Skip to main content Accessibility help
×
Hostname: page-component-7f64f4797f-pmsz9 Total loading time: 0 Render date: 2025-11-10T09:34:04.134Z Has data issue: false hasContentIssue false

Chapter 15 - Language and Emotion Concepts in the Predictive Brain

from Section III - Emotion Perception and Elicitation

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

There is growing evidence that language plays an important role in emotion because it helps people acquire emotion concept knowledge. In this chapter, we argue that language plays a mechanistic role in emotion because emotion concept knowledge, once acquired, is used by the brain to predictively and adaptively regulate a person’s subjective emotional experiences and behaviors. Building on predictive processing models of brain function, we argue that the emotion concepts learned via language during early development “seed” the brain’s emotional predictions throughout the lifespan. We review constructionist theories of emotion and their support in behavioral, physiological, neuroimaging, and lesion data. We then situate these constructionist predictions within recent neuroscience research to speculate on the neural mechanisms by which emotion concepts “seed” emotional experiences.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: Active inference in the motor system. Brain Structure and Function, 218, 611–643.10.1007/s00429-012-0475-5CrossRefGoogle Scholar
Alves, H., Koch, A., & Unkelbach, C. (2017). Why good is more alike than bad: Processing implications. Trends in Cognitive Sciences, 21, 69–79.10.1016/j.tics.2016.12.006CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65, 550–562.10.1016/j.neuron.2010.02.005CrossRefGoogle ScholarPubMed
Atzil, S., Gao, W., Fradkin, I., & Barrett, L. F. (2018). Growing a social brain. Nature Human Behaviour, 2, 624–636.Google ScholarPubMed
Atzil, S., & Gendron, M. (2017). Bio-behavioral synchrony promotes the development of conceptualized emotions. Current Opinion in Psychology, 17, 162–169.10.1016/j.copsyc.2017.07.009CrossRefGoogle ScholarPubMed
Bar, M. (2009). The proactive brain: Memory for predictions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1235–1243.10.1098/rstb.2008.0310CrossRefGoogle ScholarPubMed
Barbas, H. (2015). General cortical and special prefrontal connections: Principles from structure to function. Annual Review of Neuroscience, 38, 269–289.10.1146/annurev-neuro-071714-033936CrossRefGoogle ScholarPubMed
Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on Psychological Science, 1, 28–58.10.1111/j.1745-6916.2006.00003.xCrossRefGoogle ScholarPubMed
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12, 1–23.10.1093/scan/nsx060CrossRefGoogle ScholarPubMed
Barrett, L. F., Quigley, K. S., & Hamilton, P. (2016). An active inference theory of allostasis and interoception in depression. Philosophical Transactions of the Royal Society B, 37, 20160011.Google Scholar
Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23, 361–372.10.1016/j.conb.2012.12.012CrossRefGoogle ScholarPubMed
Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16, 419–429.10.1038/nrn3950CrossRefGoogle ScholarPubMed
Bendixen, A., SanMiguel, I., & Schröger, E. (2012). Early electrophysiological indicators for predictive processing in audition: A review. International Journal of Psychophysiology, 83, 120–131.10.1016/j.ijpsycho.2011.08.003CrossRefGoogle ScholarPubMed
Bertoux, M., Duclos, H., Caillaud, M., Segobin, S., Merck, C., de La Sayette, V., … Laisney, M. (2020). When affect overlaps with concept: Emotion recognition in semantic variant of primary progressive aphasia. Brain, 143, 3850–3864.10.1093/brain/awaa313CrossRefGoogle ScholarPubMed
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527–536.10.1016/j.tics.2011.10.001CrossRefGoogle ScholarPubMed
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.10.1093/cercor/bhp055CrossRefGoogle Scholar
Bliss-Moreau, E. (2017). Constructing nonhuman animal emotion. Current Opinion in Psychology, 17, 184–188.10.1016/j.copsyc.2017.07.011CrossRefGoogle ScholarPubMed
