Skip to main content Accessibility help
×
Hostname: page-component-7dd5485656-glrdx Total loading time: 0 Render date: 2025-10-27T06:36:21.630Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 October 2025

Peter J. Mouginis-Mark
Affiliation:
University of Hawaii, Manoa
Joseph M. Boyce
Affiliation:
University of Hawaii
Get access

Information

Type
Chapter
Information
Martian Impact Craters
A Morphological Perspective
, pp. 150 - 159
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abramov, O., Kring, D. A. (2005). Impact-induced hydrothermal activity on early Mars. J. Geophys. Res. 110(E12S09), doi:10.1029/2005JE002453, 19 pp.Google Scholar
Acuna, M. H. et al. (1999). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790793.CrossRefGoogle ScholarPubMed
Allen, C. C. (1979). Large lunar secondary craters: Size-range relationships. Geophys. Res. Lett. 6(1), 5154.CrossRefGoogle Scholar
Alzate, N., Barlow, N. G. (2011). Central pits on Ganymede. Icarus 211, 12741283.CrossRefGoogle Scholar
Anderson, F. S. et al. (2020). Pb-Pb dating of terrestrial and extraterrestrial samples using resonance ionization mass spectrometry. Earth Space Sci. 7, e2020EA001177, doi:10.1029/2020EA001177.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. C., Lewis, K. W. (2011). Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. J. Geophys. Res. 116, E02007, doi:10.1029/2010JE003709, 20 pp.Google Scholar
Ansan, V. et al. (2011). Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars. Icarus 211, 273304.CrossRefGoogle Scholar
Arvidson, R. E. (1974). Morphologic classification of Martian craters and some implications. Icarus 22, 264271.CrossRefGoogle Scholar
Arvidson, R. E. et al. (1976). Latitudinal variation of wind erosion of crater ejecta deposits on Mars. Icarus 27(4), 503516.CrossRefGoogle Scholar
Arvidson, R. E. et al. (1980). A post-Viking view of Martian geologic evolution. Revs. Geophys. Space Phys. 18, 565603.CrossRefGoogle Scholar
Ashley, J. W. et al. (2012). Geology of the King crater region: New insights into impact melt dynamics on the Moon. J. Geophys. Res. 117, 113, doi:10.1029/2011JE003990.Google Scholar
Baker, D. M. H. et al. (2011). The transition from complex crater to peak-ring basin on Mercury: New observations from MESSENGER flyby data and constraints on basin formation models. Planet. Space Sci. 59, 19321948.CrossRefGoogle Scholar
Baker, V. R., Kochel, R. C. (1979). Martian channel morphology: Maja and Kasei Valles. J. Geophys. Res. 84(B14), 79617983.CrossRefGoogle Scholar
Baker, V. R. et al. (1991). Ancient oceans, ice sheets and the hydrological cycle of Mars. Nature 352, 589594.CrossRefGoogle Scholar
Balaram, J. et al. (2021). The Ingenuity helicopter on the Perseverance rover. Space Sci. Rev. 217, 56, doi:10.1007/s11214-021-00815.CrossRefGoogle Scholar
Baloga, S. M. et al. (2005). Emplacement of Martian rampart crater deposits. J. Geophys. Res. 110(E10001), doi:10.1029/2004JE002338, 12 pp.Google Scholar
Bamberg, M. et al. (2014). Floor-fractured craters on Mars – Observations and origin. Planet. Space Sci. 98, 146162, doi:10.1016/j.pss.2013.09.017.CrossRefGoogle Scholar
Bandfield, J. L. et al. (2000). A global view of Martian surface compositions from MGS-TES. Science 287, 16261630.CrossRefGoogle Scholar
Baratoux, D. et al. (2002). An instability mechanism in the formation of the Martian lobate craters and implications for the rheology of ejecta. Geophys. Res. Lett. 29(51), doi:10.1029/2001GL013779, 4 pp.CrossRefGoogle Scholar
Baratoux, D. et al. (2005). Thermal properties of lobate ejecta in Syrtis Major, Mars: Implications for the mechanism of formation. J. Geophys. Res. 110(E04011), doi:10.1029/2004JE002314, 14 pp.Google Scholar
Barlow, N. G. (1994). Sinuosity of Martian rampart ejecta deposits. Geophys. Res. Lett. 99, 10927–10935.CrossRefGoogle Scholar
Barlow, N. G. (1995). The degradation of impact craters in Maja Valles and Arabia, Mars. J. Geophys. Res. 100(E11), 23307–23316.Google Scholar
Barlow, N. G. (2004). Martian subsurface volatile concentrations as a function of time: Clues from layered ejecta craters. Geophys. Res. Lett. 31(05703), doi:10.1029/2003GL019075, 4 pp.CrossRefGoogle Scholar
Barlow, N. G. (2005). A review of Martian impact crater ejecta structures and their implications for target properties. In: Kenkmann, T., Hörz, F., Deutsch, A. (Eds.), Large Meteorite Impact III, Geological Society of America Special Paper 384, pp. 433442, doi:10.1130/0-8137-2384-1.433.Google Scholar
Barlow, N. G. (2006). Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristics. Meteor. Planet. Sci. 41(10), 14251436.CrossRefGoogle Scholar
Barlow, N. G. (2015). Characteristics of impact craters in the northern hemisphere of Mars. In: Osinski, G. R., Kring, D. A. (Eds.), Large Meteorite Impacts and Planetary Evolution V, Special Paper 518, Geological Society of America, Denver, CO, USA, pp. 3163.CrossRefGoogle Scholar
Barlow, N. G., Bradley, T. L. (1990). Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain. Icarus 87, 156179.CrossRefGoogle Scholar
Barlow, N. G., Perez, C. B. (2003). Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles. J. Geophys. Res. 108(5085), doi:10.1029/2002JE002036, 4 pp.Google Scholar
Barlow, N. G., Pollak, A. (2002). Comparisons of ejecta mobility ratios in the Northern and Southern Hemispheres of Mars. Lunar Planet. Sci. XXXIII, abs. #1322.Google Scholar
Barlow, N. G., et al. (2000). Standardizing the nomenclature of Martian impact crater ejecta morphologies. J. Geophys. Res. 105(E11), 26733–26738, doi:10.1029/2000JE001258.Google Scholar
Barlow, N. G. et al. (2001). Variations in the onset diameter for Martian layered ejecta morphologies and their implications for subsurface volatile reservoirs. Geophys. Res. Lett. 28(16), 30953098.CrossRefGoogle Scholar
Barlow, N. G. et al. (2014). Martian low-aspect-ratio layered ejecta (LARLE) craters: Distribution, characteristics, and relationship to pedestal craters. Icarus 239, 186200.CrossRefGoogle Scholar
Barlow, N. G. et al. (2017). Comparison of central pits craters on Mars, Mercury, Ganymede, and the Saturnian satellites. Meteor. Planet. Sci. 52(7), 13711387.CrossRefGoogle Scholar
Barnouin-Jha, O. S., Schultz, P. H. (1996). Ejecta entrainment by impact-generated ring vortices: Theory and experiments. J. Geophys. Res. 101(E9), 21099–21115.Google Scholar
Barnouin-Jha, O. S. et al. (1999a). Investigating the interactions between an atmosphere and an ejecta curtain: 1. Wind tunnel tests. J. Geophys. Res. 104(E11), 27105–27131.Google Scholar
Barnouin-Jha, O. et al. (1999b). Investigating the interactions between an atmosphere and an ejecta curtain: 2. Numerical experiments. J. Geophys. Res. 104(E11), 27117–27131.Google Scholar
Barnouin-Jha, O. S. et al. (2005). Comparing landslides to fluidized crater ejection Mars. J. Geophys. Res. 110(EO4010), doi:10.1029/2003JE002214, 22 pp.Google Scholar
Bart, G. D. et al. (2011). Global survey of lunar regolith depths from LROC images. Icarus 215(2), 485490.CrossRefGoogle Scholar
Beddington, C. B. et al. (2021). The relationship between thermal inertia and degradation state of craters in areas of low surface dust cover on Mars. Icarus 370, 114678.Google Scholar
Bell, J. (2008). The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge Planetary Science Series, Cambridge University Press, p. 636.CrossRefGoogle Scholar
Bennett, K. A., Bell, J. F. (2016). A global survey of Martian central mounds: Central mounds as remnants of previously more extensive large-scale sedimentary deposits. Icarus 264, 331341.CrossRefGoogle Scholar
Berman, D. C. et al. (2005). The role of arcuate ridges and gullies in the degradation of craters in the Newton Basin region of Mars. Icarus 178(2), 465486.CrossRefGoogle Scholar
Bernhardt, H. et al. (2016). Photogeologic mapping and the geologic history of the Hellas basin floor, Mars. Icarus 264, 407442.CrossRefGoogle Scholar
Black, B. A., Stewart, S. T. (2008). Excess ejecta craters record episodic ice-rich layers at middle latitudes on Mars. J. Geophys. Res. 113(E02015), doi:10.1029/2007JE002888, 22 pp.Google Scholar
Bland, M. T., Bray, V. J. (2024). The inevitability of large shallow craters on Callisto and Ganymede: Implications for crater depth-diameter trends. Icarus 408, 115811.CrossRefGoogle Scholar
Blewett, D. T. et al. (2011). Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity. Science 333(6051), 18561859.CrossRefGoogle ScholarPubMed
Blewett, D. T. et al. (2013). Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. J. Geophys. Res. 118(5), 10131032.CrossRefGoogle Scholar
Blom, R. G., Daily, M. (1984). Radar image processing for rock-type discrimination. IEEE Trans Geosci. Rem. Sens. GE-20(3), 343351.CrossRefGoogle Scholar
Boyce, J. M., Garbeil, H. (2007). Geometric relationships of pristine Martian complex impact craters, and their implications to Mars geologic history. Geophys. Res. Lett. 34(L16201), doi:10.1029/2007GL029731, 5 pp.CrossRefGoogle Scholar
Boyce, J. M., Mouginis-Mark, P. J. (2006). Martian craters viewed by the Thermal Emission Imaging System instrument: Double-layered ejecta craters. J. Geophys. Res. 111(E10005), doi:10.1029/2005JE002638, 21 pp.Google Scholar
Boyce, J. M., Mouginis-Mark, P. J. (2020). Possible self-secondary cratering on the rim of Tooting crater, Mars. 51st Lunar Planet. Sci. Conf. abs. No. 1106.Google Scholar
