Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-09-21T23:30:15.291Z Has data issue: false hasContentIssue false

Chapter 15 - Language and Emotion Concepts in the Predictive Brain

from Section III - Emotion Perception and Elicitation

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

There is growing evidence that language plays an important role in emotion because it helps people acquire emotion concept knowledge. In this chapter, we argue that language plays a mechanistic role in emotion because emotion concept knowledge, once acquired, is used by the brain to predictively and adaptively regulate a person’s subjective emotional experiences and behaviors. Building on predictive processing models of brain function, we argue that the emotion concepts learned via language during early development “seed” the brain’s emotional predictions throughout the lifespan. We review constructionist theories of emotion and their support in behavioral, physiological, neuroimaging, and lesion data. We then situate these constructionist predictions within recent neuroscience research to speculate on the neural mechanisms by which emotion concepts “seed” emotional experiences.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: Active inference in the motor system. Brain Structure and Function, 218, 611–643.CrossRefGoogle Scholar
Alves, H., Koch, A., & Unkelbach, C. (2017). Why good is more alike than bad: Processing implications. Trends in Cognitive Sciences, 21, 69–79.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65, 550–562.CrossRefGoogle ScholarPubMed
Atzil, S., Gao, W., Fradkin, I., & Barrett, L. F. (2018). Growing a social brain. Nature Human Behaviour, 2, 624–636.Google ScholarPubMed
Atzil, S., & Gendron, M. (2017). Bio-behavioral synchrony promotes the development of conceptualized emotions. Current Opinion in Psychology, 17, 162–169.CrossRefGoogle ScholarPubMed
Bar, M. (2009). The proactive brain: Memory for predictions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1235–1243.CrossRefGoogle ScholarPubMed
Barbas, H. (2015). General cortical and special prefrontal connections: Principles from structure to function. Annual Review of Neuroscience, 38, 269–289.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on Psychological Science, 1, 28–58.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12, 1–23.CrossRefGoogle ScholarPubMed
Barrett, L. F., Quigley, K. S., & Hamilton, P. (2016). An active inference theory of allostasis and interoception in depression. Philosophical Transactions of the Royal Society B, 37, 20160011.Google Scholar
Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23, 361–372.CrossRefGoogle ScholarPubMed
Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16, 419–429.CrossRefGoogle ScholarPubMed
Bendixen, A., SanMiguel, I., & Schröger, E. (2012). Early electrophysiological indicators for predictive processing in audition: A review. International Journal of Psychophysiology, 83, 120–131.CrossRefGoogle ScholarPubMed
Bertoux, M., Duclos, H., Caillaud, M., Segobin, S., Merck, C., de La Sayette, V., … Laisney, M. (2020). When affect overlaps with concept: Emotion recognition in semantic variant of primary progressive aphasia. Brain, 143, 3850–3864.CrossRefGoogle ScholarPubMed
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527–536.CrossRefGoogle ScholarPubMed
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.CrossRefGoogle Scholar
Bliss-Moreau, E. (2017). Constructing nonhuman animal emotion. Current Opinion in Psychology, 17, 184–188.CrossRefGoogle ScholarPubMed
Borghi, A. M., & Binkofski, F. (2014). Words as social tools: An embodied view on abstract concepts. Springer Science & Business Media.CrossRefGoogle Scholar
Brooks, J. A., Chikazoe, J., Sadato, N., & Freeman, J. B. (2019). The neural representation of facial-emotion categories reflects conceptual structure. Proceedings of the National Academy of Sciences of the United States of America, 116, 15861–15870.Google ScholarPubMed
Brooks, J. A., Shablack, H., Gendron, M., Satpute, A. B., Parrish, M. H., & Lindquist, K. A. (2017). The role of language in the experience and perception of emotion: A neuroimaging meta-analysis. Social Cognitive and Affective Neuroscience, 12, 169–183.Google ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124, 1–38.Google ScholarPubMed