Borghi, A. M., & Binkofski, F. (2014). Words as social tools: An embodied view on abstract concepts. Springer Science & Business Media.10.1007/978-1-4614-9539-0CrossRefGoogle Scholar
Brooks, J. A., Chikazoe, J., Sadato, N., & Freeman, J. B. (2019). The neural representation of facial-emotion categories reflects conceptual structure. Proceedings of the National Academy of Sciences of the United States of America, 116, 15861–15870.Google ScholarPubMed
Brooks, J. A., Shablack, H., Gendron, M., Satpute, A. B., Parrish, M. H., & Lindquist, K. A. (2017). The role of language in the experience and perception of emotion: A neuroimaging meta-analysis. Social Cognitive and Affective Neuroscience, 12, 169–183.Google ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124, 1–38.Google ScholarPubMed
Burklund, L., Creswell, J., Irwin, M., & Lieberman, M. (2014). The common and distinct neural bases of affect labeling and reappraisal in healthy adults. Frontiers in Psychology, 5, 221.10.3389/fpsyg.2014.00221CrossRefGoogle ScholarPubMed
Campanella, F., Shallice, T., Ius, T., Fabbro, F., & Skrap, M. (2014). Impact of brain tumour location on emotion and personality: A voxel-based lesion–symptom mapping study on mentalization processes. Brain, 137, 2532–2545.10.1093/brain/awu183CrossRefGoogle Scholar
Chanes, L., & Barrett, L. F. (2016). Redefining the role of limbic areas in cortical processing. Trends in Cognitive Sciences, 20, 96–106.10.1016/j.tics.2015.11.005CrossRefGoogle ScholarPubMed
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181–204.10.1017/S0140525X12000477CrossRefGoogle ScholarPubMed
Clark, A. (2018). A nice surprise? Predictive processing and the active pursuit of novelty. Phenomenology and the Cognitive Sciences, 17, 521–534.10.1007/s11097-017-9525-zCrossRefGoogle Scholar
Clore, G. L., & Ortony, A. (2013). Psychological construction in the OCC model of emotion. Emotion Review, 5, 335–343.10.1177/1754073913489751CrossRefGoogle ScholarPubMed
Collins, C. E., Airey, D. C., Young, N. A., Leitch, D. B., & Kaas, J. H. (2010). Neuron densities vary across and within cortical areas in primates. Proceedings of the National Academy of Sciences of the United States of America, 107, 15927–15932.Google ScholarPubMed
Constantinou, E., Van Den Houte, M., Bogaerts, K., Van Diest, I., & Van den Bergh, O. (2014). Can words heal? Using affect labeling to reduce the effects of unpleasant cues on symptom reporting. Frontiers in Psychology, 5, 807.10.3389/fpsyg.2014.00807CrossRefGoogle ScholarPubMed
Craig, A. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13, 500–505.Google ScholarPubMed
DeWall, C. N., Baumeister, R. F., Chester, D. S., & Bushman, B. J. (2016). How often does currently felt emotion predict social behavior and judgment? A meta-analytic test of two theories. Emotion Review, 8, 136–143.10.1177/1754073915572690CrossRefGoogle Scholar
Doyle, C. M., Gendron, M., & Lindquist, K. A. (2021). Language is a unique context for emotion perception. Affective Science, 2, 171–177.10.1007/s42761-020-00025-7CrossRefGoogle ScholarPubMed
Fernández-Dols, J.-M., & Ruiz-Belda, M.-A. (1995). Are smiles a sign of happiness? Gold medal winners at the Olympic Games. Journal of Personality and Social Psychology, 69, 1113–1119.10.1037/0022-3514.69.6.1113CrossRefGoogle Scholar
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127–138.10.1038/nrn2787CrossRefGoogle ScholarPubMed
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., & Pezzulo, G. (2016). Active inference and learning. Neuroscience & Biobehavioral Reviews, 68, 862–879.10.1016/j.neubiorev.2016.06.022CrossRefGoogle ScholarPubMed
Fugate, J. M. B., Gouzoules, H., & Barrett, L. F. (2010). Reading chimpanzee faces: Evidence for the role of verbal labels in categorical perception of emotion. Emotion, 10, 544–554.10.1037/a0019017CrossRefGoogle ScholarPubMed
Gendron, M., & Barrett, L. F. (2009). Reconstructing the past: A century of ideas about emotion in psychology. Emotion Review, 1, 316–339.10.1177/1754073909338877CrossRefGoogle Scholar
