Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-s7d9s Total loading time: 0 Render date: 2025-11-30T20:46:51.284Z Has data issue: false hasContentIssue false

Chapter 5 - The Computer as a Tool in Understanding and Managing Brain Disease

from Section II - Ideas and Concepts in Modern Neurosurgical Innovation

Published online by Cambridge University Press:  aN Invalid Date NaN

Benjamin Hartley
Affiliation:
Weill Cornell Medical Center
Philip E. Stieg
Affiliation:
Weill Cornell Medical College
Rohan Ramakrishna
Affiliation:
Weill Cornell Medical College
Michael L. J. Apuzzo
Affiliation:
Adjunct of Yale Medical School and Weill Cornell Medical College
Get access

Information

Type
Chapter
Information
Neurosurgery
Beyond the Cutting Edge
, pp. 58
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Kwoh, YS, Hou, J, Jonckheere, EA, Hayati, S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Transactions on Biomedical Engineering [Internet]. 1988 Feb;35(2):153–60.10.1109/10.1354CrossRefGoogle ScholarPubMed
Clark, MC, Hall, LO, Goldgof, DB, Velthuizen, R, Murtagh, FR, Silbiger, MS. Automatic tumor segmentation using knowledge-based techniques. IEEE Transactions on Medical Imaging. 1998 Apr;17(2):187201.10.1109/42.700731CrossRefGoogle ScholarPubMed
Prastawa, M, Bullitt, E, Ho, S, Gerig, G. A brain tumor segmentation framework based on outlier detection*1. Medical Image Analysis. 2004 Sep;8(3):275–83.10.1016/j.media.2004.06.007CrossRefGoogle Scholar
Havaei, M, Dutil, F, Pal, C, Larochelle, H, Jodoin, PM. A convolutional neural network approach to brain tumor segmentation. Lecture Notes in Computer Science. 2016 Jan; 195208.CrossRefGoogle Scholar
Moses, DA, Metzger, SL, Liu, JR, Anumanchipalli, GK, Makin, JG, Sun, PF, et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. New England Journal of Medicine. 2021 Jul;385(3):217–27.10.1056/NEJMoa2027540CrossRefGoogle Scholar
Dundar, TT, Yurtsever, I, Pehlivanoglu, MK, Yildiz, U, Eker, A, Demir, MA, et al. Machine learning-based surgical planning for neurosurgery: Artificial intelligent approaches to the cranium. Frontiers in Surgery. 2022 Apr;9.10.3389/fsurg.2022.863633CrossRefGoogle Scholar
Karabacak, M, Margetis, K. Machine learning-based prediction of short-term adverse postoperative outcomes in cervical disc arthroplasty patients. World Neurosurgery [Internet]. 2023 Jun 15 [cited 2023 Dec 10];S1878-8750(23)007969. Available from: https://pubmed.ncbi.nlm.nih.gov/37330003/Google Scholar
McAvoy, M, Prieto, PC, Kaczmarzyk, JR, Fernández, IS, McNulty, J, Smith, T, et al. Classification of glioblastoma versus primary central nervous system lymphoma using convolutional neural networks. Scientific Reports. 2021 Jul;11(1).10.1038/s41598-021-94733-0CrossRefGoogle ScholarPubMed
Liew, SL, Lo, B, Donnelly, MR, Zavaliangos-Petropulu, Artemis, Jeong, JN, Barisano, G, et al. A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. Scientific Data. 2022 Jun;9(1).10.1038/s41597-022-01401-7CrossRefGoogle ScholarPubMed
Boaro, A, Kaczmarzyk, JR, Kavouridis, VK, Harary, M, Mammi, M, Dawood, H, et al. Deep neural networks allow expert-level brain meningioma segmentation and present potential for improvement of clinical practice. Scientific Reports [Internet]. 2022 Sep 14 [cited 2023 Apr 10];12(1):15462.10.1038/s41598-022-19356-5CrossRefGoogle ScholarPubMed
Su, R, Zhang, D, Liu, J, Cheng, C. MSU-Net: Multi-Scale U-Net for 2D Medical image segmentation. Frontiers in Genetics. 2021 Feb; 12.10.3389/fgene.2021.639930CrossRefGoogle Scholar
Yap, MH, Pons, G, Marti, J, Ganau, S, Sentis, M, Zwiggelaar, R, et al. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE Journal of Biomedical and Health Informatics. 2017 Jul;22(4):1218–26.Google ScholarPubMed
Candemir, S, Jaeger, S, Palaniappan, K, Musco, JP, Singh, RK, Xue, Zhiyun, et al. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Transactions on Medical Imaging. 2013;33(2):577–90.Google ScholarPubMed
Jaeger, S, Karargyris, A, Candemir, S, Folio, L, Siegelman, J, Callaghan, F, et al. Automatic tuberculosis screening using chest radiographs. IEEE Transactions on Medical Imaging. 2013;33(2):233–45.Google ScholarPubMed
Tschandl, P, Rosendahl, C, Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data [Internet]. 2018 Aug;5(1).10.1038/sdata.2018.161CrossRefGoogle ScholarPubMed
Codella, N, Rotemberg, V, Tschandl, P, Celebi, ME, Dusza, S, Gutman, D, et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the International Skin Imaging Collaboration (ISIC). arXiv:190203368 [cs] [Internet]. 2019 Mar 29.Google Scholar
Walsh, J, Othmani, A, Jain, M, Dev, S. Using U-Net Network for efficient brain tumor segmentation in MRI images. Healthcare Analytics. 2022 Aug;100098.10.1016/j.health.2022.100098CrossRefGoogle Scholar
Trebeschi, S, Drago, SG, Birkbak, NJ, Kurilova, I, Cǎlin, AM, Delli Pizzi, A, et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Annals of Oncology [Internet]. 2019 Jun;30(6):9981004.10.1093/annonc/mdz108CrossRefGoogle ScholarPubMed
Jiang, LY, Liu, XC, Nejatian, NP, Nasir-Moin, M, Wang, D, Abidin, A, et al. Health system-scale language models are all-purpose prediction engines. Nature [Internet]. 2023 Jun;1–6. Available from: https://www.nature.com/articles/s41586-023-06160-y.Google Scholar