Burklund, L., Creswell, J., Irwin, M., & Lieberman, M. (2014). The common and distinct neural bases of affect labeling and reappraisal in healthy adults. Frontiers in Psychology, 5, 221.CrossRefGoogle ScholarPubMed
Campanella, F., Shallice, T., Ius, T., Fabbro, F., & Skrap, M. (2014). Impact of brain tumour location on emotion and personality: A voxel-based lesion–symptom mapping study on mentalization processes. Brain, 137, 2532–2545.CrossRefGoogle Scholar
Chanes, L., & Barrett, L. F. (2016). Redefining the role of limbic areas in cortical processing. Trends in Cognitive Sciences, 20, 96–106.CrossRefGoogle ScholarPubMed
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181–204.CrossRefGoogle ScholarPubMed
Clark, A. (2018). A nice surprise? Predictive processing and the active pursuit of novelty. Phenomenology and the Cognitive Sciences, 17, 521–534.CrossRefGoogle Scholar
Clore, G. L., & Ortony, A. (2013). Psychological construction in the OCC model of emotion. Emotion Review, 5, 335–343.CrossRefGoogle ScholarPubMed
Collins, C. E., Airey, D. C., Young, N. A., Leitch, D. B., & Kaas, J. H. (2010). Neuron densities vary across and within cortical areas in primates. Proceedings of the National Academy of Sciences of the United States of America, 107, 15927–15932.Google ScholarPubMed
Constantinou, E., Van Den Houte, M., Bogaerts, K., Van Diest, I., & Van den Bergh, O. (2014). Can words heal? Using affect labeling to reduce the effects of unpleasant cues on symptom reporting. Frontiers in Psychology, 5, 807.CrossRefGoogle ScholarPubMed
Craig, A. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13, 500–505.Google ScholarPubMed
DeWall, C. N., Baumeister, R. F., Chester, D. S., & Bushman, B. J. (2016). How often does currently felt emotion predict social behavior and judgment? A meta-analytic test of two theories. Emotion Review, 8, 136–143.CrossRefGoogle Scholar
Doyle, C. M., Gendron, M., & Lindquist, K. A. (2021). Language is a unique context for emotion perception. Affective Science, 2, 171–177.CrossRefGoogle ScholarPubMed
Fernández-Dols, J.-M., & Ruiz-Belda, M.-A. (1995). Are smiles a sign of happiness? Gold medal winners at the Olympic Games. Journal of Personality and Social Psychology, 69, 1113–1119.CrossRefGoogle Scholar
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127–138.CrossRefGoogle ScholarPubMed
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., & Pezzulo, G. (2016). Active inference and learning. Neuroscience & Biobehavioral Reviews, 68, 862–879.CrossRefGoogle ScholarPubMed
Fugate, J. M. B., Gouzoules, H., & Barrett, L. F. (2010). Reading chimpanzee faces: Evidence for the role of verbal labels in categorical perception of emotion. Emotion, 10, 544–554.CrossRefGoogle ScholarPubMed
Gendron, M., & Barrett, L. F. (2009). Reconstructing the past: A century of ideas about emotion in psychology. Emotion Review, 1, 316–339.CrossRefGoogle Scholar
Grossi, D., Di Vita, A., Palermo, L., Sabatini, U., Trojano, L., & Guariglia, C. (2014). The brain network for self-feeling: A symptom-lesion mapping study. Neuropsychologia, 63, 92–98.CrossRefGoogle Scholar
Hamann, S. (2012). Mapping discrete and dimensional emotions onto the brain: Controversies and consensus. Trends in Cognitive Sciences, 16, 458–466.CrossRefGoogle ScholarPubMed
Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. NeuroReport, 11, 43.CrossRefGoogle ScholarPubMed
Hoemann, K., Gendron, M., & Barrett, L. F. (2022). Assessing the power of words to facilitate emotion category learning. Affective Science, 3, 69–80.Google ScholarPubMed
Hoemann, K., Khan, Z., Kamona, N., Dy, J., Barrett, L. F., & Quigley, K. S. (2021). Investigating the relationship between emotional granularity and cardiorespiratory physiological activity in daily life. Psychophysiology, 58, e13818.CrossRefGoogle ScholarPubMed
Hoffman, P., Jefferies, B., & Ralph, M. L. (2015). Special issue of Neuropsychologia: Semantic cognition. Neuropsychologia, 76, 1–3.CrossRefGoogle ScholarPubMed
Huang, Y.-A., Jastorff, J., Van den Stock, J., Van de Vliet, L., Dupont, P., & Vandenbulcke, M. (2018). Studying emotion theories through connectivity analysis: Evidence from generalized psychophysiological interactions and graph theory. NeuroImage, 172, 250–262.CrossRefGoogle ScholarPubMed
Hunt, W. A. (1941). Recent developments in the field of emotion. Psychological Bulletin, 38, 249–276.CrossRefGoogle Scholar
