Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-09-21T15:58:52.870Z Has data issue: false hasContentIssue false

Chapter 16 - Conditioned Fear Learning

from Section IV - Emotional Learning and Memory

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

Pavlovian conditioning paradigms have been a stalwart of animal research on fear learning for over a century. Recent advances in cognitive neuroscience research have led to new insights into the neural mechanisms of how humans learn to associate cues with threats, how these representations become bound to contextual features of the environment, and how they generalize to stimuli that are perceptually or conceptually related. By integrating information gleaned from patients with brain lesions, scalp electrophysiology, neuroimaging, and intracranial recordings, researchers are assembling a dynamic view of the distributed brain activity that generates conditioned fear responses. Innovative virtual reality technology, computational modeling, and multivariate analysis tools have further refined a scientific understanding of the component processes involved, which can inform future clinical interventions for treating fear- and anxiety-related disorders.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Agren, T. (2014). Human reconsolidation: A reactivation and update. Brain Research Bulletin, 105, 70–82.CrossRefGoogle ScholarPubMed
Åhs, F., Frans, O., Tibblin, B., Kumlien, E., & Fredrikson, M. (2010). The effects of medial temporal lobe resections on verbal threat and fear conditioning. Biological Psychology, 83, 41–46.Google ScholarPubMed
Åhs, F., Kragel, P. A., Zielinski, D. J., Brady, R., & LaBar, K. S. (2015). Medial prefrontal pathways for the contextual regulation of extinguished fear in humans. NeuroImage, 122, 262–271.CrossRefGoogle ScholarPubMed
Alvarez, R. P., Biggs, A., Chen, G., Pine, D. S., & Grillon, C. (2008). Contextual fear conditioning in humans: Cortical-hippocampal and amygdala contributions. Journal of Neuroscience, 28, 6211–6219.CrossRefGoogle ScholarPubMed
Armony, J. L., & Dolan, R. J. (2001). Modulation of auditory neural responses by a visual context in human fear conditioning. Neuroreport, 12, 3407–3411.CrossRefGoogle ScholarPubMed
Baeuchl, C., Meyer, P., Hoppstadter, M., Diener, C., & Flor, H. (2015). Contextual fear conditioning in humans using feature-identical contexts. Neurobiology of Learning and Memory, 121, 1–11.CrossRefGoogle ScholarPubMed
Battaglia, S., Garofalo, S., di Pellegrino, G., & Starita, F. (2020). Revaluing the role of vmPFC in the acquisition of Pavlovian threat conditioning in humans. Journal of Neuroscience, 40, 8491–8500.CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 1115–1118.CrossRefGoogle Scholar
Biggs, E. E., Timmers, I., Meulders, A., Vlaeyen, J. W. S., Goebel, R., & Kaas, A. L. (2020). The neural correlates of pain-related fear: A meta-analysis comparing fear conditioning studies using painful and non-painful stimuli. Neuroscience & Biobehavioral Reviews, 119, 52–65.CrossRefGoogle Scholar
Bocchio, M., Nabavi, S., & Capogna, M. (2017). Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron, 94, 731–743.CrossRefGoogle ScholarPubMed
Boll, S., Gamer, M., Gluth, S., Finsterbusch, J., & Buchel, C. (2013). Separate amygdala subregions signal surprise and predictiveness during associative fear learning in humans. European Journal of Neuroscience, 37, 758–767.CrossRefGoogle ScholarPubMed
Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychological Bulletin, 114, 80–99.CrossRefGoogle ScholarPubMed
Braem, S., De Houwer, J., Demanet, J., Yuen, K. S. L., Kalisch, R., & Brass, M. (2017). Pattern analyses reveal separate experience-based fear memories in the human right amygdala. Journal of Neuroscience, 37, 8116–8130.CrossRefGoogle ScholarPubMed
Buchel, C., Morris, J., Dolan, R. J., & Friston, K. J. (1998). Brain systems mediating aversive conditioning: An event-related fMRI study. Neuron, 20, 947–957.CrossRefGoogle ScholarPubMed
Chen, S., Tan, Z., Xia, W., Gomes, C. A., Zhang, X., Zhou, W., … Wang, L. (2021). Theta oscillations synchronize human medial prefrontal cortex and amygdala during fear learning. Science Advances, 7, eabf4198.CrossRefGoogle ScholarPubMed