References

Mezger, U., Jendrewski, C., Bartels, M.. Navigation in surgery. Langenbecks Arch Surg. 2013; 398(4): 501–14.10.1007/s00423-013-1059-4CrossRefGoogle ScholarPubMed
Ma, L. and Baowei, F.. Comprehensive review of surgical microscopes: technology development and medical applications. J Biomed Opt. 2021; 26 (1): 010901.10.1117/1.JBO.26.1.010901CrossRefGoogle ScholarPubMed
Michalak, S. M., Rolston, J. D., Lawton, M. T.. Incidence and predictors of complications and mortality in cerebrovascular surgery: national trends from 2007 to 2012. Neurosurgery. 2016; 79 (2): 182–93.10.1227/NEU.0000000000001251CrossRefGoogle ScholarPubMed
Lakomkin, N., Stannard, B., Fogelson, J. L., et al. Comparison of surgical invasiveness and morbidity of adult spinal deformity surgery to other major operations. Spine J. 2021; 21 (11): 1784–92.10.1016/j.spinee.2021.07.013CrossRefGoogle ScholarPubMed
Kelly, P. J.. Stereotactic imaging, surgical planning and computer-assisted resection of intracranial lesions: methods and results. Adv Tech Stand Neurosurg. 1990; 17: 77118.10.1007/978-3-7091-6925-4_3CrossRefGoogle ScholarPubMed
In: Furht, B. (eds). Augmented Reality. Encyclopedia of Multimedia. Springer, Boston, MA (2006).10.1007/0-387-30038-4CrossRefGoogle Scholar
Hyman, I.. Filippo Brunelleschi. Encyclopedia Britannica, April 11, 2023. https://www.britannica.com/biography/Filippo-Brunelleschi (Accessed June 12, 2023).Google Scholar
Steinhaus, H.. Sur la Localisation au Moyen des Rayons X. Comptes Rendus de L’Acad. des Sci. 1938; 206: 1473–5.Google Scholar
Roberts, D. W., Strohbehn, J. W., Hatch, J. F., et al. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 1986; 65 (4): 545–9.10.3171/jns.1986.65.4.0545CrossRefGoogle ScholarPubMed
Edwards, P. J., Hawkes, D. J., Hill, D. L., et al. Augmentation of reality using an operating microscope for otolaryngology and neurosurgical guidance. J Image Guid Surg. 1995; 1 (3): 172–8.10.1002/(SICI)1522-712X(1995)1:3<172::AID-IGS7>3.0.CO;2-73.0.CO;2-7>CrossRefGoogle ScholarPubMed
Kawamata, T., Iseki, H., Shibasaki, T., et al. Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note. Neurosurgery. 2002; 50 (6): 1393–7.Google ScholarPubMed
Zamorano, L., Vinas, F. C., Buciuc, R., et al. Advanced neurosurgical navigation using a robotic microscope integrated with an infrared-based system. computer-assisted neurosurgery. Springer, Tokyo (1997).Google Scholar
Mascitelli, J. R., Schlachter, L., Chartrain, A. G., et al. Navigation-linked heads-up display in intracranial surgery: early experience. Oper Neurosurg (Hagerstown). 2018; 15 (2): 184–93.Google ScholarPubMed