Jastorff, J., De Winter, F.-L., Van den Stock, J., Vandenberghe, R., Giese, M. A., & Vandenbulcke, M. (2016). Functional dissociation between anterior temporal lobe and inferior frontal gyrus in the processing of dynamic body expressions: Insights from behavioral variant frontotemporal dementia. Human Brain Mapping, 37, 4472–4486.CrossRefGoogle ScholarPubMed
Kashdan, T. B., Barrett, L. F., & McKnight, P. E. (2015). Unpacking emotion differentiation: Transforming unpleasant experience by perceiving distinctions in negativity. Current Directions in Psychological Science, 24, 10–16.CrossRefGoogle Scholar
Katsumi, Y., Theriault, J. E., Quigley, K. S., & Barrett, L. F. (2022). Allostasis as a core feature of hierarchical gradients in the human brain. Network Neuroscience, 6, 1010–1031.CrossRefGoogle ScholarPubMed
Katsumi, Y., Zhang, J., Chen, D., Kamona, N., Bunce, J. G., Hutchinson, J. B., … Barrett, L. F. (2023). Correspondence of functional connectivity gradients across human isocortex, cerebellum, and hippocampus. Communications Biology, 6, 401.CrossRefGoogle ScholarPubMed
Kircanski, K., Lieberman, M. D., & Craske, M. G. (2012). Feelings into words: Contributions of language to exposure therapy. Psychological Science, 23, 1086–1091.CrossRefGoogle ScholarPubMed
Kleckner, I. R., Zhang, J., Touroutoglou, A., Chanes, L., Xia, C., Simmons, W. K., … Barrett, L. F. (2017). Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nature Human Behaviour, 1, 0069.CrossRefGoogle ScholarPubMed
Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wager, T. D. (2008). Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage, 42, 998–1031.CrossRefGoogle ScholarPubMed
Kragel, P. A., & LaBar, K. S. (2015). Multivariate neural biomarkers of emotional states are categorically distinct. Social Cognitive and Affective Neuroscience, 10, 1437–1448.CrossRefGoogle ScholarPubMed
Lambon Ralph, M. A., Pobric, G., & Jefferies, E. (2009). Conceptual knowledge is underpinned by the temporal pole bilaterally: Convergent evidence from rTMS. Cerebral Cortex, 19, 832–838.CrossRefGoogle ScholarPubMed
LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73, 653–676.CrossRefGoogle ScholarPubMed
Lee, J. Y., Lindquist, K. A., & Nam, C. S. (2017). Emotional granularity effects on event-related brain potentials during affective picture processing. Frontiers in Human Neuroscience, 11, 133.CrossRefGoogle ScholarPubMed
Lee, K. M., Lindquist, K. A., & Payne, B. K. (2018). Constructing bias: Conceptualization breaks the link between implicit bias and fear of Black Americans. Emotion, 18, 855–871.CrossRefGoogle ScholarPubMed
Lieberman, M. D., Eisenberger, N. I., Crockett, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words. Psychological Science, 18, 421–428.CrossRefGoogle ScholarPubMed
Lieberman, M. D., Inagaki, T. K., Tabibnia, G., & Crockett, M. J. (2011). Subjective responses to emotional stimuli during labeling, reappraisal, and distraction. Emotion, 11, 468.CrossRefGoogle ScholarPubMed
Lindquist, K. A. (2013). Emotions emerge from more basic psychological ingredients: A modern psychological constructionist model. Emotion Review, 5, 356–368.CrossRefGoogle Scholar
Lindquist, K. A. (2017). The role of language in emotion: Existing evidence and future directions. Current Opinion in Psychology, 17, 135–139.CrossRefGoogle ScholarPubMed
Lindquist, K. A., & Barrett, L. F. (2008). Constructing emotion: The experience of fear as a conceptual act. Psychological Science, 19, 898–903.CrossRefGoogle ScholarPubMed
Lindquist, K. A., & Barrett, L. F. (2012). A functional architecture of the human brain: Emerging insights from the science of emotion. Trends in Cognitive Science, 16, 533–540.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Barrett, L. F., Bliss-Moreau, E., & Russell, J. A. (2006). Language and the perception of emotion. Emotion, 6, 125–138.CrossRefGoogle ScholarPubMed
Lindquist, K. A., & Gendron, M. (2013). What’s in a word? Language constructs emotion perception. Emotion Review, 5, 66–71.CrossRefGoogle Scholar
Lindquist, K. A., Gendron, M., Barrett, L. F., & Dickerson, B. C. (2014). Emotion perception, but not affect perception, is impaired with semantic memory loss. Emotion, 14, 375–387.CrossRefGoogle Scholar
Lindquist, K. A., Gendron, M., & Satpute, A. B. (2016). Language and emotion. In Barrett, L. F. & Lewis, M. (Eds.), Handbook of emotions, 4th ed. (Ch. 34), The Guilford Press.Google Scholar