Cheng, D. T., Knight, D. C., Smith, C. N., Stein, E. A., & Helmstetter, F. J. (2003). Functional MRI of human amygdala activity during Pavlovian fear conditioning: Stimulus processing versus response expression. Behavioral Neuroscience, 117, 3–10.CrossRefGoogle ScholarPubMed
Coelho, C. A. O., Dunsmoor, J. E., & Phelps, E. A. (2015). Compound stimulus extinction reduces spontaneous recovery in humans. Learning & Memory, 22, 589–593.CrossRefGoogle ScholarPubMed
Coppens, E., van Paesschen, W., Vandenbulcke, M., & Vansteenwegen, D. (2010). Fear conditioning following a unilateral anterior temporal lobectomy: Reduced autonomic responding and stimulus contingency knowledge. Acta Neurologica Belgica, 110, 36–48.Google ScholarPubMed
Craske, M. G., Hermans, D., & Vervliet, B. (2018). State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philosophical Transactions of the Royal Society B. Biological Sciences, 373, 20170025.Google ScholarPubMed
Delgado, M. R., Li, J., Schiller, D., & Phelps, E. A. (2008). The role of the striatum in aversive learning and aversive prediction errors. Philosophical Transactions of the Royal Society B. Biological Sciences, 363, 3787–3800.CrossRefGoogle ScholarPubMed
de Voogd, L. D., Murray, Y. P. J., Barte, R. M., van der Heide, A., Fernandez, G., Doeller, C. F., & Hermans, E. J. (2020). The role of hippocampal spatial representations in contextualization and generalization of fear. NeuroImage, 206, 116308.CrossRefGoogle ScholarPubMed
Di Giandomenico, S., Masi, R., Cassandrini, D., El-Hachem, M., De Vito, R., Bruno, C., & Santorelli, F. M. (2006). Lipoid proteinosis: Case report and review of the literature. Acta Otorhinolaryngologica Italica, 26, 162–167.Google ScholarPubMed
Dowd, E. W., Mitroff, S. R., & LaBar, K. S. (2016). Fear generalization gradients in visuospatial attention. Emotion, 16, 1011–1018.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E, Åhs, F., Zielinski, D. J., & LaBar, K. S. (2014). Extinction under multiple virtual reality contexts diminishes fear reinstatement in humans. Neurobiology of Learning and Memory, 113, 157–164.CrossRefGoogle Scholar
Dunsmoor, J., & Schmajuk, N. (2009). Interpreting patterns of brain activation in human fear conditioning with an attentional-associative learning model. Behavioral Neuroscience, 123, 851–855.CrossRefGoogle Scholar
Dunsmoor, J. E., Kragel, P. A., Martin, A., & LaBar, K. S. (2014). Aversive learning modulates cortical representations of object categories. Cerebral Cortex, 24, 2859–2872.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Martin, A., & LaBar, K. S. (2012). Role of conceptual knowledge in learning and retention of conditioned fear. Biological Psychology, 89, 300–305.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Mitroff, S. R., & LaBar, K. S. (2009). Generalization of conditioned fear along a dimension of increasing fear intensity. Learning & Memory, 16, 460–469.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Murty, V. P., Davachi, L., & Phelps, E. A. (2015). Emotional learning selectively and retroactively strengthens memories for related events. Nature, 520, 345–348.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Niv, Y., Daw, N., & Phelps, E. A. (2015). Rethinking extinction. Neuron, 88, 47–63.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Prince, S. E., Murty, V. P., Kragel, P. A., & LaBar, K. S. (2011). Neurobehavioral mechanisms of human fear generalization. NeuroImage, 55, 1878–1888.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., White, A. J., & LaBar, K. S. (2011). Conceptual similarity promotes generalization of higher order fear learning. Learning & Memory, 18, 156–160.CrossRefGoogle ScholarPubMed
Fanselow, M. S. (1994). Neural organization of the defensive behavior system responsible for fear. Psychonomic Bulletin and Review, 1, 429–438.CrossRefGoogle ScholarPubMed
Faul, L., Stjepanovic, D., Stivers, J. M., Stewart, G. W., Graner, J. L., Morey, R. A., & LaBar, K. S. (2020). Proximal threats promote enhanced acquisition and persistence of reactive fear-learning circuits. Proceedings of the National Academy of Sciences of the United States of America, 117, 16678–16689.Google ScholarPubMed