Fiani, B., Jarrah, R., Griepp, D. W., et al. The role of 3D exoscope systems in neurosurgery: an optical innovation. Cureus. 2021; 13 (6): e15878.Google ScholarPubMed
Guha, D., Alotaibi, N. M., Nguyen, N., et al. Augmented reality in neurosurgery: a review of current concepts and emerging applications. Can J Neurol Sci. 2017; 44 (3): 235–45.10.1017/cjn.2016.443CrossRefGoogle ScholarPubMed
Gerhardt, J., Sollmann, N., Hiepe, P., et al. Retrospective distortion correction of diffusion tensor imaging data by semi-elastic image fusion – evaluation by means of anatomical landmarks. Clin Neurol Neurosurg. 2019; 183: 105387.10.1016/j.clineuro.2019.105387CrossRefGoogle ScholarPubMed
Milgram, P., Takemura, H., Utsumi, A., et al. Augmented reality: a class of displays on the reality-virtuality continuum. Proc. SPIE 2351, Telemanipulator and Telepresence Technologies, (21 December 1995).Google Scholar
Keil, H. and Trapp, O.. Fluoroscopic imaging: new advances. Injury. 2022; 53 Suppl. 3: S815.10.1016/j.injury.2022.05.035CrossRefGoogle ScholarPubMed
Microsoft HoloLens 2. https://www.microsoft.com/en-us/hololens. (Accessed June 11, 2023.)Google Scholar
Magic Leap 2. https://www.magicleap.com/magic-leap-2. (Accessed June 11, 2023.)Google Scholar
Nabiyouni, M., Scerbo, S., Bowman, D. A., et al. Relative effects of real-world and virtual-world latency on an augmented reality training task: an AR simulation experiment. Front. ICT 2017; 3: 34.10.3389/fict.2016.00034CrossRefGoogle Scholar
Negwer, C., Hiepe, P., Meyer, B., et al. Elastic fusion enables fusion of intraoperative magnetic resonance imaging data with preoperative neuronavigation data. World Neurosurg. 2020; 142: e223–8.10.1016/j.wneu.2020.06.166CrossRefGoogle ScholarPubMed
Barak, T., Vetsa, S., Nadar, A., et al. Surgical strategies for older patients with glioblastoma. J Neurooncol. 2021; 155 (3): 255–64.Google ScholarPubMed
Bailey, T. and Durrant-Whyte, H.. Simultaneous Localisation and Mapping (SLAM): part II state of the art. IEEE Robotics & Automation Magazine 2006; 13 (3): 108–17.10.1109/MRA.2006.1678144CrossRefGoogle Scholar
Röntgen, W. C.. On a new kind or rays. Journal of the Franklin Institute 1896; 141; 3: 183–91.10.1016/S0016-0032(96)90066-6CrossRefGoogle Scholar
Why has France lost 80,000 hospital beds in 20 years? https://www.connexionfrance.com/article/French-news/Why-has-France-lost-80-000-hospital-beds-in-20-years. (Accessed June 12, 2023.)Google Scholar
Jean, W. C.. Virtual and augmented reality in neurosurgery: the evolution of its application and study designs. World Neurosurg. 2022; 161: 459–64.10.1016/j.wneu.2021.08.150CrossRefGoogle ScholarPubMed

