Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-bkbbk Total loading time: 0 Render date: 2025-12-12T06:25:19.301Z Has data issue: false hasContentIssue false

8 - Language and Cognition

from Part III - Language and Cognitive Plasticity and Processing

Published online by Cambridge University Press:  aN Invalid Date NaN

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

Language and other cognitive abilities interact with each other in a complex fashion. This interaction affects how we understand and develop models of cognitive function, interpret data reflecting neural activation and connectivity, and diagnose and treat language and cognitive conditions. The goal of this chapter is to provide a cohesive narrative introduction to major cognitive processes and some of the ways in which they interact with language processing. The chapter addresses four key non-linguistic cognitive processes: attention, memory, working memory, and executive function. Each process is discussed in terms of current thinking and prominent models regarding how it functions, its neural substrates, and how it affects and is affected by language function. While the cognitive processes discussed are presented separately, they share underlying relationships, and some models of cognition conceptualize the divisions between constructs differently. This chapter offers a clear but somewhat simplified overview in the interest of providing a basis for conceptualizing the interactive nature of language and other cognitive skills.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Ackerman, D. J., & Friedman-Krauss, A. H. (2017). Preschoolers’ executive function: Importance, contributors, research needs and assessment options. ETS Research Report Series, 2017(1), 124. https://doi.org/10.1002/ets2.12148CrossRefGoogle Scholar
Alarcón-Rubio, D., Sánchez-Medina, J. A., & Prieto-García, J. R. (2014). Executive function and verbal self-regulation in childhood: Developmental linkages between partially internalized private speech and cognitive flexibility. Early Childhood Research Quarterly, 29(2), 95105. https://doi.org/10.1016/j.ecresq.2013.11.002CrossRefGoogle Scholar
Alexander, M. P. (2006). Impairments of procedures for implementing complex language are due to disruption of frontal attention processes. Journal of the International Neuropsychological Society, 12(2), 236247. https://doi.org/10.1017/s1355617706060309CrossRefGoogle ScholarPubMed
Annese, J., Schenker-Ahmed, N. M., Bartsch, H., Maechler, P., Sheh, C., Thomas, N., … & Corkin, S. (2014). Postmortem examination of patient HM’s brain based on histological sectioning and digital 3D reconstruction. Nature Communications, 5(1), 3122. https://doi.org/10.1038/ncomms4122CrossRefGoogle Scholar
Archibald, L. M., & Gathercole, S. E. (2006). Short‐term and working memory in specific language impairment. International Journal of Language & Communication Disorders, 41(6), 675693. https://doi.org/10.1080/13682820500442602CrossRefGoogle ScholarPubMed
Atilgan, H., Town, S. M., Wood, K. C., Jones, G. P., Maddox, R. K., Lee, A. K., & Bizley, J. K. (2018). Integration of visual information in auditory cortex promotes auditory scene analysis through multisensory binding. Neuron, 97(3), 640655. https://doi.org/10.1016/j.neuron.2017.12.034CrossRefGoogle ScholarPubMed
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. Psychology of Learning and Motivation, 89 –195. https://doi.org/10.1016/s0079-7421(08)60422-3CrossRefGoogle Scholar
Avons, S. E., Wragg, C. A., Cupples, W. L., & Lovegrove, W. J. (1998). Measures of phonological short-term memory and their relationship to vocabulary development. Applied Psycholinguistics, 19(4), 583601. https://doi.org/10.1017/s0142716400010377CrossRefGoogle Scholar
Baddeley, A. (1992). Working memory. Science, 255(5044), 556559. https://doi.org/10.1126/science.1736359CrossRefGoogle ScholarPubMed
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4 (11), 417423. https://doi.org/10.1016/s1364-6613(00)01538-2CrossRefGoogle ScholarPubMed
Baddeley, A. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36(3), 189208. https://doi.org/10.1016/s0021-9924(03)00019-4CrossRefGoogle ScholarPubMed
Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 129. https://doi.org/10.1146/annurev-psych-120710-100422CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1966). Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. Quarterly Journal of Experimental Psychology, 18(4), 362365. https://doi.org/10.1080/14640746608400055CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In Bower, G. A. (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory (Vol. 8, pp. 4789). Academic Press. http://doi.org/10.1016/s0079-7421(08)60452-1Google Scholar
Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14(6), 575589. https://doi.org/10.1016/s0022-5371(75)80045-4CrossRefGoogle Scholar
Baddeley, A., & Wilson, B. (1985). Phonological coding and short-term memory in patients without speech. Journal of Memory and Language, 24(4), 490502. https://doi.org/10.1016/0749-596x(85)90041-5CrossRefGoogle Scholar
Baddeley, A., Gathercole, S., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105(1), 158173. https://doi.org/10.1037/0033-295x.105.1.158CrossRefGoogle ScholarPubMed
Banerjee, S., Snyder, A. C., Molholm, S., & Foxe, J. J. (2011). Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: Supramodal or sensory-specific control mechanisms? Journal of Neuroscience, 31(27), 99239932. https://doi.org/10.1523/jneurosci.4660-10.2011CrossRefGoogle ScholarPubMed
Barry, D. N., & Maguire, E. A. (2019). Remote memory and the hippocampus: A constructive critique. Trends in Cognitive Sciences, 23(2), 128142. https://doi.org/10.1016/j.tics.2018.11.005CrossRefGoogle ScholarPubMed
Best, V., Ozmeral, E. J., & Shinn-Cunningham, B. G. (2007). Visually-guided attention enhances target identification in a complex auditory scene. Journal for the Association for Research in Otolaryngology, 8 (2), 294304. https://doi.org/10.1007/s10162-007-0073-zCrossRefGoogle Scholar
Bisaz, R., Travaglia, A., & Alberini, C. M. (2014). The neurobiological bases of memory formation: From physiological conditions to psychopathology. Psychopathology, 47(6), 347356. https://doi.org/10.1159/000363702CrossRefGoogle ScholarPubMed
Blumenfeld, R. S., & Ranganath, C. (2007). Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging. The Neuroscientist, 13(3), 280291. https://doi.org/10.1177/1073858407299290CrossRefGoogle ScholarPubMed
Bosse, M.-L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: The visual attention span deficit hypothesis. Cognition, 104(2), 198230. https://doi.org/10.1016/j.cognition.2006.05.009CrossRefGoogle ScholarPubMed
Botvinick, M., & Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83113. https://doi.org/10.1146/annurev-psych-010814-015044CrossRefGoogle ScholarPubMed
Bozeat, S., Lambon Ralph, M. A., Graham, K. S., Patterson, K., Wilkin, H., Rowland, J., Rogers, T. T., & Hodges, J. R. (2003). A duck with four legs: Investigating the structure of conceptual knowledge using picture drawing in semantic dementia. Cognitive neuropsychology, 20(1), 2747. https://doi.org/10.1080/02643290244000176CrossRefGoogle ScholarPubMed
Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound. The MIT Press. https://doi.org/10.7551/mitpress/1486.001.0001CrossRefGoogle Scholar
Brill-Schuetz, K., & Morgan-Short, K. (2014). The role of procedural memory in adult second langauge acquisition. Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36). https://doi.org/10.1037/e502412013–500Google Scholar
Broadbent, D. E. (1952). Failures of attention in selective listening. Journal of Experimental Psychology, 44(6), 428433. https://doi.org/10.1037/h0057163CrossRefGoogle ScholarPubMed
Brod, G., Werkle-Bergner, M., & Shing, Y. L. (2013). The influence of prior knowledge on memory: A developmental cognitive neuroscience perspective. Frontiers in Behavioral Neuroscience, 7, 139. https://doi.org/10.3389/fnbeh.2013.00139CrossRefGoogle ScholarPubMed
Brown, G. J., Ferry, R. T., & Meddis, R. (2010). A computer model of auditory efferent suppression: Implications for the recognition of speech in noise. The Journal of the Acoustical Society of America, 127(2), 943954. https://doi.org/10.1121/1.3273893CrossRefGoogle ScholarPubMed