Boyce, J. M., Mouginis-Mark, P. J. (2021). Morphologic differences in radial grooves on Martian layered (fluidized) ejecta: Implications for emplacement processes and conditions. Icarus 366, 114513.CrossRefGoogle Scholar
Boyce, J. M., Mouginis-Mark, P. J. (2025). A conceptual model for the formation of ramparts on Martian impact crater ejecta. Icarus, 425, 116336, 9 pp.CrossRefGoogle Scholar
Boyce, J. M. et al. (2005). Ancient oceans in the northern lowlands of Mars: Evidence from impact crater depth/diameter relationships. J. Geophys. Res. 110(E03008), doi:10.1029/2004JE002328, 15 pp.Google Scholar
Boyce, J. M. et al. (2006). Deep impact craters in the Isidis and southwestern Utopia Planitia regions of Mars: High target material strength as a possible cause. Geophys. Res. Lett. 33(L06202), doi:10.1029/2005GL024462, 4 pp.CrossRefGoogle Scholar
Boyce, J. M. et al. (2010). Rampart craters on Ganymede: Their implications for fluidized ejecta emplacement. Meteor. Planet. Sci. 45(4), 638661.CrossRefGoogle Scholar
Boyce, J. M. et al. (2012). Origin of small pits in Martian impact craters. Icarus 221(1), 262275.CrossRefGoogle Scholar
Boyce, J. M. et al. (2015). Origin of the outer layer of Martian low-aspect ratio layered ejecta craters. Icarus 245, 263272.CrossRefGoogle Scholar
Boynton, W. V. et al. (1992). Science applications of the Mars Observer gamma ray spectrometer. J. Geophys. Res. 97(E5), 76817698.CrossRefGoogle Scholar
Bray, V. J. et al. (2010). New insight into lunar impact melt mobility from the LRO camera. Geophys. Res. Lett. 37(L21202), doi:10.1029/2010GL044666, 5 pp.CrossRefGoogle Scholar
Bray, V. J. et al. (2012). Investigating the transition from central peak to peak-ring basins using central feature volume measurements from the Global Lunar DTM 100 m. Geophys. Res. Lett. 39(21), L21201, doi:10.1029/2012GL053693.CrossRefGoogle Scholar
Breed, C. S. et al. (1979). Morphology and distribution of common “sand” dunes on Mars: Comparison with the Earth. J. Geophys. Res. 84(B14), 81838204.CrossRefGoogle Scholar
Bridges, J. C., Schwenzer, S. P. (2012). The nakhlite hydrothermal brine on Mars. Earth Planet. Sci. Lett. 359–360, 117123.CrossRefGoogle Scholar
Bridges, N. T. et al. (2017). Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit. J. Geophys. Res. 122(10), 20772110.CrossRefGoogle Scholar
Brown, A. J. et al. (2008). Louth crater: Evolution of a layered water ice mound. Icarus 196(2), 433445.CrossRefGoogle Scholar
Buczkowski, D. L. et al. (2005). Buried impact craters: A topographic analysis of quasi-circular depressions, Utopia Basin. Mars, J. Geophys. Res. 110(E03007), doi:10.1029/2004JE002324, 8 pp.Google Scholar
Burr, D. M. et al. (2009). Floods from fossae: A review of Amazonian-aged extensional-tectonic megaflood channels on Mars. In: Burr, D. M., Carling, P. A., Baker, V. R. (Eds.), Megaflooding on Earth and Mars. Cambridge University Press, pp. 194208.CrossRefGoogle Scholar
Carr, M. H. (2006). The Surface of Mars. Cambridge University Press, p. 307.Google Scholar
Carr, M. H., Head, J. W. (2003). Oceans on Mars: An assessment of the observational evidence and possible fate. J. Geophys. Res. 108(E5, no. 5042), doi:10.1029/2002JE001963, 28 pp.Google Scholar
Carr, M. H., Head, J. W. (2010). Geologic history of Mars. Earth Planet. Sci. Lett. 294(3–4), 185203.CrossRefGoogle Scholar
Carr, M. H., Head, J. W. (2015). Martian surface/near-surface water inventory: Sources, sinks and changes with time. Geophys. Res. Lttrs. 42, 726732.CrossRefGoogle Scholar
Carr, M. H. et al. (1977). Martian impact craters and emplacement of ejecta by surface flow. J. Geophys. Res. 82(28), 40554065.CrossRefGoogle Scholar
Caudill, C. M. et al. (2012). Layered megablocks in the central uplifts of impact craters. Icarus 221(2), 710720.CrossRefGoogle Scholar
Caudill, C. M. et al. (2018). Ejecta deposits of Bakhuysen crater, Mars. Icarus 314, 175194.CrossRefGoogle Scholar
Chadwick, D. J., Schaber, G. G. (1993). Impact crater outflows on Venus: Morphology and emplacement mechanisms. J. Geophys. Res. 98, 20891–20902.Google Scholar
Chappelow, J. E., Sharpton, V. L. (2002). An improved shadow measurement technique for constraining the morphometry of simple impact craters. Meteor. Planet. Sci., 37, 479486.CrossRefGoogle Scholar
Chappelow, J. E., Herrick, R. R. (2008). On the origin of a double, oblique impact on Mars. Icarus 197, 452457.CrossRefGoogle Scholar
Chojnacki, M. et al. (2011). Orbital observations of contemporary dune activity in Endeavor crater, Meridiani Planum, Mars. J. Geophys. Res. 116(E00F19), doi:10.1029/2010JE003675, 20 pp.Google Scholar
Christensen, P. R. (2003). Formation of recent Martian gullies through melting of extensive water-rich snow deposits. Nature 422, 4548.CrossRefGoogle ScholarPubMed
Christensen, P. R. et al. (1992). Thermal emission spectrometer experiment: Mars observer mission. J. Geophys. Res. 97, 77197734.CrossRefGoogle Scholar
Christensen, P. R. et al. (1998). Results from the Mars Global Surveyor Thermal Emission Spectrometer. Science 279, 16921698.CrossRefGoogle ScholarPubMed
Christensen, P. R. et al. (2004). The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Sci. Rev. 110, 85130.CrossRefGoogle Scholar
Christian, J. R. et al. (2022). CRISM-based high spatial resolution thermal inertia mapping along Curiosity’s traverses in Gale Crater. J. Geophys. Res. 127, e2021JE007076.CrossRefGoogle Scholar
Chuang, F. C. et al. (2016). Zumba crater, Daedalia Planum, Mars: Geologic investigation of a young, rayed impact crater and its secondary field. Icarus 269, 7590.CrossRefGoogle Scholar
Cintala, M. J., Mouginis-Mark, P. J. (1980). Martian fresh crater depths: More evidence for subsurface volatiles? Geophys. Res. Lett. 7, 329332.CrossRefGoogle Scholar
Cintala, M. J. et al. (1976). Characteristics of fresh Martian craters as a function of diameter: Comparison with the Moon and Mercury. Geophys. Res. Lett. 3, 117120.CrossRefGoogle Scholar
Cintala, M. J. et al. (1977). The effects of target characteristics on fresh crater morphology: Preliminary results for the moon and Mercury. Proc. Lunar Sci. Conf. 8th, pp. 3409–3425.Google Scholar
Clifford, S. M. (1993). A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. 98, 10973–11016.Google Scholar
Clifford, S. M. et al. (2010). Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, E07001. doi:10.1029/2009JE003462.Google Scholar
Cohen, B. A. et al. (2021). In situ geochronology for the next decade: Mission designs for the Moon, Mars, and Vesta. Planet. Sci. J. 2, 145.CrossRefGoogle Scholar
Conway, S. J. et al. (2012). Climate-driven deposition of water ice and the formation of mounds in craters in Mars’ north pole region. Icarus 220, 174193.CrossRefGoogle Scholar
Cordell, B. M. et al. (1974). Martian cratering and central peak statistics: Manner 9 results. Icarus 21, 448456.CrossRefGoogle Scholar
Costard, F. et al. (2019). The Lomonosov crater impact event: A possible mega-tsunami source on Mars. J. Geophys. Res. 124, 18401851.CrossRefGoogle Scholar
Craddock, R. A., Howard, A. D. (2002). The case for rainfall on a warm, wet early Mars. J. Geophys. Res. 107(5111), doi:10.1029/2001JE001505, 21 pp.Google Scholar
Craddock, R. A. et al. (1997). Crater morphology and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars. J. Geophys. Res. 102, 13321–13340.Google Scholar
Craddock, R. A. et al. (2018). An assessment of regional variations in Martian modified impact crater morphology. J. Geophys. Res. 123, doi:10.1002/2017JE005412, 763779.CrossRefGoogle Scholar
Crumpler, L. S. et al. (2015). Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater. J. Geophys. Res. 120, doi:10.1012/2014JE004699, 538569.CrossRefGoogle Scholar
Daubar, I. J. et al. (2014). The morphology of small fresh craters on Mars and the Moon. J. Geophys. Res. 119, 26202639, doi:10.1002/2014JE004671.CrossRefGoogle Scholar
Daubar, I. J. et al. (2016). Changes in blast zone albedo patterns around new Martian impact craters. Icarus 267, 86105.CrossRefGoogle Scholar
Daubar, I. J. et al. (2022). New craters on Mars: An updated catalog. J. Geophys. Res. 127(7), e2021JE007145.CrossRefGoogle Scholar
Davis, P. A., Soderblom, L. A. (1984). Modeling crater topography and albedo from monoscopic Viking orbiter images. J. Geophys. Res. 89, 94499457.CrossRefGoogle Scholar
Denevi, B. W. et al. (2012). Pitted terrain on Vesta and implications for the presence of volatiles. Science 338, 246249.CrossRefGoogle ScholarPubMed
De Toffoli, B. et al. (2021). Rheological and mechanical layering of the crust underneath thumbprint terrains in Arcadia Planitia, Mars. J. Geophys. Res. 126, e2021JE007007.CrossRefGoogle Scholar
Dickson, J. L., Head, J. W. (2009). The formation and evolution of youthful gullies on Mars: Gullies as the late-stage phase of Mars’ most recent ice age. Icarus 204, 6386.CrossRefGoogle Scholar
Ding, N. et al. (2015). The central uplift of Ritchey crater, Mars. Icarus 252, 255270.CrossRefGoogle Scholar
Diot, X. et al. (2014). The geomorphology and morphometry of the banded terrain in Hellas basin, Mars. Planet. Space Sci. 101, 118134.CrossRefGoogle Scholar
Dohm, J. M. et al. (2007). Possible ancient giant basin and related water enrichment in the Arabia Terra province, Mars. Icarus 190, 7492.CrossRefGoogle Scholar
Dombard, A. J., McKinnon, W. B. (2006). Elastoviscoplastic relaxation of impact crater topography with application to Ganymede and Callisto. J. Geophys. Res. 111, E01001, doi:10.1029/2005JE002445, 22 pp.Google Scholar