Grossi, D., Di Vita, A., Palermo, L., Sabatini, U., Trojano, L., & Guariglia, C. (2014). The brain network for self-feeling: A symptom-lesion mapping study. Neuropsychologia, 63, 92–98.10.1016/j.neuropsychologia.2014.08.004CrossRefGoogle Scholar
Hamann, S. (2012). Mapping discrete and dimensional emotions onto the brain: Controversies and consensus. Trends in Cognitive Sciences, 16, 458–466.10.1016/j.tics.2012.07.006CrossRefGoogle ScholarPubMed
Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. NeuroReport, 11, 43.10.1097/00001756-200001170-00009CrossRefGoogle ScholarPubMed
Hoemann, K., Gendron, M., & Barrett, L. F. (2022). Assessing the power of words to facilitate emotion category learning. Affective Science, 3, 69–80.Google ScholarPubMed
Hoemann, K., Khan, Z., Kamona, N., Dy, J., Barrett, L. F., & Quigley, K. S. (2021). Investigating the relationship between emotional granularity and cardiorespiratory physiological activity in daily life. Psychophysiology, 58, e13818.10.1111/psyp.13818CrossRefGoogle ScholarPubMed
Hoffman, P., Jefferies, B., & Ralph, M. L. (2015). Special issue of Neuropsychologia: Semantic cognition. Neuropsychologia, 76, 1–3.10.1016/j.neuropsychologia.2015.09.011CrossRefGoogle ScholarPubMed
Huang, Y.-A., Jastorff, J., Van den Stock, J., Van de Vliet, L., Dupont, P., & Vandenbulcke, M. (2018). Studying emotion theories through connectivity analysis: Evidence from generalized psychophysiological interactions and graph theory. NeuroImage, 172, 250–262.10.1016/j.neuroimage.2018.01.026CrossRefGoogle ScholarPubMed
Hunt, W. A. (1941). Recent developments in the field of emotion. Psychological Bulletin, 38, 249–276.10.1037/h0054615CrossRefGoogle Scholar
Jastorff, J., De Winter, F.-L., Van den Stock, J., Vandenberghe, R., Giese, M. A., & Vandenbulcke, M. (2016). Functional dissociation between anterior temporal lobe and inferior frontal gyrus in the processing of dynamic body expressions: Insights from behavioral variant frontotemporal dementia. Human Brain Mapping, 37, 4472–4486.10.1002/hbm.23322CrossRefGoogle ScholarPubMed
Kashdan, T. B., Barrett, L. F., & McKnight, P. E. (2015). Unpacking emotion differentiation: Transforming unpleasant experience by perceiving distinctions in negativity. Current Directions in Psychological Science, 24, 10–16.10.1177/0963721414550708CrossRefGoogle Scholar
Katsumi, Y., Theriault, J. E., Quigley, K. S., & Barrett, L. F. (2022). Allostasis as a core feature of hierarchical gradients in the human brain. Network Neuroscience, 6, 1010–1031.10.1162/netn_a_00240CrossRefGoogle ScholarPubMed
Katsumi, Y., Zhang, J., Chen, D., Kamona, N., Bunce, J. G., Hutchinson, J. B., … Barrett, L. F. (2023). Correspondence of functional connectivity gradients across human isocortex, cerebellum, and hippocampus. Communications Biology, 6, 401.10.1038/s42003-023-04796-0CrossRefGoogle ScholarPubMed
Kircanski, K., Lieberman, M. D., & Craske, M. G. (2012). Feelings into words: Contributions of language to exposure therapy. Psychological Science, 23, 1086–1091.10.1177/0956797612443830CrossRefGoogle ScholarPubMed
Kleckner, I. R., Zhang, J., Touroutoglou, A., Chanes, L., Xia, C., Simmons, W. K., … Barrett, L. F. (2017). Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nature Human Behaviour, 1, 0069.10.1038/s41562-017-0069CrossRefGoogle ScholarPubMed
Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wager, T. D. (2008). Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage, 42, 998–1031.10.1016/j.neuroimage.2008.03.059CrossRefGoogle ScholarPubMed
Kragel, P. A., & LaBar, K. S. (2015). Multivariate neural biomarkers of emotional states are categorically distinct. Social Cognitive and Affective Neuroscience, 10, 1437–1448.10.1093/scan/nsv032CrossRefGoogle ScholarPubMed
Lambon Ralph, M. A., Pobric, G., & Jefferies, E. (2009). Conceptual knowledge is underpinned by the temporal pole bilaterally: Convergent evidence from rTMS. Cerebral Cortex, 19, 832–838.10.1093/cercor/bhn131CrossRefGoogle ScholarPubMed
LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73, 653–676.10.1016/j.neuron.2012.02.018CrossRefGoogle ScholarPubMed