Buckner, R. L. (2002). Frontally mediated control processes contribute to source memory retrieval. Neuron, 35(5), 817818. https://doi.org/10.1016/s0896-6273(02)00866-8CrossRefGoogle ScholarPubMed
Cabeza, R., & Moscovitch, M. (2013). Memory systems, processing modes, and components: Functional neuroimaging evidence. Perspectives on Psychological Science, 8(1), 4955. https://doi.org/10.1177/1745691612469033CrossRefGoogle ScholarPubMed
Cain, K., Oakhill, J., & Bryant, P. (2004). Children’s reading comprehension ability: Concurrent prediction by working memory, verbal ability, and component skills. Journal of Educational Psychology, 96(1), 3142. https://doi.org/10.1037/0022-0663.96.1.31CrossRefGoogle Scholar
Caplan, D., & Waters, G. S. (1999). Verbal working memory and sentence comprehension. Behavioral and Brain Sciences, 22, 77126. https://doi.org/10.1017/S0140525X99001788CrossRefGoogle ScholarPubMed
Chavez-Arana, C., Catroppa, C., Carranza-Escarcega, E., Godfrey, C., Yanez-Tellez, G., Prieto-Corona, B., … Anderson, V. (2018). A systematic review of interventions for hot and cold executive functions in children and adolescents with acquired brain injury. Journal of Pediatric Psychology, 43(8), 928942. https://doi.org/10.1093/jpepsy/jsy013CrossRefGoogle ScholarPubMed
Cherry, E.C. (1953) Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 25, 974979. http://dx.doi.org/10.1121/1.1907229CrossRefGoogle Scholar
Cheung, H. (1996). Nonword span as a unique predictor or second-language vocabulary language. Developmental Psychology, 32(5), 867. https://doi.org/10.1037/0012-1649.32.5.867CrossRefGoogle Scholar
Chiou, H. S., & Kennedy, M. R. T. (2009). Switching in adults with aphasia. Aphasiology, 23(7–8), 10651075. https://doi.org/10.1080/02687030802642028CrossRefGoogle Scholar
Choinski, M., Szelag, E., Wolak, T., & Szymaszek, A. (2020). Working memory in aphasia: The role of temporal information processing. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.589802CrossRefGoogle ScholarPubMed
Ciaramelli, E., Burioanová, H., Vallesi, A., Cabeza, R., & Moscovitch, M. (2020). Funcitonal interplay between posterior parietal cortex and hippocampus durign detection of memory targets and non-targets. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.563768CrossRefGoogle Scholar
Coelho, C. A. (2007). Management of discourse deficits following traumatic brain injury: Progress, caveats, and needs. Seminars in Speech and Language, 28(2), 122135. https://doi.org/10.1055/s-2007-970570CrossRefGoogle ScholarPubMed
Conrad, R., & Hull, A. J. (1964). Information, acoustic confusion and memory span. British Journal of Psychology, 55(4), 429432. https://doi.org/10.1111/j.2044-8295.1964.tb00928.xCrossRefGoogle ScholarPubMed
Conti-Ramsden, G., Ullman, M. T., & Lum, J. A. (2015). The relation between receptive grammar and procedural, declarative, and working memory in specific language impairment. Frontiers in Psychology, 6, 1090. https://doi.org/10.3389/fpsyg.2015.01090CrossRefGoogle ScholarPubMed
Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769786. https://doi.org/10.3758/bf03196772CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201215. https://doi.org/10.1038/nrn755CrossRefGoogle ScholarPubMed
Corkin, S. (1968). Acquisition of motor skill after bilateral medial temporal-lobe excision. Neuropsychologia. 6(3), 255265.10.1016/0028-3932(68)90024-9CrossRefGoogle Scholar
Covington, M. A., He, C., Brown, C., Naçi, L., McClain, J. T., Fjordbak, B. S., Semple, J., & Brown, J. (2005). Schizophrenia and the structure of language: The linguist’s view. Schizophrenia Research, 77(1), 8598. https://doi.org/10.1016/j.schres.2005.01.016CrossRefGoogle ScholarPubMed
Cowan, N. (2008). What are the differences between long-term, short-term, and working memory?. In Sossin, W. S., Lacaille, J.-C., Castellucci, V. F., & Belleville, S. (Eds.), Progress in Brain Research (Vol. 169, pp. 323338). Elsevier. https://doi.org/10.1016/S0079-6123(07)00020-9Google Scholar
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning & Verbal Behavior, 19(4), 450466. https://doi.org/10.1016/S0022-5371(80)90312-6CrossRefGoogle Scholar
Datta, R., & DeYoe, E. A. (2009). I know where you are secretly attending! The topography of human visual attention revealed with fMRI. Vision Research, 49(10), 10371044. https://10.1016/j.visres.2009.01.01410.1016/j.visres.2009.01.014CrossRefGoogle ScholarPubMed
Davachi, L., & Dobbins, I. G. (2008). Declarative memory. Current Directions in Psychological Science, 17(2), 112118. https://doi.org/10.1111/j.1467-8721.2008.00559.xCrossRefGoogle ScholarPubMed
de Abreu, P. M. J. E., Gathercole, S. E., & Martin, R. (2011). Disentangling the relationship between working memory and language: The roles of short-term storage and cognitive control. Learning and Individual Differences, 21(5), 569574. https://doi.org/10.1016/j.lindif.2011.06.002CrossRefGoogle Scholar
DeDe, G., Ricca, M., Knilans, J., & Trubl, B. (2014). Construct validity and reliability of working memory tasks for people with aphasia. Aphasiology, 28(6), 692712. https://doi.org/10.1080/02687038.2014.895973CrossRefGoogle Scholar
Dew, I. T. Z., & Cabeza, R. (2011). The porous boundaries between explicit and implicit memory: Behavioral and neural evidence. Annals of the New York Academy of Sciences, 1224(1), 174190. https://doi.org/10.1111/j.1749-6632.2010.05946.xCrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135168. https://doi.org/10.1146/annurev-psych-113011-143750CrossRefGoogle ScholarPubMed
Dickerson, B. C., & Eichenbaum, H. (2010). The episodic memory system: Neurocircuitry and disorders. Neuropsychopharmacology, 35(1), 86104. https://doi.org/10.1038/npp.2009.126CrossRefGoogle ScholarPubMed
Dudai, Y., & Morris, R. G. (2013). Memorable trends. Neuron, 80(3), 742750. https://doi.org/10.1016/j.neuron.2013.09.039CrossRefGoogle ScholarPubMed
Durlach, N. I., Mason, C. R., Kidd, G. Jr., Arbogast, T. L., Colburn, H. S., & Shinn-Cunningham, B. G. (2003). Note on informational masking (L). The Journal of the Acoustical Society of America, 113(6), 29842987. https://doi.org/10.1121/1.1570435CrossRefGoogle Scholar
Ebert, K. D., & Kohnert, K. (2011). Sustained attention in children with primary language impairment: A meta-analysis. Journal of Speech, Language, and Hearing Research, 54(5), 13721384. https://doi.org/10.1044/1092-4388(2011/10-0231)CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2001). The hippocampus and declarative memory: Cognitive mechanisms and neural codes. Behavioral Brain Research, 127(1–2), 199207. https://doi.org/10.1016/s0166-4328(01)00365-5CrossRefGoogle ScholarPubMed
El Hachioui, H., Visch-Brink, E. G., Lingsma, H. F., van de Sandt-Koenderman, M. W., Dippel, D. W., Koudstaal, P. J., & Middelkoop, H. A. (2014). Nonlinguistic cognitive impairment in poststroke aphasia. Neurorehabilitation and Neural Repair, 28(3), 273281. https://doi.org/10.1177/1545968313508467CrossRefGoogle ScholarPubMed
Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 1923. https://doi.org/10.1111/1467-8721.00160CrossRefGoogle Scholar
Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309331. https://doi.org/10.1037/0096-3445.128.3.309CrossRefGoogle ScholarPubMed
Estes, K. G., Evans, J. L., & Else-Quest, N. M. (2007). Differences in the nonword repetition performance of children with and without specific language impairment: A meta-analysis. Journal of Speech, Language, and Hearing Research, 50, 177195. https://doi.org/10.1044/1092-4388(2007/015)CrossRefGoogle Scholar
Ettlinger, M., Bradlow, A. R., & Wong, P. C. (2014). Variability in the learning of complex morphophonology. Applied Psycholinguistics, 35(4), 807831. https://doi.org/10.1017/S0142716412000586CrossRefGoogle Scholar
Fahy, J. K. (2014). Language and executive functions: Self-talk for self-regulation. Perspectives on Language Learning and Education, 21(2), 6171. https://doi.org/10.1044/lle21.2.61CrossRefGoogle Scholar
Failing, M., & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin & Review, 25(2), 514538. https://doi.org/10.3758/s13423-017-1380-yCrossRefGoogle ScholarPubMed