Dundas, C. M., McEwen, A. S. (2007). Rays and secondary craters of Tycho. Icarus 186(1), 3140.CrossRefGoogle Scholar
Dundas, C. M. et al. (2014). HiRISE observations of new impact craters exposing Martian ground ice. J. Geophys. Res. 119, 109127.CrossRefGoogle Scholar
Dundas, C. M. et al. (2019). The formation of gullies on Mars today. In: Conway, S. J., Carrivick, J. L., Carling, P. A., de Hass, T., Harrison, T. N. (Eds.), Martian Gullies and Their Earth analogues, Geological Society American Special Publication 467, pp. 67–94.Google Scholar
Dundas, C. M. et al. (2021). Widespread exposures of extensive clean shallow ice in the midlatitudes of Mars. J. Geophys. Res. 126, e2020JE006617.CrossRefGoogle Scholar
Eberhardt, P. et al. (1973). How old is the crater Copernicus? The Moon 8, 104114.CrossRefGoogle Scholar
Edwards, C. S. et al. (2009). Global distribution of bedrock exposures on Mars using THEMIS high-resolution thermal inertia. J. Geophys. Res. 114, E11001, doi:10.1029/2009JE003363, 18 pp.Google Scholar
Edwards, C. S. et al. (2014). The formation of infilled craters on Mars: Evidence for widespread impact induced decompression of the early Martian mantle? Icarus 228, 149166.CrossRefGoogle Scholar
Elder, C. M. et al. (2012). The theoretical plausibility of central pit crater formation via melt drainage. Icarus 221, 831843.CrossRefGoogle Scholar
Elliott, J. R. et al. (2018). The length of lunar crater rays explained using secondary crater scaling. Icarus 312, 231246.CrossRefGoogle Scholar
El-Maarry, M. R. et al. (2013). Morphology and evolution of the ejecta of Hale crater in Argyre basin, Mars: Results from high resolution mapping. Icarus 226, 905922.CrossRefGoogle Scholar
Evans, D. L. et al. (1986). Multipolarization radar images for geologic mapping and vegetation discrimination. IEEE Trans. Geosci. Rem. Sens. GE-24, 246257.CrossRefGoogle Scholar
Fairen, A. G. et al. (2003). Episodic flood inundations of the northern plains of Mars. Icarus 165, 5367.CrossRefGoogle Scholar
Fanale, F. P. et al. (1986). Global distribution and migration of subsurface ice on Mars. Icarus, 67(1), 118.CrossRefGoogle Scholar
Farr, T. G. et al. (2007). The Shuttle Radar Topography Mission. Revs. Geophys. 45, 133.CrossRefGoogle Scholar
Fassett, C. I., Head, J. W. (2007). Layered mantling deposits in northeast Arabia Terra, Mars: Noachian-Hesperian sedimentation, erosion, and terrain inversion. J. Geophys. Res. 112, E08002, doi:10.1029/2006JE002875, 19 pp.Google Scholar
Fassett, C. I. et al. (2009). Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains. Earth Planet. Sci. Lett. 285, 297308.CrossRefGoogle Scholar
Feldman, W. C. et al. (2011). Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars. J. Geophys. Res. 116, E11009, doi:10.1029/2011JE003806.Google Scholar
Fishbaugh, K. E., Head, J. W. (2001). Comparison of the North and South polar caps on Mars: New observations from MOLA data and discussion of some outstanding questions. Icarus 154, 145161.CrossRefGoogle Scholar
Forget, F. et al. (2017). Recent climate variations. In: The Atmosphere and Climate of Mars. Edited by Haberle, R. M., Clancy, R. T., Forget, F., Smith, M. D., and Zurek, R. W.. Cambridge University Press, pp. 497525.CrossRefGoogle Scholar
Forsberg-Taylor, N. K. et al. (2004). Crater degradation in the Martian highlands: Morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes. J. Geophys. Res. 109(E05002), doi:10.1029/2004JE002242, 12 pp.Google Scholar
Frey, H. (2008). Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system. Geophys. Res. Lett. 35, L132030, doi:10.1029/2008GL033515.CrossRefGoogle Scholar
Frey, H. et al. (1999). Discovery of a 450 km diameter, multi-ring basin on Mars through analysis of MOLA topographic data. Geophys. Res. Lett. 26, 16571660.CrossRefGoogle Scholar
Frey, H. V. et al. (2002). Ancient lowlands of Mars. Geophys. Res. Lett. 29, 1384 doi:10.1029/2001GL013832, 22 pp.CrossRefGoogle Scholar
Garvin, J. B., Frawley, J. J. (1998). Geometric properties of Martian impact craters: Preliminary results from the Mars Orbiter Laser Altimeter. Geophys. Res. Lett. 25(24), 44054408.CrossRefGoogle Scholar
Garvin, J. B. et al. (2000). North polar region craterforms on Mars. Geometric characteristics from the Mars Orbiter Laser Altimeter. Icarus 144, 329352.CrossRefGoogle Scholar
Gault, D. E., Greeley, R. (1978). Exploratory experiments on impact craters formed in viscous-liquid targets: Analogs for Martian rampart craters? Icarus 34, 486495.CrossRefGoogle Scholar
Gault, D. E., Wedekind, J. A. (1978). Experimental studies of oblique impacts. Proc. Lunar Planet. Sci. Conf. 9th, pp. 3843–3875.Google Scholar
Gault, D. E. et al. (1968). Impact cratering mechanics and structures. In: French, B. M., Short, N. M. (Eds.), Shock Metamorphism of Natural Materials. Mono Book Corp., pp. 8799.Google Scholar
Goddard, K. et al. (2014). Mechanisms and timescales of fluvial activity at Mojave and other young Martian craters. J. Geophys. Res. 119, 604634.CrossRefGoogle Scholar
Goldspiel, J. M., Squyres, S. W. (2011). Groundwater discharge and gully formation on Martian slopes. Icarus 211, 238258.CrossRefGoogle Scholar
Gou, S. et al. (2024). Paleoenvironment implications of layered ejecta craters in the Chryse Planitia, Mars. Icarus 410, 115918.CrossRefGoogle Scholar
Goudge, T. A. et al. (2015). Integrating CRISM and TES hyperspectral data to characterize a halloysite-bearing deposits in Kashira crater, Mars. Icarus 250, 165187.CrossRefGoogle Scholar
Grant, J. A., Schultz, P. H. (1993). Erosion of ejecta at Meteor Crater, Arizona. J. Geophys. Res. 98, 15033–15047.Google Scholar
Grant, J. A., Wilson, S. A. (2018). The nature and emplacement of distal aqueous-rich ejecta deposits from Hale crater, Mars. Meteor. Planet. Sci. 53 (4), 839856.CrossRefGoogle Scholar
Grant, J. A. et al. (2008). HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars. Geology 36(3), 195198.CrossRefGoogle Scholar
Grant, J. A. et al. (2016). The degradational history of Endeavor crater, Mars. Icarus 280, 2236.CrossRefGoogle Scholar
Greeley, R., Spudis, P. D. (1978). Volcanism in the cratered terrain hemisphere of Mars. Geophys. Res. Lett. 5, 453455, doi:10.1029/GL005i006p00453.CrossRefGoogle Scholar
Green, J. (1971). Copernicus as a lunar caldera. J. Geophys. Res. 76, 57195731.CrossRefGoogle Scholar
Grieve, R. A. F., Cintala, M. J. (1981). Brent crater: Ontario: Observation and theory. Lunar Planet. Sci. XII, 362364.Google Scholar
Grieve, R. A. F., Head, J. W. (1983). The Manicouagan impact structure: An analysis of its original dimensions and form. J. Geophys. Res. 88, A807–A818.Google Scholar
Grimm, R. E., Solomon, S. C. (1988). Viscous relaxation of impact crater relief on Venus: Constraints on crustal thickness and thermal gradient. J. Geophys. Res. 93, 11911–11929.Google Scholar
Grotzinger, J. P. et al. (2015). Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science 350, aac7575-1 to 12.CrossRefGoogle ScholarPubMed
Guest, J. E., Murray, J. B. (1971). A large scale surface pattern associated with the ejecta blanket and rays of Copernicus. Moon 3, 326336.CrossRefGoogle Scholar
Guidat, T. et al. (2015). Landform assemblage in Isidis Planitia, Mars: Evidence for a 3 Ga old polythermal ice sheet. Earth Planet. Sci Lett. 411, 253267.CrossRefGoogle Scholar
Guimpier, A. et al., CaSSIS Team (2022). Pre-landslide topographic reconstruction in Baetis Chaos, Mars using a CaSSIS digital elevation model. Planet. Space Sci. 218, 105505.CrossRefGoogle Scholar
Gulick, S. P. S. et al. (2013). Geophysical characterization of the Chicxulub impact crater. Revs. Geophys. 51, 3152.CrossRefGoogle Scholar
Hale, W. S. (1983). Central structures in Martian impact craters: Morphology, morphometry, and implications for substrate volatile distribution (abstract). 14th Lunar Planet. Sci. Conf., pp. 273–274.Google Scholar
Hamilton, C. W. et al. (2018). Episodes of aqueous flooding and effusive volcanism associated with Hrad Vallis, Mars. J. Geophys. Res. 123, doi:10.1029/2018JE005543, 14841510.CrossRefGoogle Scholar
Hamilton, V. E. et al. (2003). Searching for the source regions of Martian meteorites using MGS TES: Integrating Martian meteorites into the global distribution of igneous materials on Mars. Meteoritics Planet. Sci. 38(6), 871885.CrossRefGoogle Scholar
Hanna, J. C., Phillips, R. J. (2006). Tectonic pressurization of aquifers in the formation of Mangala and Athabasca Valles, Mars. J. Geophys. Res. 111, E03003, doi:10.1029/2005JE002546.Google Scholar
Harris, J. K. et al. (2023). An updated catalog of rayed craters on Mars. Earth Space Sci. 10, e2021EA001814.CrossRefGoogle Scholar
Harrison, K. P., Chapman, M. G. (2008). Evidence for ponding and catastrophic floods in central Valles Marineris, Mars. Icarus 198, 351364.CrossRefGoogle Scholar
Harrison, T. N. et al. (2010). Impact-induced overland fluid flow and channelized erosion at Lyot Crater, Mars. Geophys. Res. Lett. 37(L21201), doi:10.1029/2010GL045074, 6 pp.CrossRefGoogle Scholar
Harrison, T. N. et al. (2015). Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation. Icarus 252, 236254.CrossRefGoogle Scholar
Hartmann, W. K. (1972). Interplanet variations in scale of crater morphology – Earth, Mars, Moon. Icarus 17(3), 707713.CrossRefGoogle Scholar
Hartmann, W. K. (2005). Martian cratering 8: Isochron refinement and the chronology of Mars. Icarus 174(2), 294320.CrossRefGoogle Scholar
