absolute Beginners: Using the JavaScript Programming Language. Berkeley, CA: Apress; 2023: 716.10.1007/978-1-4842-8751-4_2CrossRefGoogle Scholar
Abdelwahab, MG, Cavalcanti, DD, Preul, MC. Role of computer technology in neurosurgery. Minerva Chir. 2010;65(4): 409–28.Google ScholarPubMed
Attenello, FJ, Lee, B, Yu, C, Liu, CY, Apuzzo, ML. Supplementing the neurosurgical virtuoso: evolution of automation from mythology to operating room adjunct. World Neurosurg. 2014;81(5–6): 719–29. https://doi.org/10.1016/j.wneu.2014.03.011.CrossRefGoogle ScholarPubMed
Bansal, GJ. Digital radiography. A comparison with modern conventional imaging. Postgrad Med J. 2006;82(969): 425–8. https://doi.org/10.1136/pgmj.2005.038448.CrossRefGoogle ScholarPubMed
Ganslandt, O, Behari, S, Gralla, J, Fahlbusch, R, Nimsky, C. Neuronavigation: concept, techniques and applications. Neurol India. 2002;50(3): 244–55.Google Scholar
Cho, J, Rahimpour, S, Cutler, A, Goodwin, CR, Lad, SP, Codd, P. Enhancing reality: a systematic review of augmented reality in neuronavigation and education. World Neurosurg. 2020;139: 186–95. https://doi.org/10.1016/j.wneu.2020.04.043.CrossRefGoogle ScholarPubMed
Enchev, Y. Neuronavigation: geneology, reality, and prospects. Neurosurg Focus. 2009;27(3): E11. https://doi.org/10.3171/2009.6.FOCUS09109.CrossRefGoogle ScholarPubMed
Albayrak, B, Samdani, AF, Black, PM. Intra-operative magnetic resonance imaging in neurosurgery. Acta Neurochir (Wien). 2004;146(6): 543–56; discussion 557. https://doi.org/10.1007/s00701-004-0229-0.CrossRefGoogle ScholarPubMed
Mertz, L. Virtual reality pioneer Tom Furness on the past, present, and future of VR in health care. IEEE Pulse. 2019;10(3): 911. https://doi.org/10.1109/MPULS.2019.2911808.CrossRefGoogle ScholarPubMed
Spicer, MA, Apuzzo, ML. Virtual reality surgery: neurosurgery and the contemporary landscape. Neurosurgery. 2003;52(3): 489–97; discussion 496–7. https://doi.org/10.1227/01.neu.0000047812.42726.56.CrossRefGoogle ScholarPubMed
Clarke, DB, D’Arcy, RC, Delorme, S, et al. Virtual reality simulator: demonstrated use in neurosurgical oncology. Surg Innov. 2013;20(2): 190–7. https://doi.org/10.1177/1553350612451354.CrossRefGoogle ScholarPubMed
Schneider, M, Kunz, C, Pal’a, A, Wirtz, CR, Mathis-Ullrich, F, Hlavac, M. Augmented reality-assisted ventriculostomy. Neurosurg Focus. 2021;50(1): E16. https://doi.org/10.3171/2020.10.FOCUS20779.CrossRefGoogle ScholarPubMed
Rudarakanchana, N, Van Herzeele, I, Desender, L, Cheshire, NJ. Virtual reality simulation for the optimization of endovascular procedures: current perspectives. Vasc Health Risk Manag. 2015;11: 195202. https://doi.org/10.2147/VHRM.S46194.CrossRefGoogle ScholarPubMed
Waisberg, E, Ong, J, Masalkhi, M, et al. Apple Vision Pro: the future of surgery with advances in virtual and augmented reality. Ir J Med Sci. 2023. https://doi.org/10.1007/s11845-023-03457-9.CrossRefGoogle Scholar
Artico, M, Spoletini, M, Fumagalli, L, et al. Egas Moniz: 90 years (1927–2017) from cerebral angiography. Front Neuroanat. 2017;11: 81. https://doi.org/10.3389/fnana.2017.00081.CrossRefGoogle Scholar
Boulos, AS, Levy, EI, Bendok, BR, et al. Evolution of neuroendovascular intervention: a review of advancement in device technology. Neurosurgery. 2004;54(2): 438–52; discussion 452–3. https://doi.org/10.1227/01.neu.0000103672.96785.42.CrossRefGoogle ScholarPubMed
