Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-qdphv Total loading time: 0 Render date: 2025-11-22T15:28:07.793Z Has data issue: false hasContentIssue false

11 - Recent Developments on Compactifications of Stacks of Shtukas

Published online by Cambridge University Press:  31 October 2025

Pedro L. del Ángel R.
Affiliation:
Centro de Investigación en Matemáticas
Frank Neumann
Affiliation:
Università di Pavia
Alexander H. W. Schmitt
Affiliation:
Freie Universität Berlin
Get access

Summary

This text presents an overview of recent developments on compactifications of moduli stacks of shtukas. The aim is to explain how to tackle the problem of compactifying stacks of shtukas by two different methods: the Langton semistable reduction and the Geometric Invariant Theory.

Information

Type
Chapter
Information
Moduli, Motives and Bundles
New Trends in Algebraic Geometry
, pp. 423 - 446
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Arasteh Rad, E.. and U. Hartl. Uniformizing the moduli stacks of global G-shtukas. Int. Math. Res. Not. IMRN, (21):1612116192, 2021.10.1093/imrn/rnz223CrossRefGoogle Scholar
Beilinson, A. and Drinfeld, V.. Quantization of Hitchin’s integrable system and Hecke eigensheaves. available at www.math.uchicago.edu/∼mitya/langlands/hitchin/BD-hitchin.pdf, 1999.Google Scholar
De Concini, C. and Procesi, C.. Complete symmetric varieties. In Invariant theory (Montecatini, 1982), volume 996 of Lecture Notes in Math., pages 144, 1983.Google Scholar
Drinfeld, V.. Elliptic modules. Mat. Sb. (N.S.), 94(136):594627, 656, 1974.Google Scholar
Drinfeld, V.. Elliptic modules. II. Mat. Sb. (N.S.), 102(144)(2):182194, 325, 1977.Google Scholar
Drinfeld, V.. Varieties of modules of F-sheaves. Functional Analysis and its Applications, 21:107122, 1987.CrossRefGoogle Scholar
Drinfeld, V.. Proof of the Petersson conjecture for GL(2) over a global field of characteristic p. Functional Analysis and its Applications, 22(1):2843, 1988.10.1007/BF01077720CrossRefGoogle Scholar
Drinfeld, V.. Cohomology of compactified manifolds of modules of F-sheaves of rank 2. Journal of Soviet Mathematics, 46:17891821, 1989.Google Scholar
Heinloth, J.. Semistable reduction for G-bundles on curves. J. Algebraic Geom., 17:167183, 2008.CrossRefGoogle Scholar
Heinloth, J.. Addendum to “Semistable reduction of G-bundles on curves”. J. Algebraic Geom., 19(1):193197, 2010.Google Scholar
Heinloth, J.. Lectures on the moduli stack of vector bundles on a curve. In Affine flag manifolds and principal bundles, Trends Math., pages 123153. Birkhäuser/Springer Basel AG, Basel, 2010.Google Scholar
Lafforgue, L.. Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson. Astérisque, 243, 1997.Google Scholar
Lafforgue, L.. Une compactification des champs classifiant les chtoucas de Drinfeld. J. Amer. Math. Soc., 11:10011036, 1998.10.1090/S0894-0347-98-00272-0CrossRefGoogle Scholar
Lafforgue, L.. Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math., 147:1241, 2002.CrossRefGoogle Scholar
Lafforgue, L.. Cours à l’Institut Tata sur les chtoucas de Drinfeld et la correspondance de Langlands, prépublication de l’IHES, M/02/45, 2002.Google Scholar
Lafforgue, V.. Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale. J. Amer. Math. Soc., 31(3):719891, 2018.CrossRefGoogle Scholar
Lafforgue, V.. Shtukas for reductive groups and Langlands correspondence for function fields. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures, pages 635668. World Sci. Publ., Hackensack, NJ, 2018.Google Scholar
Langton, S.. Valuative criteria for families of vector bundles on algebraic varieties. Ann. of Math. (2), 101:88110, 1975.Google Scholar
Lau, E.. On generalised D-shtukas. Dissertation, Bonner Mathematische Schriften [Bonn Mathematical Publications], Universitat Bonn, Mathematisches Institut, Bonn, 369, 2004.Google Scholar
Lau, E.. On degenerations of D-shtukas. Duke Math. J., 140:351389, 2007.Google Scholar
Laumon, G.. Drinfeld shtukas. In Vector bundles on curves—new directions (Cetraro, 1995), volume 1649 of Lecture Notes in Math., pages 50109. Springer, Berlin, 1997.10.1007/BFb0094425CrossRefGoogle Scholar
Laumon, G. and Moret-Bailly, L.. Champs algébriques, volume 39 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2000.CrossRefGoogle Scholar
Laumon, G., Rapoport, M., and Stuhler, U.. D-elliptic sheaves and the Langlands correspondence. Invent. Math., 113:217338, 1993.10.1007/BF01244308CrossRefGoogle Scholar
Mumford, D., Fogarty, J., and Kirwan, F.. Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, Third edition, 1994.Google Scholar
Neumann, F.. Algebraic stacks and moduli of vector bundles. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2009. 27o Colóquio Brasileiro de Matemática. [27th Brazilian Mathematics Colloquium].Google Scholar
Ngo, B.-C.. D-chtoucas de Drinfeld à modifications symétriques et identité de changement de base. Ann. Sci. Ecole Norm. Sup., 39:197243, 2006.Google Scholar
Ngo Dac, T.. Compactification des champs de chtoucas et théorie géométrique des invariants. Astérisque, 313, +124 pp., 2007.Google Scholar
Ngo Dac, T. and Varshavsky, Y.. On compactifications of stacks of shtukas, preprint, last version: August 2023, 2023.Google Scholar
Seshadri, C. S.. Space of unitary vector bundles on a compact Riemann surface. Ann. of Math. (2), 85:303336, 1967.10.2307/1970444CrossRefGoogle Scholar
Varshavsky, Y.. Moduli spaces of principal F-bundles. Selecta Math. (N.S.), 10(1):131166, 2004.Google Scholar
E. B. Vinberg On reductive algebraic semigroups. In Lie groups and Lie algebras: E. B. Dynkin’s Seminar, volume 169 of Amer. Math. Soc. Transl. Ser. 2, pages 145182, 1995.Google Scholar

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×