Hartmann, W. K., Neukum, G. (2001). Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165194.CrossRefGoogle Scholar
Hartmann, W. K. et al. (2010). Do young Martian ray craters have ages consistent with the crater count system? Icarus 208, 621635.CrossRefGoogle Scholar
Hartmann, W. K. et al. (2014). Comprehensive analysis of glaciated Martian crater Greg. Icarus 228, 96120.CrossRefGoogle Scholar
Hawke, B. R., Head, J. W. (1977). Impact melt on lunar crater rims. In Impact and Explosion Cratering: Planetary and Terrestrial Implications, Proc. Symp. Planetary Crat. Mech., Flagstaff, AZ, September 13–17, 1976, pp. 815–841, Pergamon, New York.Google Scholar
Hawke, B. R. et al. (2004). The origin of lunar crater rays. Icarus 170, 116.CrossRefGoogle Scholar
Hayward, R. K. et al. (2007). Mars global digital dune database and initial science results. J. Geophys. Res. 112(E11007), doi:10.1029/2007JE002943, 17 pp.Google Scholar
Hayward, R. K. et al. (2014). Mars global digital dune database (MGD3): Global dune distribution and wind pattern observations. Icarus 230, 3846.CrossRefGoogle Scholar
Head, J. W. (1974). Orientale multi-ringed basin interior and implications for the petrogenesis of lunar highland sample. The Moon 11, 327356.CrossRefGoogle Scholar
Head, J. W. (1976). Evidence for the sedimentary origin of Imbrium sculpture and lunar basin radial texture. The Moon 15, 445464.CrossRefGoogle Scholar
Head, J. W. (2007). The geology of Mars: New insights and outstanding questions. In: Chapman, M. (Ed.), The Geology of Mars: Evidence from Earth-based Analogs. Cambridge University Press, pp. 146.Google Scholar
Head, J. W., Carr, M. H. (2003). Oceans on Mars: An assessment of the observational evidence and possible fate. J. Geophys. Res. 108(E5 5042), doi:10.1029/2002JE001963, 8 pp.Google Scholar
Head, J. W., Roth, R. (1976). Mars pedestal crater escarpments: Evidence for ejecta-related emplacement. Symp. Planetary Crat. Mech., pp. 50–52, The Lunar Science Institute, Houston, TX.Google Scholar
Head, J. W. et al. (1999). Possible ancient oceans on Mars: Evidence from Mars Orbiter Laser Altimeter data. Science 286(#5447), 21342137.CrossRefGoogle ScholarPubMed
Head, J. W. et al. (2003). Recent ice ages on Mars. Nature 426, 797802.CrossRefGoogle ScholarPubMed
Heather, D. J., Dunkin, S. K. (2003). Geology and stratigraphy of King crater, lunar farside. Icarus 163, 307329.CrossRefGoogle Scholar
Henkel, H., Reimold, W. U. (1998). Integrated geophysical modelling of a giant, complex impact structure: Anatomy of the Vredefort Structure, South Africa. Tectonophysics 287(1–4), 120.CrossRefGoogle Scholar
Herd, C. D. K. et al. (2024). The source craters of the Martian meteorites: Implications for the igneous evolution of Mars. Sci. Adv. 10, eadn2378.CrossRefGoogle ScholarPubMed
Herrick, R. (2013). The shapes of simple craters in the outer solar system determined with an enhanced shadow measurement technique. 44th Lunar Planet. Sci. Conf., Abstract 7320.Google Scholar
Hiesinger, H., Head, J. W. (2002). Topography and morphology of the Argyre Basin, Mars: Implications for its geologic and hydrologic history. Planet. Space Sci. 50(10–11), 939981.CrossRefGoogle Scholar
Hiesinger, H. et al. (2016). Cratering on Ceres: Implications for its crust and evolution. Science 353, aaf4759, doi:10.1126/science. aaf4759.CrossRefGoogle ScholarPubMed
Hill, J. R., Christensen, P. R. (2017). Well-preserved low thermal inertia ejecta deposits surrounding young secondary impact craters on Mars. J. Geophys. Res. 122(E6), doi:10.1029/2016JE005210, 12761299.CrossRefGoogle Scholar
Howard, A. J. et al. (1982). Stratigraphic relationships within Martian polar cap deposits. Icarus 50, 161215.CrossRefGoogle Scholar
Hoover, R. H. et al. (2021). Insight into formation processes of layered ejecta craters on Mars from thermophysical observations. J. Geophys. Res. 126, e2020JE006801.CrossRefGoogle Scholar
Horgan, B. H. N. et al. (2020). The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars. Icarus 339, 113526.CrossRefGoogle Scholar
Horvath, D. G., Andrews-Hanna, J. C. (2024). The hydrology of the Jezero crater paleolake: Implications for the climate and limnology of the lake system from hydrological modeling. Earth Planet. Sci. Lett. 635, 118690.CrossRefGoogle Scholar
Horvath, D. G. et al. (2021). Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. Icarus 365, 114499.CrossRefGoogle Scholar
Hörz, F., Banholzer, G. S. (1980). Deep-seated target materials in the continuous deposits of the Ries Crater, Germany. In: Papike, J., Merrill, R. (Eds.), Proc. Conf. Lunar Highland Crust, Pergamon Press, pp. 211231.Google Scholar
Hörz, F. et al. (1983). Bunte Breccia of the Ries: Continuous deposits of large impact craters. Revs. Geophys. Space Phys. 21, 16671725.CrossRefGoogle Scholar
Howard, K. A. (1975). Geologic map of the crater Copernicus. Miscellaneous Investigations Series. United States Geological Survey.Google Scholar
Howard, K. A., Wilshire, H. G. (1975). Flows of impact melt at lunar craters. J. Res. U.S. Geol. Survey 3, 237251.Google Scholar
Irwin, R. P. et al. (2013). Distribution of early, middle, and late Noachian cratered surfaces in the Martian highlands: Implications for resurfacing events and processes. J. Geophys. Res. 118, 278291.CrossRefGoogle Scholar
Irwin, R. P. et al. (2015). Paleohydrology of Eberswalde crater, Mars. Geomorphology 240, 83101.CrossRefGoogle Scholar
Jaeger, W. L. et al. (2007). Athabasca Valles, Mars: A lava-draped channel system. Science 317, 17091711.CrossRefGoogle Scholar
Jaeger, W. L. et al., the HiRISE Team (2010). Emplacement of the youngest flood lava on Mars: A short, turbulent story. Icarus 205. 230243.CrossRefGoogle Scholar
Jakosky, B. M., Carr, M. H. (1985). Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature 315, 559561.CrossRefGoogle Scholar
Jakosky, B. M. et al. (1995). Chaotic obliquity and the nature of the Martian climate. J. Geophys. Res. 100(E1), 15791584.CrossRefGoogle Scholar
Jaumann, R. et al. (2015). Quantifying geological processes on Mars – Results of the high resolution stereo camera (HRSC) on Mars Express. Planet. Space Sci. 112, 5397.CrossRefGoogle Scholar
Johnsson, A. et al. (2014). Evidence for very recent melt-water and debris flow activity in gullies in a young mid-latitude crater on Mars. Icarus 235, 3754.CrossRefGoogle Scholar
Jones, A. P. et al. (2011). A geomorphic analysis of Hale crater, Mars: The effects of impact into ice-rich crust. Icarus 211, 259272.CrossRefGoogle Scholar
Jones, E., Osinski, G. R. (2015). Using Martian single and double layered ejecta craters to probe subsurface stratigraphy. Icarus 247, 260278.CrossRefGoogle Scholar
Jones, E. et al. (2016). Insights into complex layered ejecta emplacement and subsurface stratigraphy in Chryse Planitia, Mars, through an analysis of THEMIS brightness temperature data. J. Geophys. Res. 121(6), 9861015.CrossRefGoogle Scholar
Jordan, R. et al. (2009). The Mars Express MARSIS sounder instrument. Planet. Space Sci. 57, 19751986.CrossRefGoogle Scholar
Jozwiak, L. M. et al. (2012). Lunar floor-fractured craters: Classification, distribution, origin and implications for magmatism and shallow crustal structure. J. Geophys. Res. 117, E11005, doi:10.1029/2012JE004134.Google Scholar
Kadish, S. J., Head, J. W. (2011). Impacts into non-polar ice-rich paleodeposits on Mars: Excess ejecta craters, perched craters and pedestal craters as clues to Amazonian climate history. Icarus 215, 3446.CrossRefGoogle Scholar
Kadish, S. J. et al. (2008). Martian pedestal craters: Marginal sublimation pits implicate a climate-related formation mechanism. Geophys. Res. Lett. 35, L16104, doi:10.1029/2008GL034990.CrossRefGoogle Scholar
Kadish, S. J. et al. (2009). Latitude dependence of Martian pedestal craters: Evidence for a sublimation-driven formation mechanism. J. Geophys. Res. 114(E10001), doi:10.1029/2008JE0023318, 25 pp.Google Scholar
Kadish, S. J. et al. (2010). Pedestal crater heights on Mars: A proxy for the thickness of past, ice-rich, Amazonian deposits. Icarus 210, 92101.CrossRefGoogle Scholar
Kegerreis, J. A. et al. (2020). Atmospheric erosion by giant impacts onto terrestrial planets. Astrophys. J. 897, 161 (15 pp.)CrossRefGoogle Scholar
Kieffer, S. W., Simonds, C. H. (1980). The role of volatiles and lithology in the impact cratering process. Revs. Geophys. Space Phys. 18, 143181.CrossRefGoogle Scholar
Kirchoff, M. R., Grimm, R. E. (2017). Timing and distribution of single-layered ejecta craters imply sporadic preservation of tropical subsurface ice on Mars. J. Geophys. Res. 123, 131144.CrossRefGoogle Scholar
Kite, E. S. et al. (2014). Low paleopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nature Geosci. 7, 335339.CrossRefGoogle Scholar
Krohn, K. et al. (2016). Cryogenic flow features on Ceres: Implications for crater-related cryovolcanism. Geophys. Res. Lttrs. 43, 11994–12003.CrossRefGoogle Scholar
Kumar, P. S. (2005). Structural effects of meteorite impact on basalt: Evidence from Lonar crater, India. J. Geophys. Res. 110, B12402 doi:10.1029/2005JB003662, 10 pp.Google Scholar
Kumar, P. S. et al. (2010). Erosional modification and gully formation at Meteor Crater, Arizona: Insights into crater degradation processes on Mars. Icarus 208, 608620.CrossRefGoogle Scholar
Lagain, A. et al. (2021). Model age derivation of large Martian impact craters, using automatic crater counting methods. Earth Space Sci. 8(2), e2020EA001598.CrossRefGoogle Scholar
