Published online by Cambridge University Press: 31 October 2025
The notion of linear stability of a variety in projective space was introduced by Mumford in the context of GIT. It has subsequently been applied by Mistretta and others to Butler’s conjecture on stability of the dual span bundle (DSB) MV,E of a general generated coherent system (E,V)
. We survey recent progress in this direction on rank one coherent systems, prove a new result for hyperelliptic curves, and state some open questions. We then extend the definition of linear stability to generated coherent systems of higher rank. We show that various coherent systems with unstable DSB studied in \cite{bmno} are also linearly unstable. We show that linearly stable coherent systems of type (2, d, 4) for low enough d have stable DSB, and use this to prove a particular case of Butler’s conjecture. We then exhibit a linearly stable generated coherent system with unstable DSB, confirming that linear stability of (E,V)
 in general remains weaker than semistability of MV,E
 in higher rank. We end with a list of open questions on the higher rank case.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.