Luessenhop, AJ, Velasquez, AC. Observations on the tolerance of the intracranial arteries to catheterization. J Neurosurg. 1964;21: 8591. https://doi.org/10.3171/jns.1964.21.2.0085.CrossRefGoogle ScholarPubMed
Teitelbaum, GP, Larsen, DW, Zelman, V, Lysachev, AG, Likhterman, LB. A tribute to Dr. Fedor A. Serbinenko, founder of endovascular neurosurgery. Neurosurgery. 2000;46(2): 462–9; discussion 469–70. https://doi.org/10.1097/00006123-200002000-00037.CrossRefGoogle ScholarPubMed
Crummy, AB, Strother, CM, Mistretta, CA. The history of digital subtraction angiography. J Vasc Interv Radiol. 2018;29(8): 1138–41. https://doi.org/10.1016/j.jvir.2018.03.030.CrossRefGoogle ScholarPubMed
Shams, T, Zaidat, O, Yavagal, D, Xavier, A, Jovin, T, Janardhan, V. Society of Vascular and Interventional Neurology (SVIN) Stroke Interventional Laboratory Consensus (SILC) Criteria: a 7 M management approach to developing a stroke interventional laboratory in the era of stroke thrombectomy for large vessel occlusions. Interv Neurol. 2016;5(1–2): 128. https://doi.org/10.1159/000443617.CrossRefGoogle Scholar
Menaker, SA, Shah, SS, Snelling, BM, Sur, S, Starke, RM, Peterson, EC. Current applications and future perspectives of robotics in cerebrovascular and endovascular neurosurgery. J Neurointerv Surg. 2018;10(1): 7882. https://doi.org/10.1136/neurintsurg-2017-013284.CrossRefGoogle ScholarPubMed
Bravo, J, Wali, AR, Hirshman, BR, et al. Robotics and artificial intelligence in endovascular neurosurgery. Cureus. 2022;14(3): e23662. https://doi.org/10.7759/cureus.23662.Google ScholarPubMed
Zhao, Y, Mei, Z, Luo, X, et al. Remote vascular interventional surgery robotics: a literature review. Quant Imaging Med Surg. 2022;12(4): 2552–74. https://doi.org/10.21037/qims-21-792.CrossRefGoogle ScholarPubMed
Mendes Pereira, V, Rice, H, De Villiers, L, et al. Evaluation of effectiveness and safety of the CorPath GRX robotic system in endovascular embolization procedures of cerebral aneurysms. J Neurointerv Surg. 2023. https://doi.org/10.1136/jnis-2023-020161.CrossRefGoogle Scholar
Sajja, KC, Sweid, A, Al Saiegh, F, et al. Endovascular robotic: feasibility and proof of principle for diagnostic cerebral angiography and carotid artery stenting. J Neurointerv Surg. 2020;12(4): 345–9. https://doi.org/10.1136/neurintsurg-2019-015763.CrossRefGoogle ScholarPubMed
Mendes Pereira, V, Cancelliere, NM, Nicholson, P, et al. First-in-human, robotic-assisted neuroendovascular intervention. J Neurointerv Surg. 2020;12(4): 338–40. https://doi.org/10.1136/neurintsurg-2019-015671.rep.CrossRefGoogle ScholarPubMed
Costa, M, Tataryn, Z, Alobaid, A, et al. Robotically-assisted neuro-endovascular procedures: single-center experience and a review of the literature. Interv Neuroradiol. 2023;29(2): 201–10. https://doi.org/10.1177/15910199221082475.CrossRefGoogle Scholar
Lasak, JM, Gorecki, JP. The history of stereotactic radiosurgery and radiotherapy. Otolaryngol Clin North Am. 2009;42(4): 593–9. https://doi.org/10.1016/j.otc.2009.04.003.CrossRefGoogle ScholarPubMed
Herff, C, Krusienski, DJ, Kubben, P. The potential of stereotactic-EEG for brain-computer interfaces: current progress and future directions. Front Neurosci. 2020;14: 123. https://doi.org/10.3389/fnins.2020.00123.CrossRefGoogle ScholarPubMed
Schalk, G, Leuthardt, EC. Brain-computer interfaces using electrocorticographic signals. IEEE Rev Biomed Eng. 2011;4: 140–54. https://doi.org/10.1109/RBME.2011.2172408.CrossRefGoogle ScholarPubMed