Lapen, T. J. et al. (2010). A younger age for AL84001 and its geochemical link to Shergottite sources in Mars. Science 328(5976), 347351.CrossRefGoogle ScholarPubMed
Laskar, J. et al. (2004). Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343364.CrossRefGoogle Scholar
Leith, A. C., McKinnon, W. B. (1991). Terrace width variations in complex Mercurian raters and the transient strength of cratered Mercurian and lunar crust. J. Geophys. Res. 96(E4), 20923–20931.Google Scholar
Le Mouelic, S. et al. (2008). Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data. J. Geophys. Res. 113(E04003), doi:10.1029/2007JE002965, 15 pp.Google Scholar
Levrard, B. et al. (2004). Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature 431, 10721075.CrossRefGoogle ScholarPubMed
Levy, J. et al. (2010). Concentric crater fill in the northern mid-latitudes of Mars: Formation processes and relationships to similar landforms of glacial origin. Icarus 209(2), 390404.CrossRefGoogle Scholar
Malin, M. C., Dzurisin, D. (1977). Landform degradation on Mercury, the Moon, and Mars: Evidence from crater depth/diameter relationships. J. Geophys. Res. 82, 376388.CrossRefGoogle Scholar
Malin, M. C., Edgett, K. S. (2000). Sedimentary rocks of early Mars. Science 290, 19271937.CrossRefGoogle ScholarPubMed
Malin, M. C., Edgett, K. S. (2003). Evidence for persistent flow and aqueous sedimentation on Early Mars. Science 302, 19311934.CrossRefGoogle ScholarPubMed
Malin, M. C. et al. (1998). Early views of the Martian surface from the Mars Orbiter Camera on Mars Global Surveyor. Science 279(5357), 16811685.CrossRefGoogle ScholarPubMed
Malin, M. C. et al. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 15731577.CrossRefGoogle ScholarPubMed
Malin, M. C. et al. (2007). Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112(E05S04), doi:10.1029/2006JE002808, 25 pp.Google Scholar
Maloof, A. C. et al. (2010). Geology of Lonar Crater, India. Geol. Soc. Am. Bull. 122, 109126.CrossRefGoogle Scholar
Mandt, K. E. et al. (2008). Origin of the Medusae Fossae Formation, Mars: Insights from a synoptic approach. J. Geophys. Res. 113, E12011, doi:10/1029/2008JE003076, 15 pp.Google Scholar
Mangold, N. et al. (2012). The origin and timing of fluvial activity at Eberswalde crater, Mars. Icarus 220 (2), 530551.CrossRefGoogle Scholar
Marzo, G. A. et al. (2010). Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 208(2), 667683.CrossRefGoogle Scholar
Massonnet, D., Feigl, K. (1998). Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 36, 441500.CrossRefGoogle Scholar
McCauley, J. F. et al. (1982). Subsurface valleys and geoarcheology of the Eastern Sahara revealed by Shuttle Radar. Science 218, 10041020.CrossRefGoogle ScholarPubMed
McCauley, J. F. et al. (1986). Paleodrainages of the Eastern Sahara – The radar rivers revisited (SIR-A/B implications for a Mid-Tertiary Trans-African drainage system). IEEE Trans. Geosci. Remote Sens. GE-24, 624648.CrossRefGoogle Scholar
McEwen, A. S. et al. (2005). The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus 176, 351381.CrossRefGoogle Scholar
McEwen, A. S. et al. (2007). Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE): J. Geophys. Res. 112(E05S02), doi:10.1029/2005JE002605, 40 pp.Google Scholar
McGetchin, T. R. et al. (1973). Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth Planet. Sci. Lett. 20, 226236.CrossRefGoogle Scholar
McGill, G. E. (1989). Buried topography of Utopia, Mars: Persistence of a giant impact depression. J. Geophys. Res., 94, 27532759.CrossRefGoogle Scholar
McSween, H. Y. (2002). The rocks of Mars, from far and near. Meteor. Planet. Sci. 37, 725.CrossRefGoogle Scholar
Mellon, M. T. et al. (2000). High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus 48(2), 437455.CrossRefGoogle Scholar
Melosh, H. J. (1982). A schematic model of crater modification by gravity. J. Geophys. Res. 87, 371380, doi:10.1029/JB087iB01p00371.CrossRefGoogle Scholar
Melosh, H. J. (1989). Impact Cratering: A Geologic Process. Oxford University Press, 245 pp.Google Scholar
Melosh, H. J. (2011). Planetary Surface Processes. Cambridge University Press.CrossRefGoogle Scholar
Melosh, H. J., Ivanov, B. A. (1999). Impact crater collapse. Ann. Rev. Earth Planet. Sci. 27, 385415, doi:10.1146/annurev.earth.27.1.385CrossRefGoogle Scholar
Meresse, S. et al. (2006). Martian perched craters and large ejecta volume: Evidence for episodes of deflation in the northern lowlands. Meteor. Planet. Sci. 41, 16471658.CrossRefGoogle Scholar
Michalski, J. R., Niles, P. B. (2010). Deep crustal carbonate rocks exposed by meteor impacts on Mars. Nature Geosci. 3, 751755.CrossRefGoogle Scholar
Mittlefehldt, D. W. (1994). ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan. Meteoritics Planet. Sci. 29(2), 214221.CrossRefGoogle Scholar
Miyamoto, H., Sasaki, S. (2010). Two different supply styles of crater outflow materials on Venus inferred from numerical simulations over DEMs. Icarus 145, 533545.CrossRefGoogle Scholar
Moore, J. M. (1990). Nature of the mantling deposit in the heavily cratered terrain of northeastern Arabia, Mars. J. Geophys. Res. 95(B9), 14279–14289.Google Scholar
Moore, J. M. et al. (1998). Large impact features on Europa: Results of the Galileo Nominal Mission. Icarus 135, 127145.CrossRefGoogle Scholar
Moore, J. M. et al. (2001). Impact features on Europa: Results of the Galileo Europa Mission (GEM). Icarus 151, 93111.CrossRefGoogle Scholar
Morgan, J. V. et al. (2000). Peak-ring formation in large impact craters: Geophysical constraints from Chicxulub. Earth Planet. Sci. Lett. 183, 347354.CrossRefGoogle Scholar
Morris, A. R., Mouginis-Mark, P. J. (2006). Thermally distinct craters near Hrad Vallis, Elysium Planitia, Mars. Icarus 180(2), 335347.CrossRefGoogle Scholar
Morris, A. R. et al. (2010). Possible impact melt and debris flows at Tooting Crater, Mars. Icarus 209, 369389.CrossRefGoogle Scholar
Mouginis-Mark, P. J. (1978). Morphology of Martian rampart craters. Nature 272, 691694.CrossRefGoogle Scholar
Mouginis-Mark, P. J. (1979a). Martian fluidized crater morphology: Variations with crater size, latitude, altitude and target material. J. Geophys. Res. 84, 80118022.CrossRefGoogle Scholar
Mouginis-Mark, P. J. (1979b). Ejecta emplacement of the Martian impact crater Bamburg. Proc. Lunar and Planetary Sci. Conf. 10th, 2651–2668.Google Scholar
Mouginis-Mark, P. J. (1981). Ejecta emplacement and modes of formation of Martian fluidized ejecta craters. Icarus 45, 6076.CrossRefGoogle Scholar
Mouginis-Mark, P. J. (1987). Water or ice in the Martian regolith?: Clues from rampart craters seen at very high resolution. Icarus 71, 268286.CrossRefGoogle Scholar
Mouginis-Mark, P. J. (2015). Cratering on Mars with almost no atmosphere or volatiles: Pangboche crater. Meteor. Planet. Sci. 50(1), 5162.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Baloga, S. M. (2006). Morphology and geometry of the distal ramparts of Martian impact craters. Meteor. Planet. Sci. 41, 14691482.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Boyce, J. M. (2012). Tooting crater: Geology and geomorphology of the archetype large, fresh, impact crater on Mars. Chemie der Erde 72, 123.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Carey, D. L. (1980). Volume estimates of fluidized ejecta deposits for craters in the Northern Plains of Mars. Lunar Planet. Sci. Conf. XI (abstract), pp. 759–761.Google Scholar
Mouginis-Mark, P. J., Garbeil, H. (2007). Crater geometry and ejecta thickness of the Martian impact crater Tooting. Meteor. Planet. Sci. 42, 16151625.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Hayashi, J. N. (1993). Shallow and deep fresh impact craters in Hesperia Planum, Mars. Earth, Moon, Planets 61, 120.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Zimbelman, J. R. (2020). Rafted pumice: A new model for the formation of the Medusae Fossae Formation, Mars. Icarus 343, 113684.CrossRefGoogle Scholar
Mouginis-Mark, P. J. et al. (1981). Schiaparelli Basin, Mars: Morphology, tectonics and infilling history. In: Schultz, P. H. and Merrill, R. B. (Eds.), Proc. Conf. Multi-Ring Basins, Pergamon Press, pp. 155172.Google Scholar
Mouginis-Mark, P. J. et al. (2018). Determination of Mars crater geometric data: Insights from high-resolution digital elevation models. Meteor. Planet. Sci. 53, 726740.CrossRefGoogle Scholar
Moyano-Cambero, C. E. et al. (2013). SNC meteorites: Atmosphere implantation ages and the climatic evolution of Mars. In: Trigo-Rodriguez, J., Raulin, F., Muller, C., Nixon, C. (Eds.), The Early Evolution of the Atmospheres of Terrestrial Planets. Astrophys. Space Sci. Proc. Springer, p. 35. doi:10.1007/978-1-4614-5191-4_13.Google Scholar
Mukherjee, S. et al. (2020). Morphological and morphometric analysis of a topographic depression near Huygens basin, Mars: Identification of a putative endorheic playa. Geomorphology 351, 106912.CrossRefGoogle Scholar
Murchie, S. et al. (2007). Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112(E05S03), doi:10.1029/2006JE002682, 57 pp.Google Scholar
Mustard, J. F. et al. (2001). Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412, 411414.CrossRefGoogle ScholarPubMed
Mustard, J. F. et al. (2007). Mineralogy of the Nili Fossae region with OMEGA/Mars express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. J. Geophys. Res. 112(E08S03), doi:10/10.19/2006JE002834, 14 pp.Google Scholar