Lee, J. Y., Lindquist, K. A., & Nam, C. S. (2017). Emotional granularity effects on event-related brain potentials during affective picture processing. Frontiers in Human Neuroscience, 11, 133.10.3389/fnhum.2017.00133CrossRefGoogle ScholarPubMed
Lee, K. M., Lindquist, K. A., & Payne, B. K. (2018). Constructing bias: Conceptualization breaks the link between implicit bias and fear of Black Americans. Emotion, 18, 855–871.10.1037/emo0000347CrossRefGoogle ScholarPubMed
Lieberman, M. D., Eisenberger, N. I., Crockett, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words. Psychological Science, 18, 421–428.10.1111/j.1467-9280.2007.01916.xCrossRefGoogle ScholarPubMed
Lieberman, M. D., Inagaki, T. K., Tabibnia, G., & Crockett, M. J. (2011). Subjective responses to emotional stimuli during labeling, reappraisal, and distraction. Emotion, 11, 468.10.1037/a0023503CrossRefGoogle ScholarPubMed
Lindquist, K. A. (2013). Emotions emerge from more basic psychological ingredients: A modern psychological constructionist model. Emotion Review, 5, 356–368.10.1177/1754073913489750CrossRefGoogle Scholar
Lindquist, K. A. (2017). The role of language in emotion: Existing evidence and future directions. Current Opinion in Psychology, 17, 135–139.10.1016/j.copsyc.2017.07.006CrossRefGoogle ScholarPubMed
Lindquist, K. A., & Barrett, L. F. (2008). Constructing emotion: The experience of fear as a conceptual act. Psychological Science, 19, 898–903.10.1111/j.1467-9280.2008.02174.xCrossRefGoogle ScholarPubMed
Lindquist, K. A., & Barrett, L. F. (2012). A functional architecture of the human brain: Emerging insights from the science of emotion. Trends in Cognitive Science, 16, 533–540.10.1016/j.tics.2012.09.005CrossRefGoogle ScholarPubMed
Lindquist, K. A., Barrett, L. F., Bliss-Moreau, E., & Russell, J. A. (2006). Language and the perception of emotion. Emotion, 6, 125–138.10.1037/1528-3542.6.1.125CrossRefGoogle ScholarPubMed
Lindquist, K. A., & Gendron, M. (2013). What’s in a word? Language constructs emotion perception. Emotion Review, 5, 66–71.10.1177/1754073912451351CrossRefGoogle Scholar
Lindquist, K. A., Gendron, M., Barrett, L. F., & Dickerson, B. C. (2014). Emotion perception, but not affect perception, is impaired with semantic memory loss. Emotion, 14, 375–387.10.1037/a0035293CrossRefGoogle Scholar
Lindquist, K. A., Gendron, M., & Satpute, A. B. (2016). Language and emotion. In Barrett, L. F. & Lewis, M. (Eds.), Handbook of emotions, 4th ed. (Ch. 34), The Guilford Press.Google Scholar
Lindquist, K. A., Jackson, J. C., Leshin, J., Satpute, A. B., & Gendron, M. (2022). The cultural evolution of emotion. Nature Reviews Psychology, 1, 669–681.10.1038/s44159-022-00105-4CrossRefGoogle Scholar
Lindquist, K. A., MacCormack, J. K., & Shablack, H. (2015). The role of language in emotion: Predictions from psychological constructionism. Frontiers in Psychology, 6, 444.10.3389/fpsyg.2015.00444CrossRefGoogle ScholarPubMed
Lindquist, K. A., Satpute, A. B., & Gendron, M. (2015). Does language do more than communicate emotion? Current Directions in Psychological Science, 24, 99–108.10.1177/0963721414553440CrossRefGoogle ScholarPubMed
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. The Behavioral and Brain Sciences, 35, 121–143.10.1017/S0140525X11000446CrossRefGoogle ScholarPubMed
Lupyan, G., & Clark, A. (2015). Words and the world: Predictive coding and the language-perception-cognition interface. Current Directions in Psychological Science, 24, 279–284.10.1177/0963721415570732CrossRefGoogle Scholar
Lupyan, G., & Ward, E. J. (2013). Language can boost otherwise unseen objects into visual awareness. Proceedings of the National Academy of Sciences of the United States of America, 110, 14196–14201.Google ScholarPubMed
Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315, 393–395.10.1126/science.1131295CrossRefGoogle ScholarPubMed
Matejka, M., Kazzer, P., Seehausen, M., Bajbouj, M., Klann-Delius, G., Menninghaus, W., … Prehn, K. (2013). Talking about emotion: Prosody and skin conductance indicate emotion regulation. Frontiers in Psychology, 4, 260.10.3389/fpsyg.2013.00260CrossRefGoogle ScholarPubMed