References

Amorim-Leite, R, Remick, M, Welch, W, Abel, TJ. History of the network approach in epilepsy surgery. Neurosurg Clin N Am. 2020;31(3):301–8.10.1016/j.nec.2020.03.011CrossRefGoogle Scholar
Hanjani, K, Fatehi, M, Schmidt, N, Aghakhani, Y, Redekop, GJ. A history of diagnostic investigations in epilepsy surgery. Can J Neurol Sci. 2021;48(6):845–51.Google ScholarPubMed
Reif, PS, Strzelczyk, A, Rosenow, F. The history of invasive EEG evaluation in epilepsy patients. Seizure. 2016;41:191–5.10.1016/j.seizure.2016.04.006CrossRefGoogle ScholarPubMed
Akhoon, N. Precision medicine: a new paradigm in therapeutics. Int J Prev Med. 2021;12:12.10.4103/ijpvm.IJPVM_375_19CrossRefGoogle ScholarPubMed
Brew-Sam, N, Parkinson, A, Lueck, C, et al. The current understanding of precision medicine and personalised medicine in selected research disciplines: study protocol of a systematic concept analysis. BMJ Open. 2022;12(9):e060326.10.1136/bmjopen-2021-060326CrossRefGoogle ScholarPubMed
Feindel, W, Leblanc, R, De Almeida, AN. Epilepsy surgery: historical highlights 1909–2009. Epilepsia. 2009;50(s3):131–51.10.1111/j.1528-1167.2009.02043.xCrossRefGoogle ScholarPubMed
Stone, JL, Hughes, JR. Early history of electroencephalography and establishment of the American Clinical Neurophysiology Society. J Clin Neurophysiol. 2013;30(1):2844.10.1097/WNP.0b013e31827edb2dCrossRefGoogle ScholarPubMed
Yamamoto, T. Recent advancement of technologies and the transition to new concepts in epilepsy surgery. Neurol Med Chir (Tokyo). 2020;60(12):581–93.10.2176/nmc.ra.2020-0197CrossRefGoogle ScholarPubMed
Meador, KJ, Loring, DW, Flanigin, HF. History of epilepsy surgery. J Epilepsy. 1989;2(1):21–5.10.1016/0896-6974(89)90054-6CrossRefGoogle Scholar
Miller, KJ, Fine, AL. Decision-making in stereotactic epilepsy surgery. Epilepsia. 2022;63(11):2782–801.10.1111/epi.17381CrossRefGoogle ScholarPubMed
Mohamed, A, Wyllie, E, Ruggieri, P, et al. Temporal lobe epilepsy due to hippocampal sclerosis in pediatric candidates for epilepsy surgery. Neurology. 2001;56(12):1643–9.10.1212/WNL.56.12.1643CrossRefGoogle ScholarPubMed
Morrison, G, Duchowny, M, Resnick, T, et al. Epilepsy surgery in childhood: a report of 79 patients. Pediatr Neurosurg. 2008;18(5–6):291–7.Google Scholar
Paolicchi, JM, Jayakar, P, Dean, P, et al. Predictors of outcome in pediatric epilepsy surgery. Neurology. 2000;54(3):642.10.1212/WNL.54.3.642CrossRefGoogle ScholarPubMed
Prats, AR, Morrison, G, Wolf, AL. Focal cortical resections for the treatment of extratemporal epilepsy in children. Neurosurg Clin N Am. 1995;6(3):533–40.10.1016/S1042-3680(18)30447-9CrossRefGoogle ScholarPubMed
Adelson, PD, Black, PM, Madsen, JR, et al. Use of subdural grids and strip electrodes to identify a seizure focus in children. Pediatr Neurosurg. 1995;22(4):174–80.10.1159/000120898CrossRefGoogle ScholarPubMed
Gonzalez-Martinez, J, Bulacio, J, Alexopoulos, A, Jehi, L, Bingaman, W, Najm, I. Stereoelectroencephalography in the “difficult to localize” refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia. 2013;54(2):323–30.10.1111/j.1528-1167.2012.03672.xCrossRefGoogle ScholarPubMed
Gonzalez-Martinez, J, Vadera, S, Mullin, J, et al. Robot-assisted stereotactic laser ablation in medically intractable epilepsy: operative technique. Neurosurgery. 2014;10 Suppl 2:167–72; discussion 172–3.Google Scholar
Gonzalez-Martinez, JA. The stereo-electroencephalography: the epileptogenic zone. Journal of Clinical Neurophysiology. 2016;33(6):522–9.10.1097/WNP.0000000000000327CrossRefGoogle ScholarPubMed