Fullana, M. A., Harrison, B. J., Soriano-Mas, C., Vervliet, B., Cardoner, N., Avila-Parcet, A., & Radua, J. (2016). Neural signatures of human fear conditioning: An updated and extended meta-analysis of fMRI studies. Molecular Psychiatry, 21, 500–508.CrossRefGoogle ScholarPubMed
Ghirlanda, S., & Enquist, M. (1999). The geometry of stimulus control. Animal Behaviour, 58, 695–706.CrossRefGoogle ScholarPubMed
Graner, J. L., Stjepanovic, D., & LaBar, K. S. (2020). Extinction learning alters the neural representation of conditioned fear. Cognitive, Affective, & Behavioral Neuroscience, 20, 983–997.CrossRefGoogle ScholarPubMed
Grewe, B. F., Grundemann, J., Kitch, L. J., Lecoq, J. A., Parker, J. G., Marshall, J. D., … Schnitzer, M. J. (2017). Neural ensemble dynamics underlying a long-term associative memory. Nature, 543, 670–675.CrossRefGoogle ScholarPubMed
Haaker, J., Golkar, A., Hermans, D., & Lonsdorf, T. B. (2014). A review on human reinstatement studies: An overview and methodological challenges. Learning & Memory, 21, 424–440.CrossRefGoogle ScholarPubMed
Harrison, B. J., Fullana, M. A., Via, E., Soriano-Mas, C., Vervliet, B., Martinez-Zalacain, I., … Cardoner, N. (2017). Human ventromedial prefrontal cortex and the positive affective processing of safety signals. NeuroImage, 152, 12–18.CrossRefGoogle ScholarPubMed
Hennings, A. C., Cooper, S. E., Lewis-Peacock, J. A., & Dunsmoor, J. E. (2022). Pattern analysis of neuroimaging data reveals novel insights on threat learning and extinction in humans. Neuroscience & Biobehavioral Reviews, 142, 104918.CrossRefGoogle ScholarPubMed
Hermans, D., Baeyens, F., & Vervliet, B. (2013). Generalization of acquired emotional responses. In Robinson, M. D., Watkins, E., & Harmon-Jones, E. (Eds.), Handbook of cognition and emotion (pp. 117–134). Guilford Press.Google Scholar
Hermans, D., Dirikx, T., Vansteenwegenin, D., Baeyens, F., Van den Bergh, O., & Eelen, P. (2005). Reinstatement of fear responses in human aversive conditioning. Behaviour Research and Therapy, 43, 533–551.CrossRefGoogle ScholarPubMed
Herry, C., & Johansen, J. P. (2014). Encoding of fear learning and memory in distributed neuronal circuits. Nature Neuroscience, 17, 1644–1654.CrossRefGoogle ScholarPubMed
Huff, N. C., Zielinski, D. J., Fecteau, M. E., Brady, R., & LaBar, K. S. (2010). Human fear conditioning conducted in full immersion 3-dimensional virtual reality. Journal of Visualized Experiments, 9, 1993.Google Scholar
Klumpers, F., Morgan, B., Terburg, D., Stein, D. J., & van Honk, J. (2015). Impaired acquisition of classically conditioned fear-potentiated startle reflexes in humans with focal bilateral basolateral amygdala damage. Social Cognitive and Affective Neuroscience, 10, 1161–1168.CrossRefGoogle ScholarPubMed
Kolada, E., Bielski, K., Wilk, M., Rymarczyk, K., Bogorodzki, P., Kazulo, P., … Szatkowska, I. (2023). The human centromedial amygdala contributes to negative prediction error signaling during appetitive and aversive Pavlovian gustatory learning. Journal of Neuroscience, 43, 3176–3185.CrossRefGoogle ScholarPubMed
LaBar, K. S. (2023). Neuroimaging of fear extinction. Current Topics in Behavioral Neurosciences, 64, 79–101.CrossRefGoogle ScholarPubMed
LaBar, K. S., Gitelman, D. R., Mesulam, M. M., & Parrish, T. B. (2001). Impact of signal-to-noise on functional MRI of the human amygdala. Neuroreport, 12, 3461–3464.CrossRefGoogle ScholarPubMed
LaBar, K. S., & LeDoux, J. E. (1996). Partial disruption of fear conditioning in rats with unilateral amygdala damage: Correspondence with unilateral temporal lobectomy in humans. Behavioral Neuroscience, 110, 991–997.CrossRefGoogle ScholarPubMed
LaBar, K. S., LeDoux, J. E., Spencer, D. D., & Phelps, E. A. (1995). Impaired fear conditioning following unilateral temporal lobectomy in humans. The Journal of Neuroscience, 15, 6846–6855.CrossRefGoogle ScholarPubMed
LaBar, K. S., & Phelps, E. A. (2005). Reinstatement of conditioned fear in humans is context dependent and impaired in amnesia. Behavioral Neuroscience, 119, 677–686.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2014). Coming to terms with fear. Proceedings of the National Academy of Sciences of the United States of America, 111, 2871–2878.Google ScholarPubMed