Mutch, P., Woronow, A. (1980). Martian rampart and pedestal craters’ ejecta-emplacement: Coprates quadrangle. Icarus 41, 259268.CrossRefGoogle Scholar
Mutch, T. A. et al. (1977). The geology of the Viking Lander 2 site. J. Geophys. Res. 82, 44524467.CrossRefGoogle Scholar
Nathues, A. et al. (2020). Recent cryrovolcanic activity at Occator crater on Ceres. Nature Astron. 4, 794801.CrossRefGoogle Scholar
Neish, C. D. et al. Cassini RADAR Team (2013). Crater topography on Titan: Implications for landscape evolution. Icarus 223, 8290.CrossRefGoogle Scholar
Neish, C. D. et al. (2014). Global distribution of lunar impact melt flows. Icarus 239(1), 105117.CrossRefGoogle Scholar
Neish, C. D. et al. (2016). Fluvial erosion as a mechanism for crater modification on Titan. Icarus 270, 114129.CrossRefGoogle Scholar
Neukum, G., Hiller, K. (1981). Martian ages. J. Geophys. Res. 86(B4), 30973121.CrossRefGoogle Scholar
Neukum, G. et al. (2010). The geologic evolution of Mars – Episodicity of resurfacing events and ages from cratering analysis of image data and correlation with radiometric ages of Martian meteorites. Earth Planet. Sci. Lett. 294, 204222.CrossRefGoogle Scholar
Newsom, H. E. et al. (1986). Fluidization and hydrothermal alteration of the Suevite deposits at the Res Crater West Germany and implications for Mars. J. Geophys. Res. 91(B13), E239–E251.Google Scholar
Newsom, H. E. et al. (1996). Impact crater lakes on Mars. J. Geophys. Res. 101(E6), 14951–14955.Google Scholar
Nishiizumi, K. et al. (1991). In situ 10Be-26Al exposure ages at Meteor Crater, Arizona. Geochim. Cosmochim Acta 55, 26992703.CrossRefGoogle Scholar
Niu, S. et al. (2022). Layered ejecta craters in the candidate landing areas of China’s first Mars mission (Tianwen-1): Implications for subsurface volatile concentrations. J. Geophys. Res. 127, e2021JE007089.CrossRefGoogle Scholar
Nunes, D. C. et al. (2011). Shallow radar (SHARAD), pedestal craters, and the lost Martian layers: Initial assessments. J. Geophys. Res. 116(E04066), doi:10.1029/2010JE003690, 20 pp.Google Scholar
Nyquist, L. E. (1983). Do oblique impacts produce Martian meteorites? J. Geophys. Res. 88, A785–A798.Google Scholar
Nyquist, L. E. et al. (2001). Ages and geologic histories of Martian meteorites. Chronology Evol. Mars, 96, 105164.CrossRefGoogle Scholar
O’Keefe, J. D., Ahrens, T. J. (1986). Oblique impact: A process for obtaining meteorite samples from other planets. Science 234, 346349.CrossRefGoogle ScholarPubMed
Oberbeck, V. R. (1975). The role of ballistic erosion and sedimentation in lunar stratigraphy. Revs. Geophys. 13, 337362.CrossRefGoogle Scholar
Oberbeck, V. R., Morrison, R. H. (1973). On the formation of lunar herringbone pattern. Proc. 4th Lunar Sci. Conf., v. 1, 107–123.Google Scholar
Oberbeck, V. R. et al. (1975). Transport and emplacement of crater and basin deposits. The Moon 13, 926.CrossRefGoogle Scholar
Ohman, T., Kring, D. A. (2012). Photogeologic analysis of impact melt-rich lithologies in Kepler crater that could be sampled by future missions. J. Geophys. Res. 117, 121, doi:10.1029/2011JE003918.Google Scholar
Ojha, L., Mittelholz, A. (2023). Insight into the formation mechanism of the Medusae Fossae Formation on Mars from magnetic field data. Icarus 395, 115471.CrossRefGoogle Scholar
Ormo, J. et al. (2004). Marine-target craters on Mars? An assessment study. Meteor. Planet. Sci. 39(2), 333346.CrossRefGoogle Scholar
Osinski, G. R., Pierazzo, E. (2013). Impact Cratering Processes and Products. Wiley-Blackwell.Google Scholar
Osinski, G. R. et al. (2011). Impact ejecta emplacement on terrestrial planets. Earth Planet. Sci. Lett. 310, 167181.CrossRefGoogle Scholar
Osinski, G. R. et al. (2013). Impact-generated hydrothermal systems on Earth and Mars. Icarus 224(2), 347363.CrossRefGoogle Scholar
Palumbo, A. M. et al. (2020). Rainfall on Noachian Mars: Nature, timing, and influence on geologic processes and climate history. Icarus 347, 113782.CrossRefGoogle Scholar
Palluconi, F. D., Kieffer, H. H. (1981). Thermal inertia mapping of Mars from 60°S to 60°N. Icarus 45, 415426.CrossRefGoogle Scholar
Pan, C. et al. (2015). Thermal and near-infrared analyses of central peaks of Martian impact craters: Evidence for a heterogeneous Martian crust. J. Geophys. Res. 120, 662688.CrossRefGoogle Scholar
Pan, C. et al. (2021). Evaluating flat-crater floor fill compositions and morphologies: Insights into formation process. J. Geophys Res. 126, c2021JE006919.CrossRefGoogle Scholar
Pathare, A. V. et al. (2005). Viscous relaxation of craters within the Martian south polar layered deposits. Icarus 174, 396418.CrossRefGoogle Scholar
Pathare, A. V. et al. (2018). Driven by excess? Climate implications of new global mapping of near-surface water-equivalent hydrogen on Mars. Icarus 301, 97116.CrossRefGoogle Scholar
Pearce, G. et al. (2011). Intra-crater glacial processes in central Utopia Planitia, Mars. Icarus 212(1), 8695.CrossRefGoogle Scholar
Pearce, S. J., Melosh, H. J. (1986). Terrace width variations in complex lunar craters. Geophys. Res. Lett. 13, 14191422.CrossRefGoogle Scholar
Peel, S. W. et al. (2019). Formation of central pits in impact craters on Mars: A statistical investigation of proposed mechanisms. J. Geophys. Res. 124, 437453.CrossRefGoogle Scholar
Pettengill, G. H. et al. (1971). Martian craters and a scarp as seen by radar. Science 174(4016), 13211324.CrossRefGoogle Scholar
Phillips, R. J. et al. (1991). Impact craters on Venus – Initial analysis from Magellan. Science 252, 288297.CrossRefGoogle ScholarPubMed
Phillips, R. J. et al. (1992). Impact craters and Venus resurfacing history. J. Geophys. Res. 97, 15923–15948.Google Scholar
Piatek, J. L. et al. (2018). Characterization of thermophysical ejecta facies in well-preserved martian craters. 49th Lunar Planet. Sci. Conf., abs. 2691.Google Scholar
Pierazzo, E., Melosh, H. J. (2000). Understanding oblique impacts from experiments, observations, and modeling. Ann. Revs. Earth Planet. Sci. 28, 141167.CrossRefGoogle ScholarPubMed
Pieters, C. M. (1982). Copernicus crater central peak: Lunar mountain of unique composition. Science 215, 5961.CrossRefGoogle ScholarPubMed
Pieters, C. M. et al. (1985). The nature of crater rays: The Copernicus example. J. Geophys. Res. 90, 12393–12413.Google Scholar
Pietrek, A. et al. (2020). Morphometric characterization of longitudinal striae on Martian landslides and impact ejecta blankets and implications for the formation mechanism. J. Geophys. Res. 125(2), doi:10.1029/2019JE006255, 20 pp.CrossRefGoogle Scholar
Pike, R. J. (1974). Depth/diameter relations of fresh lunar craters: Revisions from spacecraft data. Geophys. Res. Lttrs. 1(7), 291294.CrossRefGoogle Scholar
Pike, R. J. (1977). Size-dependence in the shape of fresh impact craters on the moon. In: Roddy, D. J., Pepin, R. O., Merrill, R. (Eds.), Impact and Explosion Cratering, Pergamon Press, pp. 489509.Google Scholar
Pike, R. J. (1980a). Control of crater morphology by gravity and target type: Mars, Earth, Moon. In: Merrill, R. B. et al., eds., Proceedings of the 11th Lunar and Planetary Science Conference, Lunar and Planetary Institute, pp. 21592189.Google Scholar
Pike, R. J. (1980b). Formation of complex impact craters: Evidence from Mars and other planets. Icarus 43(1), 119.CrossRefGoogle Scholar
Pilon, J. A. et al. (1991). The subsurface character of Meteor Crater, Arizona, as determined by ground-probing radar. J. Geophys. Res. 96, 15563–15576.Google Scholar
Plescia, J. B. (2003). Cerberus Fossae, Elysium, Mars: A source for lava and mud. Icarus 164, 7995.CrossRefGoogle Scholar
Plescia, J. B., Robinson, M. S. (2019). Giordano Bruno: Small crater populations-Implications for self-secondary cratering. Icarus 321, 974993.CrossRefGoogle Scholar
Preblich, B. S. et al. (2007). Mapping rays and secondary craters from the Martian crater Zunil. J. Geophys. Res. 112(E05006), doi:10.1029/2006JE2817, 18 pp.Google Scholar
Putzig, N. E. et al. (2018). Three-dimensional radar imaging of structures and craters in the Martian polar caps. Icarus 308, 138147.CrossRefGoogle ScholarPubMed
Quaide, W. L., Oberbeck, V. R. (1968). Thickness determinations of the lunar surface layer from lunar impact craters. J. Geophys. Res. 73, 52475270.CrossRefGoogle Scholar
Quantin, C. et al. (2016). Young Martian crater Gratteri and its secondary craters. J. Geophys. Res. 121, 11181140.CrossRefGoogle Scholar
Rathbun, J. A., Squyres, S. W. (2002). Hydrothermal systems associated with Martian impact craters. Icarus 157, 362373.CrossRefGoogle Scholar
Re, C. et al. (2022). CaSSIS-based stereo products for Mars after three years in orbit. Planet. Space Sci. 219, 105515.CrossRefGoogle Scholar
Reiss, D., Jaumann, R. (2003). Recent debris flows on Mars: Seasonal observations of the Russell Crater dune field. Geophys. Res. Lett. 30(1321), doi:10.1029/2002GL016704, 4 pp.CrossRefGoogle Scholar
Reiss, D. et al. (2009). Regional differences in gully occurrence on Mars: A comparison between the Hale and Bond craters. Planet. Space Sci. 57, 958974.CrossRefGoogle Scholar
Robbins, S. J., Hynek, B. M. (2011). Secondary crater fields from 24 large primary craters on Mars: Insights into nearby secondary crater production. J. Geophys. Res. 116(E10003), doi:10.1029/2011JE003820, 13 pp.Google Scholar