Mitchell, W. J., Tepfer, L. J., Henninger, N. M., Perlman, S. B., Murty, V. P., & Helion, C. (2021). Developmental differences in affective representation between prefrontal and subcortical structures. Social Cognitive and Affective Neuroscience, 17, 311–322.Google ScholarPubMed
Nencheva, M., Nook, E., Thornton, M. A., Lew-Williams, C., & Tamir, D. (2024). The emergence of organized emotion dynamics in childhood. Affective Science, 5, 246–258.10.1007/s42761-024-00248-yCrossRefGoogle ScholarPubMed
Niles, A. N., Craske, M. G., Lieberman, M. D., & Hur, C. (2015). Affect labeling enhances exposure effectiveness for public speaking anxiety. Behaviour Research and Therapy, 68, 27–36.10.1016/j.brat.2015.03.004CrossRefGoogle ScholarPubMed
Nook, E. C., Lindquist, K. A., & Zaki, J. (2015). A new look at emotion perception: Concepts speed and shape facial emotion recognition. Emotion, 15, 569–578.10.1037/a0039166CrossRefGoogle Scholar
Nook, E. C., Satpute, A. B., & Ochsner, K. N. (2021). Emotion naming impedes both cognitive reappraisal and mindful acceptance strategies of emotion regulation. Affective Science, 2, 187–198.10.1007/s42761-021-00036-yCrossRefGoogle ScholarPubMed
Nook, E. C., & Somerville, L. H. (2019). Emotion concept development from childhood to adulthood. In Neta, M. & Haas, I. J. (Eds.), Emotion in the mind and body (pp. 11–41). Springer International Publishing.Google Scholar
Nook, E. C., Stavish, C. M., Sasse, S. F., Lambert, H. K., Mair, P., McLaughlin, K. A., & Somerville, L. H. (2020). Charting the development of emotion comprehension and abstraction from childhood to adulthood using observer-rated and linguistic measures. Emotion, 20, 773–792.10.1037/emo0000609CrossRefGoogle ScholarPubMed
Ogren, M., & Sandhofer, C. M. (2022). Emotion words link faces to emotional scenarios in early childhood. Emotion, 22, 167–178.10.1037/emo0001063CrossRefGoogle ScholarPubMed
Panksepp, J. (2004). Affective neuroscience: The foundations of human and animal emotions. Oxford University Press.Google Scholar
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8, 976–987.10.1038/nrn2277CrossRefGoogle Scholar
Payer, D. E., Baicy, K., Lieberman, M. D., & London, E. D. (2012). Overlapping neural substrates between intentional and incidental down-regulation of negative emotions. Emotion, 12, 229–235.10.1037/a0027421CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447.10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87.10.1038/4580CrossRefGoogle ScholarPubMed
Recasens, M., Gross, J., & Uhlhaas, P. J. (2018). Low-frequency oscillatory correlates of auditory predictive processing in cortical-subcortical networks: A MEG-study. Scientific Reports, 8, 14007.10.1038/s41598-018-32385-3CrossRefGoogle ScholarPubMed
Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110, 145–172.10.1037/0033-295X.110.1.145CrossRefGoogle ScholarPubMed
Saarimäki, H., Ejtehadian, L. F., Glerean, E., Jääskeläinen, I. P., Vuilleumier, P., Sams, M., & Nummenmaa, L. (2018). Distributed affective space represents multiple emotion categories across the human brain. Social Cognitive and Affective Neuroscience, 13, 471–482.10.1093/scan/nsy018CrossRefGoogle ScholarPubMed
Saarimäki, H., Glerean, E., Smirnov, D., Mynttinen, H., Jääskeläinen, I. P., Sams, M., & Nummenmaa, L. (2022). Classification of emotion categories based on functional connectivity patterns of the human brain. NeuroImage, 247, 118800.10.1016/j.neuroimage.2021.118800CrossRefGoogle ScholarPubMed
Satpute, A. B., & Lindquist, K. A. (2019). The default mode network’s role in discrete emotion. Trends in Cognitive Sciences, 23, 851–864.10.1016/j.tics.2019.07.003CrossRefGoogle ScholarPubMed
Satpute, A. B., & Lindquist, K. A. (2021). At the neural intersection between language and emotion. Affective Science, 2, 207–220.10.1007/s42761-021-00032-2CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657–661.10.1038/nrn2213CrossRefGoogle ScholarPubMed