Fallon, M., Peelle, J. E., & Wingfield, A. (2006). Spoken sentence processing in young and older adults modulated by task demands: Evidence from self-paced listening. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 61, P10–7. https://doi.org/10.1093/Geronb/61.1.P10Google Scholar
Fatzer, S. T., & Roebers, C. M. (2012). Language and executive functions: The effect of articulatory suppression on executive functioning in children. Journal of Cognition and Development, 13(4), 454472. https://doi.org/10.1080/15248372.2011.608322CrossRefGoogle Scholar
Fernández, G. (2017). The medial prefrontal cortex is a critical hub in the declarative memory system. In Axmacher, N. & Rasch, B. (Eds.), Cognitive Neuroscience of Memory Consolidation (pp. 4556). Springer. https://doi.org/10.1007/978-3-319-45066-7_3CrossRefGoogle Scholar
Foster, J. J., & Awh, E. (2019). The role of alpha oscillations in spatial attention: Limited evidence for a suppression account. Current Opinion in Psychology, 29, 3440. https://doi.org/10.1016/j.copsyc.2018.11.001CrossRefGoogle ScholarPubMed
Foster, J. L., Shipstead, Z., Harrison, T. L., Hicks, K. L., Redick, T. S., & Engle, R. W. (2014). Shortened complex span tasks can reliably measure working memory capacity. Memory & Cognition, 43(2), 226236. https://doi.org/10.3758/s13421-014-0461-7CrossRefGoogle Scholar
Frankland, P. W., Josselyn, S. A., & Köhler, S. (2019). The neurobiological foundation of memory retrieval. Nature neuroscience, 22(10), 15761585. https://doi.org/10.1038/s41593-019-0493-1CrossRefGoogle ScholarPubMed
Fridriksson, J., Nettles, C., Davis, M., Morrow, L., & Montgomery, A. (2006). Functional communication and executive function in aphasia. Clinical Linguistics & Phonetics, 20(6), 401410. https://doi.org/10.1080/02699200500075781CrossRefGoogle ScholarPubMed
Friedman, N. P., & Robbins, T. W. (2021). The role of the prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology, 47(1), 7289. https://doi.org/10.1038/s41386-021-01132-0CrossRefGoogle ScholarPubMed
Friedman, N. P., Miyake, A., Altamirano, L. J., Corley, R. P., Young, S. E., Rhea, S. A., & Hewitt, J. K. (2016). Stability and change in executive function abilities from late adolescence to early adulthood: A longitudinal twin study. Developmental Psychology, 52(2), 326340. https://doi.org/10.1037/dev0000075CrossRefGoogle ScholarPubMed
Friedman, N. P., Miyake, A., Robinson, J. L., & Hewitt, J. K. (2011). Developmental trajectories in toddlers’ self-restraint predict individual differences in executive functions 14 years later: A behavioral genetic analysis. Developmental Psychology, 47(5), 14101430. https://doi.org/10.1037/a0023750CrossRefGoogle Scholar
Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137(2), 201225. https://doi.org/10.1037/0096-3445.137.2.201CrossRefGoogle ScholarPubMed
Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Auditory attention: Focusing the searchlight on sound. Current Opinion in Neurobiology, 17(4), 437455. https://doi.org/10.1016/j.conb.2007.07.011CrossRefGoogle ScholarPubMed
Fuhs, M. W., & Day, J. D. (2011). Verbal ability and executive functioning development in preschoolers at head start. Developmental Psychology, 47(2), 404416. https://doi.org/10.1037/a0021065CrossRefGoogle ScholarPubMed
Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: A review using an integrative framework. Psychological Bulletin, 134(1), 3160. https://doi.org/10.1037/0033-2909.134.1.31CrossRefGoogle ScholarPubMed
Gathercole, S. E. (2006). Complexities and constraints in nonword repetition and word learning. Applied Psycholinguistics, 27(4), 599613. https://doi.org/10.1017/S014271640606053XCrossRefGoogle Scholar
Gathercole, S. E., Alloway, T. P., Willis, C., & Adams, A.-M. (2006). Working memory in children with reading disabilities. Journal of Experimental Child Psychology, 93(3), 265281. https://doi.org/10.1016/j.jecp.2005.08.003CrossRefGoogle ScholarPubMed
Gathercole, S. E., Hitch, G. J., Service, E., & Martin, A. J. (1997). Phonological short-term memory and new word learning in children. Developmental Psychology, 33(6), 966979. https://doi.org/10.1037/0012-1649.33.6.966CrossRefGoogle ScholarPubMed
Gathercole, S. E., & Masoura, E. V. (2005). Contrasting contributions of phonological short‐term memory and long‐term knowledge to vocabulary learning in a foreign language. Memory, 13(3–4), 422429. https://doi.org/10.1080/09658210344000323CrossRefGoogle Scholar
Gherri, E., & Eimer, M. (2011). Active listening impairs visual perception and selectivity: An ERP study of auditory dual-task costs on visual attention. Journal of Cognitive Neuroscience, 23(4), 832844. https://doi.org/10.1162/jocn.2010.21468CrossRefGoogle ScholarPubMed
Gordon, J. K., & Dell, G. S. (2003). Learning to divide the labor: An account of deficits in light and heavy verb production. Cognitive Science, 27(1), 140. https://doi.org/10.1207/s15516709cog2701_1CrossRefGoogle Scholar
Graf Estes, K., Evans, J. L., & Else-Quest, N. M. (2007). Differences in the nonword repetition performance of children with and without specific language impairment: A meta-analysis. Journal of Speech, Language, and Hearing Research, 50(1), 177195. https://doi.org/10.1044/1092-4388(2007/015)CrossRefGoogle ScholarPubMed
Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(3), 501518. https://doi.org/10.1037/0278-7393.11.3.501Google ScholarPubMed
Gray, S. I., Levy, R., Alt, M., Hogan, T. P., & Cowan, N. (2022). Working memory predicts new word learning over and above existing vocabulary and nonverbal IQ. Journal of Speech, Language, and Hearing Research, 65(3), 10441069. https://doi.org/10.1044/2021_jslhr-21-00397CrossRefGoogle ScholarPubMed
Green, J. J., Doesburg, S. M., Ward, L. M., & McDonald, J. J. (2011). Electrical neuroimaging of voluntary audio spatial attention: Evidence for a supramodal attention control network. Journal of Neuroscience, 31(10), 35603564. https://doi.org/10.1523/jneurosci.5758-10.2011CrossRefGoogle Scholar
Green, J. J., Teder-Sälejärvi, W. A., & McDonald, J. J. (2005). Control mechanisms mediating shifts of attention in auditory and visual space: A spatio-temporal ERP analysis. Experimental Brain Research, 166(3), 358369. https://doi.org/10.1007/s00221-005-2377-8CrossRefGoogle ScholarPubMed
Händel, B. F., Haarmeier, T., & Jensen, O. (2011). Alpha oscillations correlate with the successful inhibition of unattended stimuli. Journal of Cognitive Neuroscience, 23(9), 2494-2502. https://doi.org/10.1162/jocn.2010.21557CrossRefGoogle ScholarPubMed
Helm-Estabrooks, N. (2002). Cognition and aphasia: A discussion and a study. Journal of Communication Disorders, 35(2), 171186. https://doi.org/10.1016/s0021-9924(02)00063-1CrossRefGoogle ScholarPubMed
Henson, R. N. A., Burgess, N., & Frith, C. D. (2000). Recoding, storage, rehearsal and grouping in verbal short-term memory: An fMRI study. Neuropsychologia, 38(4), 426440. https://doi.org/10.1016/s0028-3932(99)00098-6CrossRefGoogle ScholarPubMed
Hodges, J. R., & Graham, K. S. (2001). Episodic memory: Insights from semantic dementia. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1413), 14231434. https://doi.org/10.1098/rstb.2001.0943CrossRefGoogle ScholarPubMed
Hodges, J. R., & Patterson, K. (2007). The neuropsychology of frontotemporal dementia. Frontotemporal Dementia Syndromes, 35(102–133), 2036. https://doi.org/10.1017/cbo9781316135457.006Google Scholar
Howland, K. (2014). Developing executive control skills in preschool children with language impairment. Perspectives on Language Learning and Education, 21(2), 5160. https://doi.org/10.1044/lle21.2.51CrossRefGoogle Scholar
Hughes, C., Ensor, R., Wilson, A., & Graham, A. (2010). Tracking executive function across the transition to school: A latent variable approach. Developmental Neuropsychology, 35(1), 2036. https://doi.org/10.1080/87565640903325691CrossRefGoogle Scholar
Hughes, R. W., & Marsh, J. E. (2017). The functional determinants of short-term memory: Evidence from perceptual-motor interference in verbal serial recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 537551. https://doi.org/10.1037/xlm0000325Google ScholarPubMed