Bauerle, L, Palmer, C, Salazar, CA, et al. Neurosurgery for psychiatric disorders: reviewing the past and charting the future. Neurosurg Focus. 2023;54(2): E8. https://doi.org/10.3171/2022.11.FOCUS22622.CrossRefGoogle ScholarPubMed
Miller, A. The lobotomy patient – a decade later: a follow-up study of a research project started in 1948. Can Med Assoc J. 1967;96(15): 1095–103.Google Scholar
Scangos, KW, State, MW, Miller, AH, Baker, JT, Williams, LM. New and emerging approaches to treat psychiatric disorders. Nat Med. 2023;29(2): 317–33. https://doi.org/10.1038/s41591-022-02197-0.CrossRefGoogle ScholarPubMed
Luyten, L, Hendrickx, S, Raymaekers, S, Gabriels, L, Nuttin, B. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder. Mol Psychiatry. 2016;21(9): 1272–80. https://doi.org/10.1038/mp.2015.124.CrossRefGoogle ScholarPubMed
Holtzheimer, PE, Husain, MM, Lisanby, SH, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 2017;4(11): 839–49. https://doi.org/10.1016/S2215-0366(17)30371-1.CrossRefGoogle ScholarPubMed
Taghva, A, Corrigan, JD, Rezai, AR. Obesity and brain addiction circuitry: implications for deep brain stimulation. Neurosurgery. 2012;71(2): 224–38. https://doi.org/10.1227/NEU.0b013e31825972ab.CrossRefGoogle ScholarPubMed
Gautschi, OP, Schatlo, B, Schaller, K, Tessitore, E. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus. 2011;31(4): E8. https://doi.org/10.3171/2011.7.FOCUS11168.CrossRefGoogle Scholar
Mirza, AK, Alvi, MA, Naylor, RM, et al. Management of major vascular injury during pedicle screw instrumentation of thoracolumbar spine. Clin Neurol Neurosurg. 2017;163: 53–9. https://doi.org/10.1016/j.clineuro.2017.10.011.CrossRefGoogle ScholarPubMed
Galetta, MS, Leider, JD, Divi, SN, Goyal, DKC, Schroeder, GD. Robotics in spinal surgery. Ann Transl Med. 2019;7(Suppl 5): S165. https://doi.org/10.21037/atm.2019.07.93.CrossRefGoogle ScholarPubMed
Zhang, Q, Han, XG, Xu, YF, et al. Robot-assisted versus fluoroscopy-guided pedicle screw placement in transforaminal lumbar interbody fusion for lumbar degenerative disease. World Neurosurg. 2019;125: e429–34. https://doi.org/10.1016/j.wneu.2019.01.097.CrossRefGoogle ScholarPubMed
Farber, SH, Pacult, MA, Godzik, J, et al. Robotics in spine surgery: a technical overview and review of key concepts. Front Surg. 2021;8: 578674. https://doi.org/10.3389/fsurg.2021.578674.CrossRefGoogle ScholarPubMed
Maragkos, GA, Schupper, AJ, Lakomkin, N, et al. Fluorescence-guided high-grade glioma surgery more than four hours after 5-aminolevulinic acid administration. Front Neurol. 2021;12: 644804. https://doi.org/10.3389/fneur.2021.644804.CrossRefGoogle ScholarPubMed
Hadjipanayis, CG, Stummer, W. 5-ALA and FDA approval for glioma surgery. J Neurooncol. 2019;141(3): 479–86. https://doi.org/10.1007/s11060-019-03098-y.CrossRefGoogle ScholarPubMed
Suero Molina, E, Hellwig, SJ, Walke, A, Jeibmann, A, Stepp, H, Stummer, W. Development and validation of a triple-LED surgical loupe device for fluorescence-guided resections with 5-ALA. J Neurosurg. 2021: 19. https://doi.org/10.3171/2021.10.JNS211911.CrossRefGoogle Scholar
Li, KW, Nelson, C, Suk, I, Jallo, GI. Neuroendoscopy: past, present, and future. Neurosurg Focus. 2005;19(6): E1. https://doi.org/10.3171/foc.2005.19.6.2.Google ScholarPubMed
Atteya, MME. Innovations and new technologies in pediatric neurosurgery. Childs Nerv Syst. 2021;37(5): 1471–2. https://doi.org/10.1007/s00381-021-05144-5.CrossRefGoogle ScholarPubMed