Lindquist, K. A., Jackson, J. C., Leshin, J., Satpute, A. B., & Gendron, M. (2022). The cultural evolution of emotion. Nature Reviews Psychology, 1, 669–681.CrossRefGoogle Scholar
Lindquist, K. A., MacCormack, J. K., & Shablack, H. (2015). The role of language in emotion: Predictions from psychological constructionism. Frontiers in Psychology, 6, 444.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Satpute, A. B., & Gendron, M. (2015). Does language do more than communicate emotion? Current Directions in Psychological Science, 24, 99–108.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. The Behavioral and Brain Sciences, 35, 121–143.CrossRefGoogle ScholarPubMed
Lupyan, G., & Clark, A. (2015). Words and the world: Predictive coding and the language-perception-cognition interface. Current Directions in Psychological Science, 24, 279–284.CrossRefGoogle Scholar
Lupyan, G., & Ward, E. J. (2013). Language can boost otherwise unseen objects into visual awareness. Proceedings of the National Academy of Sciences of the United States of America, 110, 14196–14201.Google ScholarPubMed
Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315, 393–395.CrossRefGoogle ScholarPubMed
Matejka, M., Kazzer, P., Seehausen, M., Bajbouj, M., Klann-Delius, G., Menninghaus, W., … Prehn, K. (2013). Talking about emotion: Prosody and skin conductance indicate emotion regulation. Frontiers in Psychology, 4, 260.CrossRefGoogle ScholarPubMed
Mitchell, W. J., Tepfer, L. J., Henninger, N. M., Perlman, S. B., Murty, V. P., & Helion, C. (2021). Developmental differences in affective representation between prefrontal and subcortical structures. Social Cognitive and Affective Neuroscience, 17, 311–322.Google ScholarPubMed
Nencheva, M., Nook, E., Thornton, M. A., Lew-Williams, C., & Tamir, D. (2024). The emergence of organized emotion dynamics in childhood. Affective Science, 5, 246–258.CrossRefGoogle ScholarPubMed
Niles, A. N., Craske, M. G., Lieberman, M. D., & Hur, C. (2015). Affect labeling enhances exposure effectiveness for public speaking anxiety. Behaviour Research and Therapy, 68, 27–36.CrossRefGoogle ScholarPubMed
Nook, E. C., Lindquist, K. A., & Zaki, J. (2015). A new look at emotion perception: Concepts speed and shape facial emotion recognition. Emotion, 15, 569–578.CrossRefGoogle Scholar
Nook, E. C., Satpute, A. B., & Ochsner, K. N. (2021). Emotion naming impedes both cognitive reappraisal and mindful acceptance strategies of emotion regulation. Affective Science, 2, 187–198.CrossRefGoogle ScholarPubMed
Nook, E. C., & Somerville, L. H. (2019). Emotion concept development from childhood to adulthood. In Neta, M. & Haas, I. J. (Eds.), Emotion in the mind and body (pp. 11–41). Springer International Publishing.Google Scholar
Nook, E. C., Stavish, C. M., Sasse, S. F., Lambert, H. K., Mair, P., McLaughlin, K. A., & Somerville, L. H. (2020). Charting the development of emotion comprehension and abstraction from childhood to adulthood using observer-rated and linguistic measures. Emotion, 20, 773–792.CrossRefGoogle ScholarPubMed
Ogren, M., & Sandhofer, C. M. (2022). Emotion words link faces to emotional scenarios in early childhood. Emotion, 22, 167–178.CrossRefGoogle ScholarPubMed
Panksepp, J. (2004). Affective neuroscience: The foundations of human and animal emotions. Oxford University Press.Google Scholar
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8, 976–987.CrossRefGoogle Scholar
Payer, D. E., Baicy, K., Lieberman, M. D., & London, E. D. (2012). Overlapping neural substrates between intentional and incidental down-regulation of negative emotions. Emotion, 12, 229–235.CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447.CrossRefGoogle ScholarPubMed
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87.CrossRefGoogle ScholarPubMed
Recasens, M., Gross, J., & Uhlhaas, P. J. (2018). Low-frequency oscillatory correlates of auditory predictive processing in cortical-subcortical networks: A MEG-study. Scientific Reports, 8, 14007.CrossRefGoogle ScholarPubMed
Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110, 145–172.CrossRefGoogle ScholarPubMed
Saarimäki, H., Ejtehadian, L. F., Glerean, E., Jääskeläinen, I. P., Vuilleumier, P., Sams, M., & Nummenmaa, L. (2018). Distributed affective space represents multiple emotion categories across the human brain. Social Cognitive and Affective Neuroscience, 13, 471–482.CrossRefGoogle ScholarPubMed