Schulkin, J., & Sterling, P. (2019). Allostasis: A brain-centered, predictive mode of physiological regulation. Trends in Neurosciences, 42, 740–752.10.1016/j.tins.2019.07.010CrossRefGoogle ScholarPubMed
Shablack, H., & Lindquist, K. A. (2019). The role of language in emotional development. In LoBue, V., Pérez-Edgar, K., & Buss, K. A. (Eds.), Handbook of emotional development (pp. 451–478). Springer International Publishing.Google Scholar
Shenhav, A., Barrett, L. F., & Bar, M. (2013). Affective value and associative processing share a cortical substrate. Cognitive, Affective, & Behavioral Neuroscience, 13, 46–59.10.3758/s13415-012-0128-4CrossRefGoogle Scholar
Siegel, E. H., Sands, M. K., Van Den Noortgate, W., Condon, P., Chang, Y., Dy, J., … Barrett, L. F. (2018). Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychological Bulletin, 144, 343–393.10.1037/bul0000128CrossRefGoogle ScholarPubMed
Smidt, K. E., & Suvak, M. K. (2015). A brief, but nuanced, review of emotional granularity and emotion differentiation research. Current Opinion in Psychology, 3, 48–51.10.1016/j.copsyc.2015.02.007CrossRefGoogle Scholar
Souter, N. E., Lindquist, K. A., & Jefferies, E. (2021). Impaired emotion perception and categorization in semantic aphasia. Neuropsychologia, 162, 108052.10.1016/j.neuropsychologia.2021.108052CrossRefGoogle ScholarPubMed
Souter, N. E., Wang, X., Thompson, H., Krieger-Redwood, K., Halai, A. D., Lambon Ralph, M. A., … Jefferies, E. (2022). Mapping lesion, structural disconnection, and functional disconnection to symptoms in semantic aphasia. Brain Structure and Function, 227, 3043–3061.10.1007/s00429-022-02526-6CrossRefGoogle ScholarPubMed
Sterling, P. (2012). Allostasis: A model of predictive regulation. Physiology & Behavior, 106, 5–15.10.1016/j.physbeh.2011.06.004CrossRefGoogle Scholar
Taylor, S. F., Phan, K. L., Decker, L. R., & Liberzon, I. (2003). Subjective rating of emotionally salient stimuli modulates neural activity. NeuroImage, 18, 650–659.10.1016/S1053-8119(02)00051-4CrossRefGoogle ScholarPubMed
Torre, J. B., & Lieberman, M. D. (2018). Putting feelings into words: Affect labeling as implicit emotion regulation. Emotion Review, 10, 116–124.10.1177/1754073917742706CrossRefGoogle Scholar
Tottenham, N. (2020). Neural meaning making, prediction, and prefrontal–subcortical development following early adverse caregiving. Development and Psychopathology, 32, 1563–1578.10.1017/S0954579420001169CrossRefGoogle ScholarPubMed
Touroutoglou, A., Lindquist, K. A., Dickerson, B. C., & Barrett, L. F. (2015). Intrinsic connectivity in the human brain does not reveal networks for “basic” emotions. Social Cognitive and Affective Neuroscience, 10, 1257–1265.10.1093/scan/nsv013CrossRefGoogle Scholar
Vigliocco, G., Meteyard, L., Andrews, M., & Kousta, S. (2009). Toward a theory of semantic representation. Language and Cognition, 1, 219–247.10.1515/LANGCOG.2009.011CrossRefGoogle Scholar
Visser, M., Jefferies, E., & Lambon Ralph, M. A. (2010). Semantic processing in the anterior temporal lobes: A meta-analysis of the functional neuroimaging literature. Journal of Cognitive Neuroscience, 22, 1083–1094.10.1162/jocn.2009.21309CrossRefGoogle ScholarPubMed
Wager, T. D., Kang, J., Johnson, T. D., Nichols, T. E., Satpute, A. B., & Barrett, L. F. (2015). A Bayesian model of category-specific emotional brain responses. PLOS Computational Biology, 11, e1004066.10.1371/journal.pcbi.1004066CrossRefGoogle ScholarPubMed
Widen, S. C. (2013). Children’s interpretation of facial expressions: The long path from valence-based to specific discrete categories. Emotion Review, 5, 72–77.10.1177/1754073912451492CrossRefGoogle Scholar
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.Google ScholarPubMed
Zhang, J., Abiose, O., Katsumi, Y., Touroutoglou, A., Dickerson, B. C., & Barrett, L. F. (2019). Intrinsic functional connectivity is organized as three interdependent gradients. Scientific Reports, 9, 15976.Google ScholarPubMed

Accessibility standard: WCAG 2.0 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×