Hula, W. D., & McNeil, M. R. (2008). Models of attention and dual-task performance as explanatory constructs in aphasia. Seminars in Speech and Language, 29(3), 169187. https://doi.org/10.1055/s-0028-1082882CrossRefGoogle ScholarPubMed
Humphreys, G. W., & Forde, E. M. (2001). Hierarchies, similarity, and interactivity in object recognition: “Category-specific” neuropsychological deficits. Behavioral and Brain Sciences, 24(3), 453509. https://doi.org/10.1017/s0140525x01004150CrossRefGoogle ScholarPubMed
Humphreys, G. W., Price, C. J., & Riddoch, M. J. (1999). From objects to names: A cognitive neuroscience approach. Psychological Research, 62(2–3), 118130. https://doi.org/10.1007/s004260050046CrossRefGoogle Scholar
Hunt, R. R., & McDaniel, M. A. (1993). The enigma of organization and distinctiveness. Journal of Memory and Language, 32(4), 421445. https://doi.org/10.1006/jmla.1993.1023CrossRefGoogle Scholar
Hurlstone, M. J., & Hitch, G. J. (2018). How is the serial order of a visual sequence represented? Insights from transposition latencies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(2), 167192. https://doi.org/10.1037/xlm0000440Google Scholar
Hurlstone, M. J., Hitch, G. J., & Baddeley, A. D. (2014). Memory for serial order across domains: An overview of the literature and directions for future research. Psychological Bulletin, 140(2), 339373. https://doi.org/10.1037/a0034221CrossRefGoogle ScholarPubMed
Itti, L., & Koch, C. (2001). Computational modeling of visual attention. Nature Reviews Neuroscience, 2(3), 194203. https://doi.org/10.1038/35058500CrossRefGoogle ScholarPubMed
Jarrold, C., Thorn, A. S. C., & Stephens, E. (2009). The relationships among verbal short-term memory, phonological awareness, and new word learning: Evidence from typical development and Down syndrome. Journal of Experimental Child Psychology, 102(2), 196218. https://doi.org/10.1016/j.jecp.2008.07.001CrossRefGoogle ScholarPubMed
Javadi, A. H., & Walsh, V. (2012). Transcranial direct current stimulation (tDCS) of the left dorsolateral the prefrontal cortex modulates declarative memory. Brain Stimulation, 5(3), 231241. https://doi.org/10.1016/j.brs.2011.06.007CrossRefGoogle ScholarPubMed
Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200206. https://doi.org/10.1016/j.tics.2012.03.002CrossRefGoogle ScholarPubMed
Joanisse, M. F., & Seidenberg, M. S. (1999). Impairments in verb morphology after brain injury: A connectionist model. Proceedings of the National Academy of Sciences, 96(13), 75927597. https://doi.org/10.1073/pnas.96.13.7592CrossRefGoogle ScholarPubMed
Jones, S. M., Bailey, R., Barnes, S. P., & Partee, A. (2016). Executive function mapping project: Untangling the terms and skills related to executive function and self-regulation in early childhood. OPRE Report # 2016-88, Office of Planning, Research and Evaluation, Administration for Children and Families, U.S. Department of Health and Human Services. www.acf.hhs.gov/sites/default/files/documents/opre/efmapping_report_101416_final_508.pdfGoogle Scholar
Jonker, T. R., Seli, P., & MacLeod, C. M. (2015). Retrieval-induced forgetting and context. Current Directions in Psychological Science, 24(4), 273278. https://doi.org/10.1177/0963721415573203CrossRefGoogle Scholar
Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122149. https://doi.org/10.1037/0033-295x.99.1.122CrossRefGoogle ScholarPubMed
Kahneman, D. (1973). Attention and Effort (Vol. 1063). Prentice-Hall.Google Scholar
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189217. https://doi.org/10.1037/0096-3445.133.2.189CrossRefGoogle ScholarPubMed
Kapa, L. L., & Erikson, J. A. (2020). The relationship between word learning and executive function in preschoolers with and without developmental language disorder. Journal of Speech, Language, and Hearing Research, 63(7), 22932307. https://doi.org/10.1044/2020_jslhr-19-00342CrossRefGoogle ScholarPubMed
Kapa, L. L., & Plante, E. (2015). Executive function in SLI: Recent advances and future directions. Current Developmental Disorders Reports, 2(3), 245252. https://doi.org/10.1007/s40474–015-0050-xCrossRefGoogle ScholarPubMed
Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia-Barrera, M. A. (2018). The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychological Bulletin, 144(11), 11471185. https://doi.org/10.1037/bul0000160CrossRefGoogle ScholarPubMed
Kaushanskaya, M., Park, J. S., Gangopadhyay, I., Davidson, M. M., & Weismer, S. E. (2017). The relationship between executive functions and language abilities in children: A latent variable approach. Journal of Speech, Language, and Hearing Research, 60(4), 912923. https://doi.org/10.1044/2016_jslhr-l-15-0310CrossRefGoogle Scholar
Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J. (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology, 95(6), 38443851. https://doi.org/10.1152/jn.01234.2005CrossRefGoogle ScholarPubMed
Kempe, V., Brooks, P. J., & Kharkhurin, A. (2010). Cognitive predictors of generalization of Russian grammatical gender categories. Language Learning, 60(1), 127153. https://doi.org/10.1111/j.1467-9922.2009.00553.xCrossRefGoogle Scholar
Kennedy, M. R. T., & Coelho, C. (2005). Self-regulation after traumatic brain injury: A framework for intervention of memory and problem solving. Seminars in Speech and Language, 26(04), 242255. https://doi.org/10.1055/s-2005-922103CrossRefGoogle ScholarPubMed
Kidd, G. Jr., (2017). Enhancing auditory selective attention using a visually guided hearing aid. Journal of Speech, Language, and Hearing Research, 60(10), 30273038. https://doi.org/10.1044/2017_jslhr-h-17-0071CrossRefGoogle ScholarPubMed
Kidd, G. Jr., & Colburn, H. S. (2017). Informational masking in speech recognition. In Middlebrooks, J. C., Simon, J. Z., Popper, A. N., & Fay, R. R. (Eds.), The Auditory System at the Cocktail Party (pp. 75109). Springer.10.1007/978-3-319-51662-2_4CrossRefGoogle Scholar
Kidd, G. Jr., Favrot, S., Desloge, J. G., Streeter, T. M., & Mason, C. R. (2013). Design and preliminary testing of a visually guided hearing aid. The Journal of the Acoustical Society of America, 133(3), EL202EL207. https://doi.org/10.1121/1.4791710CrossRefGoogle ScholarPubMed
Kidd, G. Jr., Jennings, T. R., & Byrne, A. J. (2020). Enhancing the perceptual segregation and localization of sound sources with a triple beamformer. The Journal of the Acoustical Society of America, 148(6), 35983611. https://doi.org/10.1121/10.0002779CrossRefGoogle ScholarPubMed
Kidd, G. Jr., Mason, C. R., Swaminathan, J., Roverud, E., Clayton, K. K., & Best, V. (2016). Determining the energetic and informational components of speech-on-speech masking. The Journal of the Acoustical Society of America, 140(1), 132-144. https://doi.org/10.1121/1.4954748CrossRefGoogle ScholarPubMed
Kim, W. B., & Cho, J.-H. (2020). Encoding of contextual fear memory in hippocampal–amygdala circuit. Nature Communications, 11(1), 122. https://doi.org/10.1038/s41467-020-15121-2Google ScholarPubMed
Kintsch, W., Patel, V. L., & Ericsson, K. A. (1999). The role of long-term working memory in text comprehension. Psychologia, 42(4), 186198.Google Scholar
Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology, 55(4), 352358. https://doi.org/10.1037/h0043688CrossRefGoogle ScholarPubMed
Kirkham, N. Z., Cruess, L., & Diamond, A. (2003). Helping children apply their knowledge to their behavior on a dimension-switching task. Developmental Science, 6(5), 449467. https://doi.org/10.1111/1467-7687.00300CrossRefGoogle Scholar
Klatte, M., Lee, N., & Hellbruck, J. (2002). Effects of irrelevant speech and articulatory suppression on serial recall of heard and read materials. Psychologische Beiträge, 44(2), 166186.Google Scholar
Klauer, K. C., & Zhao, Z. (2004). Double dissociations in visual and spatial short-term memory. Journal of Experimental Psychology: General, 133(3), 355381. https://doi.org/10.1037/0096-3445.133.3.355CrossRefGoogle ScholarPubMed
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606617. https://doi.org/10.1016/j.tics.2012.10.007CrossRefGoogle ScholarPubMed