Tu, Q, Chen, H, Ding, HW, et al. Three-dimensional printing technology for surgical correction of congenital scoliosis caused by hemivertebrae. World Neurosurg. 2021;149: e969–81. https://doi.org/10.1016/j.wneu.2021.01.063.CrossRefGoogle ScholarPubMed
Randazzo, M, Pisapia, JM, Singh, N, Thawani, JP. 3D printing in neurosurgery: a systematic review. Surg Neurol Int. 2016;7(Suppl 33): S801–9. https://doi.org/10.4103/2152-7806.194059.Google ScholarPubMed
Ghizoni, E, de Souza, J, Raposo-Amaral, CE, et al. 3D-printed craniosynostosis model: new simulation surgical tool. World Neurosurg. 2018;109: 356–61. https://doi.org/10.1016/j.wneu.2017.10.025.CrossRefGoogle ScholarPubMed
Polce, EM, Kunze, KN. A guide for the application of statistics in biomedical studies concerning machine learning and artificial intelligence. Arthroscopy. 2023;39(2): 151–8. https://doi.org/10.1016/j.arthro.2022.04.016.CrossRefGoogle ScholarPubMed
Bzdok, D, Altman, N, Krzywinski, M. Statistics versus machine learning. Nat Methods. 2018;15(4): 233–4. https://doi.org/10.1038/nmeth.4642.CrossRefGoogle ScholarPubMed
Senders, JT, Zaki, MM, Karhade, AV, et al. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir (Wien). 2018;160(1): 2938. https://doi.org/10.1007/s00701-017-3385-8.CrossRefGoogle ScholarPubMed
Hale, AT, Riva-Cambrin, J, Wellons, JC, et al. Machine learning predicts risk of cerebrospinal fluid shunt failure in children: a study from the hydrocephalus clinical research network. Childs Nerv Syst. 2021;37(5): 1485–94. https://doi.org/10.1007/s00381-021-05061-7.CrossRefGoogle ScholarPubMed
Paliwal, N, Jaiswal, P, Tutino, VM, et al. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning. Neurosurg Focus. 2018;45(5): E7. https://doi.org/10.3171/2018.8.FOCUS18332.CrossRefGoogle ScholarPubMed
Senders, JT, Arnaout, O, Karhade, AV, et al. Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery. 2018;83(2): 181–92. https://doi.org/10.1093/neuros/nyx384.CrossRefGoogle ScholarPubMed
Chiang, S, Levin, HS, Haneef, Z. Computer-automated focus lateralization of temporal lobe epilepsy using fMRI. J Magn Reson Imaging. 2015;41(6): 1689–94. https://doi.org/10.1002/jmri.24696.CrossRefGoogle ScholarPubMed
Thirunavukarasu, AJ, Ting, DSJ, Elangovan, K, Gutierrez, L, Tan, TF, Ting, DSW. Large language models in medicine. Nat Med. 2023;29(8): 1930–40. https://doi.org/10.1038/s41591-023-02448-8.CrossRefGoogle ScholarPubMed
Liu, J, Zheng, J, Cai, X, Wu, D, Yin, C. A descriptive study based on the comparison of ChatGPT and evidence-based neurosurgeons. iScience. 2023;26(9): 107590. https://doi.org/10.1016/j.isci.2023.107590.CrossRefGoogle ScholarPubMed
Ali, R, Tang, OY, Connolly, ID, et al. Performance of ChatGPT and GPT-4 on neurosurgery written board examinations. Neurosurgery. 2023;93(6): 1353–65. https://doi.org/10.1227/neu.0000000000002632.Google ScholarPubMed
Sevgi, UT, Erol, G, Dogruel, Y, Sonmez, OF, Tubbs, RS, Gungor, A. The role of an open artificial intelligence platform in modern neurosurgical education: a preliminary study. Neurosurg Rev. 2023;46(1): 86. https://doi.org/10.1007/s10143-023-01998-2.CrossRefGoogle ScholarPubMed
Oermann, EK, Kondziolka, D. On chatbots and generative artificial intelligence. Neurosurgery. 2023;92(4): 665–6. https://doi.org/10.1227/neu.0000000000002415.CrossRefGoogle ScholarPubMed