Robbins, S. J., Hynek, B. M. (2012). A new global database of Mars impact craters >1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter. J. Geophys. Res. 117(E05004), doi:10.1029/2011JE003967, 18 pp.Google Scholar
Robbins, S. J., Hynek, B. M. (2013). Utility of laser altimeter and stereoscopic terrain models: Application to Mars craters. Planet. Space Sci. 86, 5765.CrossRefGoogle Scholar
Robbins, S. J. et al. (2017). Craters of the Pluto-Charon system. Icarus 287, 187206.CrossRefGoogle Scholar
Robbins, S. J. et al. (2018a). Measuring impact crater depth throughout the solar system. Meteor. Planet. Sci. 53, 583626.CrossRefGoogle Scholar
Robbins, S. J. et al. (2018b). Investigation of Charon’s craters with abrupt terminus ejecta, comparisons with other icy bodies, and formation implications. J. Geophys. Res. 123, 2036.CrossRefGoogle Scholar
Robbins, S. J. et al. (2021). Depths of Pluto’s and Charon’s craters, and their simple-to-complex transition. Icarus 356, 113902.CrossRefGoogle Scholar
Roddy, D. J. et al. (1975). Meteor Crater, Arizona, rim drilling with thickness, structural uplift, diameter, depth, volume, and mass-balance calculations. Proc. Lunar Sci. Conf. 6th, 2621–2644.Google Scholar
Roddy, D. J. (1977). Large-scale impact and explosion craters: Comparisons of morphological and structural analogs. In: Roddy, D. J., Pepin, R. O., Merrill, R. B. (Eds.), Impact and Explosion Cratering: Planetary and Terrestrial Implications. Pergamon Press, pp. 185246.Google Scholar
Rodriguez, J. A. et al. (2016). Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Sci. Rep. 6, 25106, doi:10.1038/srep25106.CrossRefGoogle Scholar
Ronca, L. B. (1966). Meteorite impact and volcanism. Icarus 5, 515520.CrossRefGoogle Scholar
Roth, L. E. et al. (1989). Radar altimetry of large Martian craters. Icarus 79(2), 289310.CrossRefGoogle Scholar
Ruff, S. W., Christensen, P. R. (2002). Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107(E12 5127), doi:10.1029/2001JE001580, 22 pp.Google Scholar
Ruj, T., Kawai, K. (2021). A global investigation of wrinkle ridge formation events: Implications towards the thermal evolution of Mars. Icarus 369, 114625.CrossRefGoogle Scholar
Salese, F. et al. (2020). Estimated minimum life span of the Jezero fluvial delta, Mars. Astrobio 20, doi:10.1089/ast.2020.2228, 977993.CrossRefGoogle ScholarPubMed
Salvatore, M. R. et al. (2010). Definitive evidence of Hesperian basalt in Acidalia and Chyrse Planitiae. J. Geophys. Res. 115(E07005), doi:10.1029/2009JE003519, 16 pp.Google Scholar
Sapers, H. M. et al. (2017). Evidence for a spatially extensive hydrothermal system at the Ries impact structure, Germany. Meteoritics Planet. Sci. 52, 351371.CrossRefGoogle Scholar
Sato, H. et al. (2010). The formation of floor-fractured craters in Xanthe Terra. Icarus 207, 248264, doi:10.1016/j.icarus.2009.10.023.CrossRefGoogle Scholar
Schoenfeld, A. M. et al. (2023). Geomorphological map of the Soi crater region on Titan. J. Geophys. Res. 128, doi:10.1029/2022JE007499, 28 pp.CrossRefGoogle Scholar
Schon, S. C., Head, J. W. (2012). Gasa impact crater, Mars: Very young gullies formed from impact into latitude-dependent mantle and debris-covered glacier deposits? Icarus 218, 459477.CrossRefGoogle Scholar
Schon, S. C. et al. (2012). An overfilled lacustrine system and progradational delta in Jezero crater, Mars: Implications for Noachian climate. Planet. Space Sci. 67, 2845.CrossRefGoogle Scholar
Schultz, P. H. (1976). Moon Morphology: Interpretations Based on Lunar Orbiter Photography. University of Texas Press, p. 626.Google Scholar
Schultz, P. H. (1978). Martian intrusions – Possible sites and implications. Geophys. Res. Lett. 5, 457460, doi:10.1029/GL005i006p00457.CrossRefGoogle Scholar
Schultz, P. H. (1979). Impact crater and basin control of igneous processes on Mars. J. Geophys. Res. 84, 80338047, doi:10.1029/JB084iB14p08033.CrossRefGoogle Scholar
Schultz, P. H. (1992). Atmospheric effects on ejecta emplacement. J. Geophys. Res. 97, 11623–11662.Google Scholar
Schultz, P. H., Gault, D. E. (1979). Atmospheric effects on Martian ejecta emplacement. J. Geophys. Res. 84, 76697687.CrossRefGoogle Scholar
Schultz, P. H., Lutz-Garihan, A. B. (1982). Grazing impacts on Mars: A record of lost satellites. J. Geophys. Res. 87, A84–A96.Google Scholar
Schultz, P. H., Lutz-Garihan, A. B. (1988). Polar wandering of Mars. Icarus 73, 91141.CrossRefGoogle Scholar
Schultz, P. H., Orphal, D. L. (1978). Floor-fractured craters on the moon and Mars. Meteoritics 13, 622625.Google Scholar
Schultz, P. H., Wrobel, K. E. (2012). The oblique impact Hale and its consequences on Mars. J. Geophys. Res. 117(E04001), doi:10.1029/2011JE003843, 21 pp.Google Scholar
Schultz, R. A. (1998). Multiple-process origin of Valles Marineris basins and troughs, Mars. Planet. Space Sci. 46(6–7), 827829, 831–834.CrossRefGoogle Scholar
Schultz, R. A., Frey, H. V. (1990). A new survey of multiring impact basins on Mars. J. Geophys. Res. 95, 14175–14189.Google Scholar
Scott, D. H., Carr, M. H. (1978). Geologic map of Mars. U.S. Geol. Surv. Misc. Invest. Map Series, I-1083.Google Scholar
Scully, J. E. C. et al. (2020). The varied sources of faculae-forming brines in Cere’s Occator crater emplaced via hydrothermal brine effusion. Nature Comms. 11, 3680, doi:10.1038/s41467-020-15973-8.CrossRefGoogle Scholar
Sharpton, V. L. (2014). Outcrops on lunar crater rims: Implications for rim construction mechanisms, ejecta volumes and excavation depths. J. Geophys. Res. 119, 154168.CrossRefGoogle Scholar
Senft, L. E., Stewart, S. T. (2008). Impact crater formation in icy layered terrains on Mars. Meteor. Planet. Sci. 43, 19932013.CrossRefGoogle Scholar
Settle, M., Head, J. W. (1977). Radial variation of lunar crater rim topography. Icarus 31, 123135.CrossRefGoogle Scholar
Settle, M., Head, J. W. (1979). The role of rim slumping in the modification of lunar impact craters. J. Geophys. Res. 84, 30813096.CrossRefGoogle Scholar
Seu, R. et al. (2007). SHARAD sounding radar on the Mars Reconnaissance Orbiter. J. Geophys. Res. 112(E05S05), doi:10.1029/2006JE002745, 18 pp.Google Scholar
Sharpton, V. L. (2014). Outcrops on lunar crater rims: Implications for rim construction mechanisms, ejecta volumes and excavation depths. J. Geophys. Res. 119, 154168.CrossRefGoogle Scholar
Shoemaker, E. M. (1963). Impact mechanics at Meteor Crater, Arizona. In: Middlehurst, B. M., Kuiper, G. P. (Eds.), The Moon, Meteorites and Comets. University of Chicago Press, 301336.Google Scholar
Shorthill, R. W. et al. (1976). The environs of Viking Lander 2. Science 194, 13091318.CrossRefGoogle ScholarPubMed
Shreve, R. L. (1968). The Blackhawk Landslide. Geol. Soc. Amer. Spec. Paper 108, 47 pp.CrossRefGoogle Scholar
Simonds, C. H. et al. (1978). Petrogenesis of melt rocks, Manicouagan impact structure, Quebec. J. Geophys. Res. 83, 27732788.CrossRefGoogle Scholar
Sizemore, H. G. et al. (2017). Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution. Geophys. Res. Lett. 44, 65706578.CrossRefGoogle ScholarPubMed
Skinner, J. A., Tanaka, K. L. (2007). Evidence for and implications of sedimentary dapirism and mud volcanism in the southern Utopia highland-lowland boundary plain, Mars. Icarus 186, 4159.CrossRefGoogle Scholar
Smith, D. E. et al. (2001). Mars Orbiter Laser Altimeter – Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106(E10), 23689–23722.Google Scholar
Smith, E. I. (1976). Comparison of the crater morphology-size relationship for Mars, Moon and Mercury. Icarus 28, 543550.CrossRefGoogle Scholar
Smith, E. I., Hartnell, J. A. (1978). Crater size-shape profiles for the moon and mercury: Terrain effects and interplanetary comparisons. Moon Planets 19, 479511.CrossRefGoogle Scholar
Smrekar, S. E. et al. (2004). Geologic evolution of the Martian dichotomy in the Ismenius area of Mars and implications for plains magnetization. J. Geophys. Res. 109, E11002, doi:10.1029/2004JE002260.Google Scholar
Sokolowska, A. et al. (2024). Effects of surface and subsurface water/ice on spatial distributions of impact crater ejecta on Mars. Icarus 420, 116150.CrossRefGoogle Scholar
Song, E. et al. (2013). Bulk mineralogy of lunar crater central peaks via thermal infrared spectra from the Diviner Lunar radiometer: A study of the Moon’s crustal composition at depth. J. Geophys. Res. 118, 689707.CrossRefGoogle Scholar
Squyres, S. W. (1989). Urey prize lecture: Water on Mars. Icarus 79 (2), 229288.CrossRefGoogle Scholar
Squyres, S. W. et al. (2009). Exploration of Victoria crater by the Mars Rover Opportunity. Science 324(5930), 10581061.CrossRefGoogle ScholarPubMed
Squyres, S. W. et al. (2012). Ancient impact and aqueous processes at Endeavour crater, Mars. Science 336, 570576.CrossRefGoogle ScholarPubMed
Stewart, S. T., Valiant, G. J. (2006). Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries. Meteor. Planet. Sci. 41(10), 15091537.CrossRefGoogle Scholar
Stöffler, D., Ryder, G. (2001). Stratigraphic and isotopic ages of lunar geologic units: Chronological standard for the Inner Solar System. Space Sci. Rev. 96, 954.CrossRefGoogle Scholar
Stopar, J. D. et al. (2014). Occurrence and mechanisms of impact melt emplacement at small lunar craters. Icarus 243, 337357.CrossRefGoogle Scholar
Strom, R. G. et al. (1992). The Martian impact crater record. In: Kieffer, H. H., Jakosky, B. M., Synder, C. W., Matthews, M. S. (Eds.), Mars, University of Arizona Press, pp. 383423.Google Scholar
Sturm, S. et al. (2013). The Ries impact, a double-layer rampart crater on Earth. Geology 41(5), 531534.CrossRefGoogle Scholar