Kuhn, L. J., Willoughby, M. T., Vernon-Feagans, L., Blair, C. B., & The Family Life Project Key Investigators. (2016). The contribution of children’s time-specific and longitudinal expressive language skills on developmental trajectories of executive function. Journal of Experimental Child Psychology, 148, 2034. https://doi.org/10.1016/j.jecp.2016.03.008CrossRefGoogle ScholarPubMed
Kuperberg, G. R., Kreher, D. A., & Ditman, T. (2010). What can event-related potentials tell us about language, and perhaps even thought, in schizophrenia? International Journal of Psychophysiology, 75(2), 6676. https://doi.org/10.1016/j.ijpsycho.2009.09.005CrossRefGoogle ScholarPubMed
Lang, C. J., & Quitz, A. (2012). Verbal and nonverbal memory impairment in aphasia. Journal of Neurology, 259(8), 16551661. https://doi.org/10.1007/s00415-011-6394-1CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2014). Coming to terms with fear. Proceedings of the National Academy of Sciences, 111(8), 28712878. https://doi.org/10.1073/pnas.1400335111CrossRefGoogle ScholarPubMed
Levine, B., Dawson, D., Boutet, I., Schwartz, M. L., & Stuss, D. T. (2000). Assessment of strategic self-regulation in traumatic brain injury: Its relationship to injury severity and psychosocial outcome. Neuropsychology, 14(4), 491500. https://doi.org/10.1037/0894-4105.14.4.491CrossRefGoogle ScholarPubMed
Lidstone, J. S. M., Meins, E., & Fernyhough, C. (2010). The roles of private speech and inner speech in planning during middle childhood: Evidence from a dual task paradigm. Journal of Experimental Child Psychology, 107(4), 438451. https://doi.org/10.1016/j.jecp.2010.06.002CrossRefGoogle ScholarPubMed
Liew, J. (2011). Effortful control, executive functions, and education: Bringing self-regulatory and social-emotional competencies to the table. Child Development Perspectives, 6(2), 105111. https://doi.org/10.1111/j.1750-8606.2011.00196.xCrossRefGoogle Scholar
Logue, S. F., & Gould, T. J. (2014). The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123, 4554. https://doi.org/10.1016/j.pbb.2013.08.007CrossRefGoogle ScholarPubMed
Lu, K., Xu, Y., Yin, P., Oxenham, A. J., Fritz, J. B., & Shamma, S. A. (2017). Temporal coherence structure rapidly shapes neuronal interactions. Nature Communications, 8(1), 112. https://doi.org/10.1038/ncomms13900CrossRefGoogle ScholarPubMed
Maddox, R. K., Atilgan, H., Bizley, J. K., & Lee, A. K. (2015). Auditory selective attention is enhanced by a task-irrelevant temporally coherent visual stimulus in human listeners. eLife, 4. https://doi.org/10.7554/elife.04995CrossRefGoogle ScholarPubMed
Mädebach, A., Jescheniak, J. D., Oppermann, F., & Schriefers, H. (2011). Ease of processing constrains the activation flow in the conceptual-lexical system during speech planning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(3), 649660. https://doi.org/10.1037/a0022330Google ScholarPubMed
Majerus, S. (2019). Verbal working memory and the phonological buffer: The question of serial order. Cortex, 112, 122133. https://doi.org/10.1016/j.cortex.2018.04.016CrossRefGoogle ScholarPubMed
Majerus, S., Poncelet, M., Grefee, C., & Van der Linden, M. (2006). Relations between vocabulary development and verbal short-term memory for serial order and item information. Journal of Experimental Child Psychology, 93(2), 95119. https://doi.org/10.1016/j.jecp.2005.07.005CrossRefGoogle ScholarPubMed
Martella, D., Casagrande, M., & Lupiáñez, J. (2011). Alerting, orienting and executive control: The effects of sleep deprivation on attentional networks. Experimental Brain Research, 210(1), 8189. https://doi.org/10.1007/s00221-011-2605-3CrossRefGoogle ScholarPubMed
Martin, K. I., & Ellis, N. C. (2012). The roles of phonological short-term memory and working memory in L2 grammar and vocabulary learning. Studies in Second Language Acquisition, 34(3), 379413. https://doi.org/10.1017/S0272263112000125CrossRefGoogle Scholar
Martin, N., Kohen, F., Kalinyak-Fliszar, M., Soveri, A., & Laine, M. (2012). Effects of working memory load on processing of sounds and meanings of words in aphasia. Aphasiology, 26(3–4), 462493. https://doi.org/10.1080/02687038.2011.619516CrossRefGoogle ScholarPubMed
Martin, R. C. (2021). The critical role of semantic working memory in language comprehension and production. Current Directions in Psychological Science, 30(4), 283291. https://doi.org/10.1177/0963721421995178CrossRefGoogle ScholarPubMed
McDermott, K. B., & Roediger, H. L. (2018). Memory (encoding, storage, retrieval). In Biswas-Diener, R. & Diener, E. (Eds.), General Psychology FA18 (pp. 117140). Noba Project.Google Scholar
McGaugh, J. L., Cahill, L., & Roozendaal, B. (1996). Involvement of the amygdala in memory storage: Interaction with other brain systems. Proceedings of the National Academy of Sciences, 93(24), 1350813514. https://doi.org/10.1073/pnas.93.24.13508CrossRefGoogle ScholarPubMed
Melton, A. W. (1963). Implications of short-term memory for a general theory of memory. Journal of Verbal Learning and Verbal Behavior, 2(1), 121. https://doi.org/10.1016/s0022-5371(63)80063-8CrossRefGoogle Scholar
Meneghetti, C., De Beni, R., Pazzaglia, F., & Gyselinck, V. (2011). The role of visuo-spatial abilities in recall of spatial descriptions: A mediation model. Learning and Individual Differences, 21(6), 719723. https://doi.org/10.1016/j.lindif.2011.07.015CrossRefGoogle Scholar
Menon, V., & D’Esposito, M. (2022). The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology, 47(1), 90103. https://doi.org/10.1038/s41386-021-01152-wCrossRefGoogle ScholarPubMed
Mesgarani, N., Fritz, J., & Shamma, S. (2010). A computational model of rapid task-related plasticity of auditory cortical receptive fields. Journal of Computational Neuroscience, 28(1), 1927. https://doi.org/10.1007/s10827-009-0181-3CrossRefGoogle ScholarPubMed
Metcalfe, J., & Mischel, W. (1999). A hot/cool-system analysis of delay of gratification: Dynamics of willpower. Psychological Review, 106(1), 319. https://doi.org/10.1037/0033-295X.106.1.3CrossRefGoogle ScholarPubMed
Miller, E. K. (2013). The “working” of working memory. Dialogues in Clinical Neuroscience, 15(4), 411418. https://doi.org/10.31887/dcns.2013.15.4/emillerCrossRefGoogle Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167202. https://doi.org/10.1146/annurev.neuro.24.1.167CrossRefGoogle ScholarPubMed
Miller, E. K., Lundqvist, M., & Bastos, A. M. (2018). Working memory 2.0. Neuron, 100(2), 463475. https://doi.org/10.1016/j.neuron.2018.09.023CrossRefGoogle ScholarPubMed
Miller, S., McCulloch, S., & Jarrold, C. (2015). The development of memory maintenance strategies: Training cumulative rehearsal and interactive imagery in children aged between 5 and 9. Frontiers in Psychology, 6, 110. https://doi.org/10.3389/fpsyg.2015.00524CrossRefGoogle ScholarPubMed
Milner, B., Corkin, S., & Teuber, H. L. (1968). Further analysis of the hippocampal amnesic syndrome: A 14-year follow-up study of H.M. Neuropsychologia, 6(3), 215234. https://doi.org/10.1016/0028-3932(68)90021-3CrossRefGoogle Scholar
Milner, B., Squire, L. R., & Kandel, E. R. (1998). Cognitive neuroscience and the study of memory. Neuron, 20(3), 445468. https://doi.org/10.1016/s0896–6273(00)80987-3CrossRefGoogle Scholar
Mirsky, A. F., Anthony, B. J., Duncan, C. C., Ahearn, M. B., & Kellam, S. G. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychology Review, 2(2), 109145. https://doi.org/10.1007/bf01109051CrossRefGoogle ScholarPubMed
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions. Current Directions in Psychological Science, 21(1), 814. https://doi.org/10.1177/0963721411429458CrossRefGoogle ScholarPubMed
Miyake, A., Emerson, M. J., Padilla, F., & Ahn, J. (2004). Inner speech as a retrieval aid for task goals: The effects of cue type and articulatory suppression in the random task cueing paradigm. Acta Psychologica, 115, 123142. https://doi.org/10.1016/j.actpsy.2003.12.004CrossRefGoogle Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100. https://doi.org/10.1006/cogp.1999.0734CrossRefGoogle ScholarPubMed
Mohapatra, B., & Marshall, R. S. (2019). Performance differences between aphasia and healthy aging on an executive function test battery. International Journal of Speech-Language Pathology, 22(4), 487497. https://doi.org/10.1080/17549507.2019.1691262CrossRefGoogle Scholar