Saarimäki, H., Glerean, E., Smirnov, D., Mynttinen, H., Jääskeläinen, I. P., Sams, M., & Nummenmaa, L. (2022). Classification of emotion categories based on functional connectivity patterns of the human brain. NeuroImage, 247, 118800.CrossRefGoogle ScholarPubMed
Satpute, A. B., & Lindquist, K. A. (2019). The default mode network’s role in discrete emotion. Trends in Cognitive Sciences, 23, 851–864.CrossRefGoogle ScholarPubMed
Satpute, A. B., & Lindquist, K. A. (2021). At the neural intersection between language and emotion. Affective Science, 2, 207–220.CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657–661.CrossRefGoogle ScholarPubMed
Schulkin, J., & Sterling, P. (2019). Allostasis: A brain-centered, predictive mode of physiological regulation. Trends in Neurosciences, 42, 740–752.CrossRefGoogle ScholarPubMed
Shablack, H., & Lindquist, K. A. (2019). The role of language in emotional development. In LoBue, V., Pérez-Edgar, K., & Buss, K. A. (Eds.), Handbook of emotional development (pp. 451–478). Springer International Publishing.Google Scholar
Shenhav, A., Barrett, L. F., & Bar, M. (2013). Affective value and associative processing share a cortical substrate. Cognitive, Affective, & Behavioral Neuroscience, 13, 46–59.CrossRefGoogle Scholar
Siegel, E. H., Sands, M. K., Van Den Noortgate, W., Condon, P., Chang, Y., Dy, J., … Barrett, L. F. (2018). Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychological Bulletin, 144, 343–393.CrossRefGoogle ScholarPubMed
Smidt, K. E., & Suvak, M. K. (2015). A brief, but nuanced, review of emotional granularity and emotion differentiation research. Current Opinion in Psychology, 3, 48–51.CrossRefGoogle Scholar
Souter, N. E., Lindquist, K. A., & Jefferies, E. (2021). Impaired emotion perception and categorization in semantic aphasia. Neuropsychologia, 162, 108052.CrossRefGoogle ScholarPubMed
Souter, N. E., Wang, X., Thompson, H., Krieger-Redwood, K., Halai, A. D., Lambon Ralph, M. A., … Jefferies, E. (2022). Mapping lesion, structural disconnection, and functional disconnection to symptoms in semantic aphasia. Brain Structure and Function, 227, 3043–3061.CrossRefGoogle ScholarPubMed
Sterling, P. (2012). Allostasis: A model of predictive regulation. Physiology & Behavior, 106, 5–15.CrossRefGoogle Scholar
Taylor, S. F., Phan, K. L., Decker, L. R., & Liberzon, I. (2003). Subjective rating of emotionally salient stimuli modulates neural activity. NeuroImage, 18, 650–659.CrossRefGoogle ScholarPubMed
Torre, J. B., & Lieberman, M. D. (2018). Putting feelings into words: Affect labeling as implicit emotion regulation. Emotion Review, 10, 116–124.CrossRefGoogle Scholar
Tottenham, N. (2020). Neural meaning making, prediction, and prefrontal–subcortical development following early adverse caregiving. Development and Psychopathology, 32, 1563–1578.CrossRefGoogle ScholarPubMed
Touroutoglou, A., Lindquist, K. A., Dickerson, B. C., & Barrett, L. F. (2015). Intrinsic connectivity in the human brain does not reveal networks for “basic” emotions. Social Cognitive and Affective Neuroscience, 10, 1257–1265.CrossRefGoogle Scholar
Vigliocco, G., Meteyard, L., Andrews, M., & Kousta, S. (2009). Toward a theory of semantic representation. Language and Cognition, 1, 219–247.CrossRefGoogle Scholar
Visser, M., Jefferies, E., & Lambon Ralph, M. A. (2010). Semantic processing in the anterior temporal lobes: A meta-analysis of the functional neuroimaging literature. Journal of Cognitive Neuroscience, 22, 1083–1094.CrossRefGoogle ScholarPubMed
Wager, T. D., Kang, J., Johnson, T. D., Nichols, T. E., Satpute, A. B., & Barrett, L. F. (2015). A Bayesian model of category-specific emotional brain responses. PLOS Computational Biology, 11, e1004066.CrossRefGoogle ScholarPubMed
Widen, S. C. (2013). Children’s interpretation of facial expressions: The long path from valence-based to specific discrete categories. Emotion Review, 5, 72–77.CrossRefGoogle Scholar
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.Google ScholarPubMed
Zhang, J., Abiose, O., Katsumi, Y., Touroutoglou, A., Dickerson, B. C., & Barrett, L. F. (2019). Intrinsic functional connectivity is organized as three interdependent gradients. Scientific Reports, 9, 15976.Google ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×