Nelson, JH, Brackett, SL, Oluigbo, CO, Reddy, SK. Robotic stereotactic assistance (ROSA) for pediatric epilepsy: a single-center experience of 23 consecutive cases. Children (Basel). 2020;7(8).Google ScholarPubMed
Guerrini, R, Scerrati, M, Rubboli, G, et al. Overview of presurgical assessment and surgical treatment of epilepsy from the Italian League Against Epilepsy. Epilepsia. 2013;54 Suppl 7:3548.10.1111/epi.12308CrossRefGoogle ScholarPubMed
Stone, SSD, Park, EH, Bolton, J, et al. Interictal connectivity revealed by Granger Analysis of stereoelectroencephalography: association with ictal onset zone, resection, and outcome. Neurosurgery. 2022;91(4):583–9.10.1227/neu.0000000000002079CrossRefGoogle ScholarPubMed
Park, EH, Madsen, JR. Granger Causality analysis of interictal iEEG predicts seizure focus and ultimate resection. Neurosurgery. 2018;82(1):99109.10.1093/neuros/nyx195CrossRefGoogle ScholarPubMed
Belohlavkova, A, Jezdik, P, Jahodova, A, et al. Evolution of pediatric epilepsy surgery program over 2000–2017: improvement of care? Eur J Paediatr Neurol. 2019;23(3):456–65.10.1016/j.ejpn.2019.04.002CrossRefGoogle ScholarPubMed
Simon, SL, Telfeian, A, Duhaime, AC. Complications of invasive monitoring used in intractable pediatric epilepsy. Pediatr Neurosurg. 2003;38(1):4752.10.1159/000067555CrossRefGoogle ScholarPubMed
Hader, WJ, Tellez-Zenteno, J, Metcalfe, A, et al. Complications of epilepsy surgery: a systematic review of focal surgical resections and invasive EEG monitoring. Epilepsia. 2013;54(5):840–7.10.1111/epi.12161CrossRefGoogle ScholarPubMed
Rotenberg, K. Bayesian Localization of the Seizure Onset Zone: A Theoretical Framework for Surgical Decision Making. Bachelor’s thesis, Harvard University; 2023.Google Scholar
Hoogteijling, S, Zijlmans, M. Deep learning for epileptogenic zone delineation from the invasive EEG: challenges and lookouts. Brain Comm. 2021;4(1).Google ScholarPubMed
Mirchi, N, Warsi, NM, Zhang, F, et al. Decoding intracranial EEG with machine learning: a systematic review. Front Hum Neurosci. 2022;16:913777.10.3389/fnhum.2022.913777CrossRefGoogle ScholarPubMed
Andrzejak, RG, Schindler, KA, Rummel, C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys Rev E Stat Nonlin Soft Matter Phys. 2012;86 4 Pt 2:046206.10.1103/PhysRevE.86.046206CrossRefGoogle ScholarPubMed
Andrzejak, RG, Lehnertz, K, Mormann, F, Rieke, C, David, P, Elger, CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E Stat Nonlin Soft Matter Phys. 2001;64(6 Pt 1):061907.10.1103/PhysRevE.64.061907CrossRefGoogle ScholarPubMed
Jehi, L. Machine learning for precision epilepsy surgery. Epilepsy Currents. 2023;23(2):7883.10.1177/15357597221150055CrossRefGoogle ScholarPubMed
Jacobs, J, Staba, R, Asano, E, et al. High-frequency oscillations (HFOs) in clinical epilepsy. Prog Neurobiol. 2012;98(3):302–15.10.1016/j.pneurobio.2012.03.001CrossRefGoogle ScholarPubMed
Munia, TTK, Aviyente, S. Time-frequency based phase-amplitude coupling measure for neuronal oscillations. Sci Rep. 2019;9(1):12441.10.1038/s41598-019-48870-2CrossRefGoogle ScholarPubMed
Yuste, R, Goering, S, Arcas, BAY, et al. Four ethical priorities for neurotechnologies and AI. Nature. 2017;551(7679):159–63.10.1038/551159aCrossRefGoogle ScholarPubMed
Asplund, M. Accessing the brain with soft deployable electrocorticography arrays. Sci Robot. 2023;8(78):eadg2785.10.1126/scirobotics.adg2785CrossRefGoogle ScholarPubMed
Song, S, Fallegger, F, Trouillet, A, Kim, K, Lacour, SP Deployment of an electrocorticography system with a soft robotic actuator. Sci Robot. 2023;8(78):eadd1002.10.1126/scirobotics.add1002CrossRefGoogle ScholarPubMed

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×