D’Amico, RS, White, TG, Shah, HA, Langer, DJ. I asked a ChatGPT to write an editorial about how we can incorporate chatbots into neurosurgical research and patient care. Neurosurgery. 2023;92(4): 663–4. https://doi.org/10.1227/neu.0000000000002414.Google ScholarPubMed
Barker, FG, Rutka, JT. Editorial. Generative artificial intelligence, chatbots, and the Journal of Neurosurgery Publishing Group. J Neurosurg. 2023;139(3): 901–3. https://doi.org/10.3171/2023.4.JNS23482.CrossRefGoogle ScholarPubMed
Kuang, YR, Zou, MX, Niu, HQ, Zheng, BY, Zhang, TL, Zheng, BW. ChatGPT encounters multiple opportunities and challenges in neurosurgery. Int J Surg. 2023;109(10): 2886–91. https://doi.org/10.1097/JS9.0000000000000571.CrossRefGoogle ScholarPubMed
Rudolph, J, Tan, S, Tan, S. War of the chatbots: Bard, Bing Chat, ChatGPT, Ernie and beyond. The new AI gold rush and its impact on higher education. J Appl Learn Teach. 2023;6(1).Google Scholar
Raju, B, Jumah, F, Ashraf, O, et al. Big data, machine learning, and artificial intelligence: a field guide for neurosurgeons. J Neurosurg. 2020: 111. https://doi.org/10.3171/2020.5.JNS201288.CrossRefGoogle Scholar
Palmisciano, P, Jamjoom, AAB, Taylor, D, Stoyanov, D, Marcus, HJ. Attitudes of patients and their relatives toward artificial intelligence in neurosurgery. World Neurosurg. 2020;138: e627–33. https://doi.org/10.1016/j.wneu.2020.03.029.CrossRefGoogle ScholarPubMed
Rowland, NC, Breshears, J, Chang, EF. Neurosurgery and the dawning age of brain-machine interfaces. Surg Neurol Int. 2013;4(Suppl 1): S1114. https://doi.org/10.4103/2152-7806.109182.Google ScholarPubMed
Lorach, H, Galvez, A, Spagnolo, V, et al. Walking naturally after spinal cord injury using a brain-spine interface. Nature. 2023;618(7963): 126–33. https://doi.org/10.1038/s41586-023-06094-5.CrossRefGoogle ScholarPubMed
Buch, E, Weber, C, Cohen, LG, et al. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008;39(3): 910–17. https://doi.org/10.1161/STROKEAHA.107.505313.CrossRefGoogle ScholarPubMed
Murphy, DP, Bai, O, Gorgey, AS, et al. Electroencephalogram-based brain-computer interface and lower-limb prosthesis control: a case study. Front Neurol. 2017;8: 696. https://doi.org/10.3389/fneur.2017.00696.CrossRefGoogle ScholarPubMed
Kotchetkov, IS, Hwang, BY, Appelboom, G, Kellner, CP, Connolly, ES, Jr. Brain-computer interfaces: military, neurosurgical, and ethical perspective. Neurosurg Focus. 2010;28(5): E25. https://doi.org/10.3171/2010.2.FOCUS1027.CrossRefGoogle ScholarPubMed
Vasiljevic, GAM, Cunha de Miranda, L. The CoDIS taxonomy for brain-computer interface games controlled by electroencephalography. Int J Hum–Comput Interact. 128. https://doi.org/10.1080/10447318.2023.2203006.CrossRefGoogle Scholar
Childs, S, Bruch, P. Successful management of risk in the hybrid OR. AORN J. 2015;101(2): 223–34; quiz 235–7. https://doi.org/10.1016/j.aorn.2014.04.020.CrossRefGoogle ScholarPubMed
Waisberg, E, Ong, J, Masalkhi, M, et al. The future of ophthalmology and vision science with the Apple Vision Pro. Eye (Lond). 2023. https://doi.org/10.1038/s41433-023-02688-5.CrossRefGoogle Scholar
Chidambaram, S, Stifano, V, Demetres, M, et al. Applications of augmented reality in the neurosurgical operating room: a systematic review of the literature. J Clin Neurosci. 2021;91: 4361. https://doi.org/10.1016/j.jocn.2021.06.032.CrossRefGoogle ScholarPubMed

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×