Morey, C. C., Cowan, N., Morey, R. D., & Rouder, J. N. (2011). Flexible attention allocation to visual and auditory working memory tasks: Manipulating reward induces a trade-off. Attention, Perception, & Psychophysics, 73(2), 458472. https://doi.org/10.3758/s13414-010-0031-4CrossRefGoogle ScholarPubMed
Morgan-Short, K., Faretta-Stutenberg, M., Brill-Schuetz, K. A., Carpenter, H., & Wong, P. C. (2014). Declarative and procedural memory as individual differences in second language acquisition. Bilingualism: Language and Cognition, 17(1), 5672. https://doi.org/10.1017/S1366728912000715CrossRefGoogle Scholar
Morgan-Short, K., Steinhauer, K., Sanz, C., & Ullman, M. T. (2012). Explicit and implicit langauge training differentially affect the achievement of native-like brain activation patterns. Journal of Cognitive Neuroscience, 24(4), 933947. https://doi.org/10.1162/jocn_a_00119CrossRefGoogle Scholar
Morris, N., & Jones, D. M. (1990). Memory updating in working memory: The role of the central executive. British Journal of Psychology, 81(2), 111121. https://doi.org/10.1111/j.2044-8295.1990.tb02349.xCrossRefGoogle Scholar
Mosse, E. K., & Jarrold, C. (2008). Short article: Hebb learning, verbal short-term memory, and the acquisition of phonological forms in children. Quarterly Journal of Experimental Psychology, 61(4), 505514. https://doi.org/10.1080/17470210701680779CrossRefGoogle ScholarPubMed
Müller, U., Kerns, K. A., & Konkin, K. (2012). Test-retest reliability and practice effects of executive function tasks in preschool children. The Clinical Neuropsychologist, 26(2), 271287. https://doi.org/10.1080/13854046.2011.645558CrossRefGoogle ScholarPubMed
Munson, B., Kurtz, B. A., & Windsor, J. (2005). The influence of vocabulary size, phonotactic probability, and word likeness on nonword repetitions of children with and without specific language impairment. Journal of Speech, Language, and Hearing Research, 48(5), 10331047. https://doi.org/10.1044/1092-4388(2005/072)CrossRefGoogle Scholar
Murayama, K., Miyatsu, T., Buchli, D., & Storm, B. C. (2014). Forgetting as a consequence of retrieval: A meta-analytic review of retrieval-induced forgetting. Psychological Bulletin, 140(5), 13831409. https://doi.org/10.1037/a0037505CrossRefGoogle ScholarPubMed
Murray, L. L. (1999). Review attention and aphasia: Theory, research and clinical implications. Aphasiology, 13(2), 91111. https://doi.org/10.1080/026870399402226CrossRefGoogle Scholar
Murray, L. L. (2012). Attention and other cognitive deficits in aphasia: Presence and relation to language and communication measures. American Journal of Speech-Language Pathology, 21(2), 5164. https://doi.org/10.1044/1058-0360(2012/11-0067)CrossRefGoogle ScholarPubMed
Murray, L., Salis, C., Martin, N., & Dralle, J. (2018). The use of standardized short-term and working memory tests in aphasia research: A systematic review. Neuropsychological Rehabilitation, 28(3), 309351. https://doi.org/10.1080/09602011.2016.1174718CrossRefGoogle ScholarPubMed
Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7(2), 217227. https://doi.org/10.1016/s0959-4388(97)80010-4CrossRefGoogle ScholarPubMed
Nadel, L., Samsonovich, A., Ryan, L., & Moscovitch, M. (2000). Multiple trace theory of human memory: Computational, neuroimaging, and neuropsychological results. Hippocampus, 10(4), 352368. https://doi.org/10.1002/1098-1063(2000)10:4<352::aid-hipo2>3.0.co;2-d3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Nasar, J., Hecht, P., & Wener, R. (2008). Mobile telephones, distracted attention, and pedestrian safety. Accident Analysis & Prevention, 40(1), 6975. https://doi.org/10.1016/j.aap.2007.04.005CrossRefGoogle ScholarPubMed
Nicholas, M., & Connor, L. T. (2017) People with aphasia using AAC: Are executive functions important? Aphasiology, 31(7), 819836. https://doi.org/10.1080/02687038.2016.1258539CrossRefGoogle Scholar
Nicholas, M., Sinotte, M. P., & Helm-Estabrooks, N. (2011). C-speak aphasia alternative communication program for people with severe aphasia: Importance of executive functioning and semantic knowledge. Neuropsychological Rehabilitation, 21(3), 322366. https://doi.org/10.1080/09602011.2011.559051CrossRefGoogle ScholarPubMed
Norris, D., & Kalm, K. (2021). Chunking and data compression in verbal short-term memory. Cognition, 208, 104534. https://doi.org/10.1016/j.cognition.2020.104534CrossRefGoogle ScholarPubMed
Norris, J., & Ortega, L. (2000). Effectiveness of L2 instruction: A research synthesis and quantitative meta-analysis. Language Learning, 50(3), 417528. https://doi.org/10.1111/0023-8333.00136CrossRefGoogle Scholar
Novick, J. M., Trueswell, J. C., & Thompson-Schill, S. L. (2005). Cognitive control and parsing: Reexamining the role of Broca’s area in sentence comprehension. Cognitive, Affective, & Behavioral Neuroscience, 5(3), 263281. https://doi.org/10.3758/cabn.5.3.263CrossRefGoogle ScholarPubMed
Obermeyer, J., Schlesinger, J., & Martin, N. (2020). Evaluating the contribution of executive functions to language tasks in cognitively demanding contexts. American Journal of Speech-Language Pathology, 29(1S), 463473. https://doi.org/10.1044/2019_ajslp-cac48-18-0216CrossRefGoogle ScholarPubMed
Ojemann, G. A., Schoenfield-McNeill, J., & Corina, D. (2009). The roles of human lateral temporal cortical neuronal activity in recent verbal memory encoding. Cerebral Cortex, 19(1), 197205. https://doi.org/10.1093/cercor/bhn071CrossRefGoogle ScholarPubMed
Olsson, C., Arvidsson, P., & Blom Johansson, M. (2019). Relations between executive function, language, and functional communication in severe aphasia. Aphasiology, 33(7), 821845. https://doi.org/10.1080/02687038.2019.1602813CrossRefGoogle Scholar
Olsson, C., Arvidsson, P., & Blom Johansson, M. (2020). Measuring executive function in people with severe aphasia: Comparing neuropsychological tests and informant ratings. NeuroRehabilitation, 46(3), 299310. https://doi.org/10.3233/nre-192998CrossRefGoogle ScholarPubMed
Oppermann, F., Jescheniak, J. D., & Görges, F. (2014). Resolving competition when naming an object in a multiple-object display. Psychonomic Bulletin & Review, 21(1), 7884. https://doi.org/10.3758/s13423-013-0465-5CrossRefGoogle Scholar
Oswald, F. L., McAbee, S. T., Redick, T. S., & Hambrick, D. Z. (2015). The development of a short domain-general measure of working memory capacity. Behavior Research Methods, 47(4), 13431355. https://doi.org/10.3758/s13428-014-0543-2CrossRefGoogle Scholar
Packard, M. G., and McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65(1), 6572. https://doi.org/10.1006/nlme.1996.0007CrossRefGoogle ScholarPubMed
Papagno, C., & Vallar, G. (1992). Phonological short-term memory and learning of novel words: The effect of phonological similarity and item length. The Quarterly Journal of Experimental Psychology Section A, 44 (1), 4767. https://doi.org/10.1080/14640749208401283CrossRefGoogle Scholar
Papagno, C., Valentine, T., & Baddeley, A. (1991). Phonological short-term memory and foreign-language vocabulary learning. Journal of Memory & Language, 30(3), 331347. https://doi.org/10.1016/0749-596x(91)90040-qCrossRefGoogle Scholar
Park, J., Miller, C. A., Sanjeevan, T., van Hell, J. G., Weiss, D. J., & Mainela-Arnold, E. (2019). Bilingualism and attention in typically developing children and children with developmental language disorder. Journal of Speech, Language, and Hearing Research, 62(11), 41054118. https://doi.org/10.1044/2019_jslhr-l-18-0341CrossRefGoogle ScholarPubMed
Pauls, L. J., & Archibald, L. M. (2016). Executive functions in children with specific language impairment: A meta-analysis. Journal of Speech, Language, and Hearing Research, 59(5), 10741086. https://doi.org/10.1044/2016_jslhr-l-15-0174CrossRefGoogle ScholarPubMed
Peng, P., Barnes, M., Wang, C., Wang, W., Li, S., Swanson, H. L., Dardick, W., & Tao, S. (2018). A meta-analysis on the relation between reading and working memory. Psychological Bulletin, 144(1), 4876. https://doi.org/10.1037/bul0000124CrossRefGoogle ScholarPubMed
Peristeri, E., Tsimpli, I. M., Dardiotis, E., & Tsapkini, K. (2020). Effects of executive attention on sentence processing in aphasia. Aphasiology, 34(8), 943969. https://doi.org/10.1080/02687038.2019.1622647CrossRefGoogle ScholarPubMed