Sturm, S. et al. (2015). The distribution of megablocks in the Ries crater, Germany: Remote sensing, field investigation, and statistical analyses. Meteoritics Planet. Sci. 50, 141171.CrossRefGoogle Scholar
Sturm, S. et al. (2016). Ejecta thickness and structural rim uplift measurements of Martian impact craters: Implications for the rim formation of complex impact craters. J. Geophys. Res. 121, 10261053.CrossRefGoogle Scholar
Sun, V. Z., Milliken, R. E. (2015). Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks. J. Geophys. Res. 120, 22932332. doi:10.1022/2015JE004918.CrossRefGoogle Scholar
Tanaka, K. L., Leonard, G. J. (1995). Geology and landscape evolution of the Hellas region on Mars. J. Geophys. Res. 100, 54075432.CrossRefGoogle Scholar
Tanaka, K. L. et al. (2014). Geologic map of Mars. U.S. Geol. Surv. Misc. Invest. Map Series, SIM-3292.CrossRefGoogle Scholar
Therriault, A. M. et al. (1997). Original size of the Vredefort Structure: Implications for the geological evolution of the Witwatersrand Basin. Meteor. Planet. Sci. 32, 7177.CrossRefGoogle Scholar
Thomson, B. J., Head, J. W. (2001). Utopia Basin, Mars: Characterization of topography and morphology and assessment of the origin and evolution of basin internal structure. J. Geophys. Res. 106(E10), 23209–23230.Google Scholar
Thomson, B. J., Schultz, P. H. (2007). The geology of the Viking Lander 2 site revisited. Icarus 191, 505523.CrossRefGoogle Scholar
Thomson, B. J. et al. (2011). Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 214, 413432.CrossRefGoogle Scholar
Tornabene, L. L. et al. (2006). Identification of large (2–10 km) rayed craters on Mars in THEMIS thermal infrared images: Implications for possible Martian meteorite source regions. J. Geophys. Res., 111, E10006. doi:10.1029/2005JE002600.Google Scholar
Tornabene, L. L. et al. (2012). Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process. Icarus 220, 348368.CrossRefGoogle Scholar
Tornabene, L. L. et al. (2015). “Pristine” Martian craters: Part 1 – Criteria and characteristics. 46th Lunar Planet. Sci. Conf. abs. no. 2531.Google Scholar
Tornabene, L. L. et al. (2016). Visible and thermophysical characteristics of the best-preserved martian craters, part 1: Detailed morphological mapping of Resen and Noord. 47th Lunar Planet. Sci. Conf. abs. 2879.Google Scholar
Tornabene, L. L. et al. (2018a). A depth versus diameter scaling relationship for the best-preserved melt-bearing complex craters on Mars. Icarus 299, 6883.CrossRefGoogle Scholar
Tornabene, L. L. et al. (2018b). Image simulation and assessment of the colour and spatial capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter. Space Sci. Revs. 214(18), doi:10.1007/s11214-017-0436-7, 61 pp.CrossRefGoogle Scholar
Treiman, A. H. et al. (2000). The SNC meteorites are from Mars. Planet. Space Sci. 48, 12131230.CrossRefGoogle Scholar
Tsibulskaya, V. et al. (2020). Surficial geology and geomorphology of Greg crater, Promethei Terra, Mars. J. Maps 16(2), 524533.CrossRefGoogle Scholar
Turner, S. M. R. et al. (2016). Hydrothermal activity recorded in post Noachian-aged impact craters on Mars. J. Geophys. Res. 121, 608625.CrossRefGoogle Scholar
Turtle, E. P. et al. (2005). Impact structures: What does crater diameter mean? Geol. Soc. Amer. Sp. Paper 384, 124.Google Scholar
Udry, A. et al. (2020). What Martian meteorites reveal about the interior and surface of Mars. J. Geophys. Res. 125, e2020JE006523.CrossRefGoogle Scholar
Vaucher, J. et al. (2009). The volcanic history of central Elysium Planitia: Implications for martian magmatism. Icarus 204(2), 418442.CrossRefGoogle Scholar
Viola, D. et al. (2017). Subsurface volatile content of Martian double-layered ejecta (DLE) craters. Icarus 284, 325343.CrossRefGoogle Scholar
Voigt, J. R. C. et al. (2023). Revealing Elysium Planitia’s youngest geologic history: Constraints on lava emplacement, areas, and volumes. J. Geophys. Res. 128(12), e2023JE007947.CrossRefGoogle Scholar
Walker, J. C. G. (1986). Impact erosion of planetary atmospheres. Icarus 68, 8798.CrossRefGoogle Scholar
Ward, W. R. (1973). Large-scale variations in the obliquity of Mars. Science 181(4096), 260262.CrossRefGoogle ScholarPubMed
Warner, N. H. et al. (2009). A refined chronology of catastrophic outflow events in Ares Vallis, Mars. Earth Planet. Sci. Lett. 288, 5869.CrossRefGoogle Scholar
Warner, N. H. et al. (2015). Minimum effective area for high resolution crater counting of Martian terrains. Icarus 245, 198240.CrossRefGoogle Scholar
Watters, T. R. et al. (2006). MARSIS radar sounder evidence of buried basins in the northern lowlands of Mars. Nature 444, 905908.CrossRefGoogle ScholarPubMed
Watters, T. R. et al. (2007). Radar sounding of the Medusae Fossae Formation Mars: Equatoral ice or dry, low-density deposits? Science 318, 11251128.CrossRefGoogle ScholarPubMed
Watters, W. A. et al. (2015). Morphometry of small recent impact craters on Mars: Size and terrain dependence, short-term modification. J. Geophys. Res. 120, 226254.CrossRefGoogle Scholar
Way, D. W. et al. (2007). Mars Science Laboratory: Entry, descent, and landing system performance. IEEE Aerospace Conf., doi: 10.1109/AERO.2007.352821.CrossRefGoogle Scholar
Weiss, D. K., Head, J. W. (2013). Formation of double-layered ejecta craters on Mars: A glacial substrate model. Geophys. Res. Lett. 40, 38193824, doi:10.1002/grl.50778.CrossRefGoogle Scholar
Weiss, D. K., Head, J. W. (2014). Ejecta mobility of layered ejecta craters on Mars: Assessing the influence of snow and ice deposits. Icarus 233, 131146.CrossRefGoogle Scholar
Weiss, D. K., Head, J. W. (2018). Testing landslide and atmospheric effects models for the formation of double-layered ejecta craters on Mars. Meteor. Planet. Sci. 53, 741777.CrossRefGoogle Scholar
Weitz, N. et al. (2018). Modeling concentric crater fill in Utopia Planitia, Mars, with an ice flow line model. Icarus 308, 209220.CrossRefGoogle Scholar
Wells, R. A., Fielder, G. (1967). Martian and lunar craters. Science 155, 354355.CrossRefGoogle Scholar
Werner, S. C., Tanaka, K. L. (2011). Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus 215, 603607.CrossRefGoogle Scholar
Wichman, R. W., Schultz, P. H. (1995). Floor-fractured craters in Mare Smythii and west of Oceanus Procellarum: Implications of crater modification by viscous relaxation and igneous intrusion models. J. Geophys. Res. 100, 21201–21218, doi:10.1029/95JE02297.Google Scholar
Williams, J.-P. et al. (2018). Dating very young planetary surfaces from crater statistics: A review of issues and challenges. Meteor. Planet. Sci. 53, 554582.CrossRefGoogle Scholar
Williams, K. K., Greeley, R. (2004). Laboratory and field measurements of the modification of radar backscatter by sand. Rem. Sens. Environ. 89, 2940.CrossRefGoogle Scholar
Williams, N. R. et al. (2015). Evidence for an explosive origin of central pit craters on Mars. Icarus 252, 175185.CrossRefGoogle Scholar
Williams, R. M. E., Malin, M. C. (2008). Sub-kilometer fans in Mojave Crater, Mars. Icarus 198(2), 365383.CrossRefGoogle Scholar
Williams, R. M. E. et al. (2011). Evidence for episodic alluvial fan formation in far western Terra Tyrrhena, Mars. Icarus 211, 222237.CrossRefGoogle Scholar
Wilson, L. et al. (2009). Fissure eruptions in Tharsis, Mars: Implications for eruption conditions and magma source. J. Volcanol. Geotherm. Res. 185, 2846.CrossRefGoogle Scholar
Wilson, S. A. et al. (2007). Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars. J. Geophys. Res. 112(E08009), doi:10.1029/2006JE002830, 39 pp.Google Scholar
Wohletz, K. H., Sheridan, M. F. (1983). Martian rampart crater ejecta: Experiments and analysis of melt-water interaction. Icarus 56(1), 1537.CrossRefGoogle Scholar
Wood, C. A. (1973). Central peak heights and crater origins. Icarus 20, 503506.CrossRefGoogle Scholar
Wood, C. A. et al. (1978). Interior morphology of fresh Martian craters: The effects of target characteristics. Proc. Lunar Sci. Conf. 9th, 3691–3709.Google Scholar
Wood, C. A. et al., Cassini Radar Team (2010). Impact craters on Titan. Icarus 206, 334344.CrossRefGoogle Scholar
Woronow, A. (1981). Preflow stresses in Martian rampart ejecta blankets: A means of estimating the water content. Icarus 45, 320330.CrossRefGoogle Scholar
Wulf, G., Kenkmann, T. (2015). High-resolution studies of double-layered ejecta craters: Morphology, inherent structure, and a phenomenological formation model. Meteor. Planet. Sci. 50, 173203.CrossRefGoogle Scholar
Wulf, G. et al. (2012). Structural asymmetry in Martian impact craters as an indicator for an impact trajectory. Icarus 220, 194204.CrossRefGoogle Scholar
Xiao, Z. et al. (2014). Comparisons of fresh complex impact craters on Mercury and the Moon: Implications for controlling factors in impact excavation processes. Icarus 228, 260275.CrossRefGoogle Scholar
Yue, Z. et al. (2019). Lunar regolith thickness deduced from concentric craters in the CE-5 landing area. Icarus 329, 4654.CrossRefGoogle Scholar
Zanetti, M. et al. (2017). Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon. Icarus 298, 6477.CrossRefGoogle Scholar
Zegers, T. E. et al. (2010). Melt and collapse of buried water ice: An alternative hypothesis for the formation of chaotic terrains on Mars. Earth Planet. Sci. Lett. 297, 496504, doi:10.1016/j.epsl.2010.06.049.CrossRefGoogle Scholar

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×