Peteranderl, S., & Oberauer, K. (2018). Serial recall of colors: Two models of memory for serial order applied to continuous visual stimuli. Memory & Cognition, 46(1), 116. https://doi.org/10.3758/s13421-017-0741-0CrossRefGoogle ScholarPubMed
Poldrack, R. A., & Gabrieli, J. D. (1997). Functional anatomy of long-term memory. Journal of Clinical Neurophysiology, 14(4), 294310. https://doi.org/10.1097/00004691-199707000-00003CrossRefGoogle ScholarPubMed
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13(1), 2542. https://doi.org/10.1146/annurev.ne.13.030190.000325CrossRefGoogle ScholarPubMed
Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160174. https://doi.org/10.1037/0096-3445.109.2.160CrossRefGoogle ScholarPubMed
Potagas, C., Kasselimis, D., & Evdokimidis, I. (2011). Short-term and working memory impairments in aphasia. Neuropsychologia, 49(10), 28742878. https://doi.org/10.1016/j.neuropsychologia.2011.06.013CrossRefGoogle ScholarPubMed
Purdy, M. (2002). Executive function ability in persons with aphasia. Aphasiology, 16(4–6), 549557. https://doi.org/10.1080/02687030244000176CrossRefGoogle Scholar
Rankin, E., Newton, C., Parker, A., & Bruce, C. (2014). Hearing loss and auditory processing ability in people with aphasia. Aphasiology, 28(5), 576595. https://doi.org/10.1080/02687038.2013.878452CrossRefGoogle Scholar
Reber, P. J. (2008). Cognitive neuroscience of declarative and nondeclarative memory. In Guadagnoli, M., Benjamin, A. S., de Belle, J. S., Etnyre, B., & Polk, T. A. (Eds.), Human Learning: Biology, Brain and Neuroscience (Vol. 139, pp. 113123). Elsevier.10.1016/S0166-4115(08)10010-3CrossRefGoogle Scholar
Reber, P. J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51(10), 20262042. https:/doi.org/10.1016/j.neuropsychologia.2013.06.019CrossRefGoogle ScholarPubMed
Richmond, J., & Nelson, C. A. (2007). Accounting for change in declarative memory: A cognitive neuroscience perspective. Developmental Review, 27(3), 349373. https://doi.org/10.1016/j.dr.2007.04.002CrossRefGoogle ScholarPubMed
Roelofs, A., & Piai, V. (2011). Attention demands of spoken word planning: A review. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00307CrossRefGoogle ScholarPubMed
Rogalsky, C., Matchin, W., & Hickok, G. (2008). Broca’s area, sentence comprehension, and working memory: An fMRI study. Frontiers in Human Neuroscience, 2. https://doi.org/10.3389/neuro.09.014.2008CrossRefGoogle ScholarPubMed
Rogers, T., Hodges, J., Patterson, K., & Lambon Ralph, M. (2003). Object recognition under semantic impairment: The effects of conceptual regularities on perceptual decisions. Language and Cognitive Processes, 18(5–6), 625662. https://doi.org/10.1080/01690960344000053CrossRefGoogle Scholar
Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland, J. L., Hodges, J. R., & Patterson, K. (2004). Structure and deterioration of semantic memory: A neuropsychological and computational investigation. Psychological Review, 111(1), 205235. https://doi.org/10.1037/0033-295x.111.1.205CrossRefGoogle ScholarPubMed
Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. WIREs Cognitive Science, 1(6), 906914. https://doi.org/10.1002/wcs.78CrossRefGoogle ScholarPubMed
Romero Lauro, L. J., Reis, J., Cohen, L. G., Cecchetto, C., & Papagno, C. (2010). A case for the involvement of phonological loop in sentence comprehension. Neuropsychologia, 48(14), 40034011. https://doi.org/10.1016/j.neuropsychologia.2010.10.019CrossRefGoogle Scholar
Rudner, M., & Rönnberg, J. (2008). The role of the episodic buffer in working memory for language processing. Cognitive Processing, 9(1), 1928. https://doi.org/10.1007/s10339-007-0183-xCrossRefGoogle ScholarPubMed
Saffran, J. R. (2020). Statistical language learning in infancy. Child Development Perspectives, 14(1), 4954. https://doi.org/10.1111/cdep.12355CrossRefGoogle ScholarPubMed
Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69(1), 181203. https://doi.org/10.1146/annurev-psych-122216-011805CrossRefGoogle ScholarPubMed
Schacter, D. L., & Dodson, C. S. (2001). Misattribution, false recognition and the sins of memory. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1413), 13851393. https://doi.org/10.1098/rstb.2001.0938CrossRefGoogle ScholarPubMed
Schendan, H. E. (2012). Semantic memory. In Ramachandran, V. S. (Ed.), Encyclopedia of Human Behavior (pp. 350358). Elsevier. https://doi.org/10.1016/B978-0-12-375000-6.00315-3CrossRefGoogle Scholar
Schmidt-Wilcke, T., Poljansky, S., Hierlmeier, S., Hausner, J., & Ibach, B. (2009). Memory performance correlates with gray matter density in the ento-/perirhinal cortex and posterior hippocampus in patients with mild cognitive impairment and healthy controls: A voxel based morphometry study. NeuroImage, 47(4), 19141920. https://doi.org/10.1016/j.neuroimage.2009.04.092CrossRefGoogle ScholarPubMed
Schneider, D., Herbst, S. K., Klatt, L.-I., & Wöstmann, M. (2021). Target enhancement or distractor suppression? Functionally distinct alpha oscillations form the basis of attention. European Journal of Neuroscience, 55(11–12), 32563265. https://doi.org/10.1111/ejn.15309CrossRefGoogle ScholarPubMed
Schnur, T. T., Schwartz, M. F., Brecher, A., & Hodgson, C. (2006). Semantic interference during blocked-cyclic naming: Evidence from aphasia. Journal of Memory and Language, 54(2),199227. https://doi.org/10.1016/j.jml.2005.10.002CrossRefGoogle Scholar
Seer, C., Sidlauskaite, J., Lange, F., Rodríguez-Nieto, G., & Swinnen, S. P. (2021). Cognition and action: A latent variable approach to study contributions of executive functions to motor control in older adults. Aging, 13(12), 1594215963. https://doi.org/10.18632/aging.203239CrossRefGoogle Scholar
Seidenberg, M. S., & Plaut, D. C. (2014). Quasiregularity and its discontents: The legacy of the past tense debate. Cognitive Science, 38(6), 11901228. https://doi.org/10.1111/cogs.12147CrossRefGoogle ScholarPubMed
Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34(3), 114123. https://doi.org/10.1016/j.tins.2010.11.002CrossRefGoogle ScholarPubMed
Shaywitz, S. E., & Shaywitz, B. A. (2008). Paying attention to reading: The neurobiology of reading and dyslexia. Development and Psychopathology, 20(4), 13291349. https://doi.org/10.1017/s0954579408000631CrossRefGoogle ScholarPubMed
Shiffrin, R. M., & Atkinson, R. C. (1969). Storage and retrieval processes in long-term memory. Psychological Review, 76(2), 179193. https://doi.org/10.1037/h0027277CrossRefGoogle Scholar
Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention. Trends in Cognitive Sciences, 12(5), 182186. https://doi.org/10.1016/j.tics.2008.02.003CrossRefGoogle ScholarPubMed
Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33(1), 542. https://doi.org/10.1006/cogp.1997.0658CrossRefGoogle ScholarPubMed
Smyth, M. M., & Pendleton, L. R. (1990). Space and movement in working memory. The Quarterly Journal of Experimental Psychology Section A, 42(2), 291304. https://doi.org/10.1080/14640749008401223CrossRefGoogle ScholarPubMed
Sohlberg, M. M., & Mateer, C. A. (1987). Effectiveness of an attention-training program. Journal of Clinical and Experimental Neuropsychology, 9(2), 117130. https://doi.org/10.1080/01688638708405352CrossRefGoogle ScholarPubMed
Sohlberg, M. M., & Mateer, C. A. (2001). Cognitive Rehabilitation: An Integrative Neuropsychological Approach. Guilford Press.Google Scholar
Souza, A. S., & Oberauer, K. (2018). Does articulatory rehearsal help immediate serial recall? Cognitive Psychology, 107, 121. https://doi.org/10.1016/j.cogpsych.2018.09.002CrossRefGoogle ScholarPubMed
Squire, L. R. (1992). Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. Journal of Cognitive Neuroscience, 4(3), 232243. https://doi.org/10.1162/jocn.1992.4.3.232CrossRefGoogle ScholarPubMed
Squire, L. R. (2009a). Memory and brain systems: 1969–2009. Journal of Neuroscience, 29(41), 1271112716. https://doi.org/10.1523/jneurosci.3575-09.2009CrossRefGoogle ScholarPubMed
Squire, L. R. (2009b). The legacy of patient HM for neuroscience. Neuron, 61(1), 69. https://doi.org/10.1016/j.neuron.2008.12.023CrossRefGoogle ScholarPubMed
Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology, 5(2), 169177. https://doi.org/10.1016/0959-4388(95)80023-9CrossRefGoogle ScholarPubMed
Squire, L. R., Genzel, L., Wixted, J. T., & Morris, R. G. (2015). Memory consolidation. Cold Spring Harbor Perspectives in Biology, 7(8), a021766. https://doi.org/10.1101/cshperspect.a021766CrossRefGoogle ScholarPubMed
Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences, 93(24), 1351513522. https://doi.org/10.1073/pnas.93.24.13515CrossRefGoogle ScholarPubMed
Squire, L. R., & Zola, S. M. (1998). Episodic memory, semantic memory, and amnesia. Hippocampus, 8(3), 205211. https://doi.org/10.1002/(sici)1098-1063(1998)8:3<205::aid-hipo3>3.0.co;2-i3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Stein, J. (2014). Dyslexia: The role of vision and visual attention. Current Developmental Disorders Reports, 1(4), 267280. https://doi.org/10.1007/s40474-014-0030-6CrossRefGoogle ScholarPubMed
Stern, P., & Shalev, L. (2013). The role of sustained attention and display medium in reading comprehension among adolescents with ADHD and without it. Research in Developmental Disabilities, 34(1), 431439. https://doi.org/10.1016/j.ridd.2012.08.021CrossRefGoogle Scholar
Storm, B. C., & Levy, B. J. (2012). A progress report on the inhibitory account of retrieval-induced forgetting. Memory & Cognition, 40(6), 827843. https://doi.org/10.3758/s13421–012-0211-7CrossRefGoogle ScholarPubMed
Stuss, D. T. (2011). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17(5), 759765. https://doi.org/10.1017/S1355617711000695CrossRefGoogle ScholarPubMed
Szalárdy, O., Tóth, B., Farkas, D., György, E., & Winkler, I. (2019). Neuronal correlates of informational and energetic masking in the human brain in a multi-talker situation. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.00786CrossRefGoogle Scholar
Teuber, H. L. (1972). Unity and diversity of frontal lobe functions. Acta Neurobiologiae Experimentalis, 32(2), 615656.Google ScholarPubMed
Thakur, C. S., Wang, R. M., Afshar, S., Hamilton, T. J., Tapson, J. C., Shamma, S. A., & van Schaik, A. (2015). Sound stream segregation: A neuromorphic approach to solve the “cocktail party problem” in real-time. Frontiers in Neuroscience, 9. https://doi.org/10.3389/fnins.2015.00309CrossRefGoogle ScholarPubMed
Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A. (2006). Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience, 26(37), 94949502. https://doi.org/10.1523/jneurosci.0875-06.2006CrossRefGoogle ScholarPubMed
Treisman, A. M. (1960). Contextual cues in selective listening. Quarterly Journal of Experimental Psychology, 12(4), 242248. https://doi.org/10.1080/17470216008416732CrossRefGoogle Scholar
Tucha, L., Aschenbrenner, S., Koerts, J., & Lange, K. W. (2012). The five-point test: Reliability, validity, and normative data for children and adults. PLoS ONE, 7(9), e46080. https://doi.org/10.1371/journal.pone.0046080CrossRefGoogle ScholarPubMed
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of Memory (pp. 381403). Academic Press.Google Scholar
Tulving, E. (2002). Does memory encoding exist? In Naveh-Benjamin, M., Moscovitch, M., & Roediger, H. L. III (Eds.), Perspectives on Human Memory and Cognitive Aging: Essays in Honor of Fergus Craik (pp. 627). Psychology Press.Google Scholar
Tulving, E., & Pearlstone, Z. (1966). Availability versus accessibility of information in memory for words. Journal of Verbal Learning and Verbal Behavior, 5(4), 381391. https://doi.org/10.1016/s0022-5371(66)80048-8CrossRefGoogle Scholar
Ullman, M. T. (2001). A neurocognitive perspective on language: The declarative/procedural model. Nature Reviews Neuroscience, 2(10), 717726. https://doi.org/10.1038/35094573CrossRefGoogle ScholarPubMed
Ullman, M.T. (2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 92(1–2), 231270. https://doi.org/10.1016/j.cognition.2003.10.008CrossRefGoogle ScholarPubMed
Ullman, M. T. (2016). The declarative/procedural model: A neurobiological model of language learning, knowledge, and use. In Neurobiology of Language (pp. 953968). Academic Press.10.1016/B978-0-12-407794-2.00076-6CrossRefGoogle Scholar
Ullman, M. T. (2020). The declarative/procedural model: A neurobiologically motivated theory of first and second language 1. In Theories in Second Language Acquisition (pp. 128161). Routledge.10.4324/9780429503986-7CrossRefGoogle Scholar
Ullman, M. T., Corkin, S., Coppola, M., Hickok, G., Growdon, J. H., Koroshetz, W. J., & Pinker, S. (1997). A neural dissociation within language: Evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. Journal of Cognitive Neuroscience, 9(2), 266276. https://doi.org/10.1162/jocn.1997.9.2.266CrossRefGoogle ScholarPubMed
Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104132. https://doi.org/10.1037/0033-295x.114.1.104CrossRefGoogle ScholarPubMed
Vallat-Azouvi, C., Weber, T., Legrand, L., & Azuovi, P. (2007). Working memory after severe traumatic brain injury. Journal of the International Neuropsychological Society, 13(05), 770780. https://doi.org/10.1017/s1355617707070993CrossRefGoogle ScholarPubMed
Verde, M. F. (2012). Retrieval-induced forgetting and inhibition: A critical review. In Ross, B. H. (Ed.), Psychology of Learning and Motivation, (Vol. 56, pp. 4780). Academic Press. https://doi.org/10.1016/b978-0-12-394393-4.00002-9Google Scholar
Villard, S., & Kidd, G. Jr. (2019). Effects of acquired aphasia on the recognition of speech under energetic and informational masking conditions. Trends in Hearing, 23, 122. https://doi.org/10.1177/2331216519884480CrossRefGoogle ScholarPubMed
Villard, S., & Kiran, S. (2015). Between-session intra-individual variability in sustained, selective, and integrational non-linguistic attention in aphasia. Neuropsychologia, 66, 204212. https://doi.org/10.1016/j.neuropsychologia.2014.11.026CrossRefGoogle ScholarPubMed
Villard, S., & Kiran, S. (2017). To what extent does attention underlie language in aphasia? Aphasiology, 31(10), 12261245. https://doi.org/10.1080/02687038.2016.1242711CrossRefGoogle Scholar
Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. The Neuroscientist, 20(2), 150159. https://doi.org/10.1177/1073858413494269CrossRefGoogle ScholarPubMed
Vugs, B., Hendriks, M., Cuperus, J., & Verhoeven, L. (2014). Working memory performance and executive function behaviors in young children with SLI. Research in Developmental Disabilities, 35(1), 6274. https://doi.org/10.1016/j.ridd.2013.10.022CrossRefGoogle Scholar
Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255274. https://doi.org/10.3758/cabn.3.4.255CrossRefGoogle ScholarPubMed
Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9(9), 445453. https://doi.org/10.1016/j.tics.2005.07.001CrossRefGoogle ScholarPubMed
Waters, G. S., Rochon, E., & Caplan, D. (1992). The role of high-level speech planning in rehearsal: Evidence from patients with apraxia of speech. Journal of Memory and Language, 31(1), 5473. https://doi.org/10.1016/0749-596X(92)90005-ICrossRefGoogle Scholar
Wiebe, S. A., Espy, K. A., & Charak, D. (2008). Using confirmatory factor analysis to understand executive control in preschool children: I. Latent structure. Developmental Psychology, 44(2), 575587. https://doi.org/10.1037/0012-1649.44.2.575CrossRefGoogle ScholarPubMed
Winkielman, P., Schwarz, N., Fazendeiro, T. A., & Reber, R. (2003). The hedonic marking of processing fluency: Implications for evaluative judgment. In Musch, J. & Klauer, K. C. (Eds.), The Psychology of Evaluation: Affective Processes in Cognition and Emotion (pp. 189217). Lawrence Erlbaum Associates Publishers.Google Scholar
Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-bank electroencephalography increases over occipital cortex. Journal of Neuroscience, 20(6), RC63. https://doi.org/10.1523/jneurosci.20-06-j0002.2000CrossRefGoogle Scholar
Yee, E., Chrysikou, E. G., Hoffman, E., & Thompson-Schill, S. L. (2013). Manual experience shapes object representations. Psychological Science, 24(6), 909919. https://doi.org/10.1177/0956797612464658CrossRefGoogle ScholarPubMed
Zhang, M., Alamatsaz, N., & Ihlefeld, A. (2021). Hemodynamic responses link individual differences in informational masking to the vicinity of superior temporal gyrus. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.675326Google Scholar

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×