Lei, Y., Mei, Y., Dai, Y., & Peng, W. (2020). Taxonomic relations evoke more fear than thematic relations after fear conditioning: An EEG study. Neurobiology of Learning and Memory, 167, 107099.CrossRefGoogle ScholarPubMed
Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A., & Daw, N. D. (2011a). Differential roles of human striatum and amygdala in associative learning. Nature Neuroscience, 14, 1250–1252.CrossRefGoogle Scholar
Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A., & Daw, N. D. (2011b). Differential roles of human striatum and amygdala in associative learning. Nature Neuroscience, 14, 1250–1252.CrossRefGoogle Scholar
Lindstrom, B., Haaker, J., & Olsson, A. (2018). A common neural network differentially mediates direct and social fear learning. Neuroimage, 167, 121–129.CrossRefGoogle ScholarPubMed
Lissek, S., Biggs, A. L., Rabin, S. J., Cornwell, B. R., Alvarez, R. P., Pine, D. S., & Grillon, C. (2008). Generalization of conditioned fear-potentiated startle in humans: Experimental validation and clinical relevance. Behaviour Research and Therapy, 46, 678–687.CrossRefGoogle ScholarPubMed
Lissek, S., Bradford, D. E., Alvarez, R. P., Burton, P., Espensen-Sturges, T., Reynolds, R. C., & Grillon, C. (2014). Neural substrates of classically conditioned fear-generalization in humans: A parametric fMRI study. Social Cognitive and Affective Neuroscience, 9, 1134–1142.CrossRefGoogle ScholarPubMed
Manning, E. E., Bradfield, L. A., & Iordanova, M. D. (2021). Adaptive behaviour under conflict: Deconstructing extinction, reversal, and active avoidance learning. Neuroscience & Biobehavioral Reviews, 120, 526–536.CrossRefGoogle ScholarPubMed
Maren, S., Phan, K. L., & Liberzon, I. (2013). The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience, 14, 417–428.CrossRefGoogle ScholarPubMed
Marschner, A., Kalisch, R., Vervliet, B., Vansteenwegen, D., & Buchel, C. (2008). Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. Journal of Neuroscience, 28, 9030–9036.CrossRefGoogle Scholar
Morgan, M. A., Romanski, L. M., & LeDoux, J. E. (1993). Extinction of emotional learning: Contribution of medial prefrontal cortex. Neuroscience Letters, 163, 109–113.CrossRefGoogle ScholarPubMed
Morrison, D. J., Rashid, A. J., Yiu, A. P., Yan, C., Frankland, P. W., & Josselyn, S. A. (2016). Parvalbumin interneurons constrain the size of the lateral amygdala engram. Neurobiology of Learning and Memory, 135, 91–99.CrossRefGoogle ScholarPubMed
Nader, K., Majidishad, P., Amorapanth, P., & LeDoux, J. E. (2001). Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learning & Memory, 8, 156–163.CrossRefGoogle Scholar
Pavlov, I. (1927). Conditioned reflexes. Oxford University Press.Google Scholar
Pearce, J. M., & Bouton, M. E. (2001). Theories of associative learning in animals. Annual Review of Psychology, 52, 111–139.CrossRefGoogle ScholarPubMed
Peters, J., & Buchel, C. (2010). Neural representations of subjective reward value. Behavioural Brain Research, 213, 135–141.CrossRefGoogle ScholarPubMed
Phelps, E. A., LaBar, K. S., Anderson, A. K., O’Connor, K. J., Fulbright, R. K., & Spencer, D. D. (1998). Specifying the contributions of the human amygdala to emotional memory: A case study. Neurocase, 4, 527–540.CrossRefGoogle Scholar
Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 106, 274–285.CrossRefGoogle ScholarPubMed
Pirazzini, G., Starita, F., Ricci, G., Garofalo, S., di Pellegrino, G., Magosso, E., & Ursino, M. (2023). Changes in brain rhythms and connectivity tracking fear acquisition and reversal. Brain Structure and Function, 228, 1259–1281.CrossRefGoogle ScholarPubMed
Pizzagalli, D. A., Greischar, L. L., & Davidson, R. J. (2003). Spatio-temporal dynamics of brain mechanisms in aversive classical conditioning: High-density event-related potential and brain electrical tomography analyses. Neuropsychologia, 41, 184–194.CrossRefGoogle ScholarPubMed
Rudy, J. J. W., & O’Reilly, R. R. C. (2001). Conjunctive representations, the hippocampus, and contextual fear conditioning. Cognitive, Affective & Behavioral Neuroscience, 1, 66–82.CrossRefGoogle ScholarPubMed
Schiele, M. A., Reinhard, J., Reif, A., Domschke, K., Romanos, M., Deckert, J., & Pauli, P. (2016). Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults. Development Psychobiology, 58, 471–481.CrossRefGoogle ScholarPubMed
Schmajuk, N. A., Larrauri, J. A., & Labar, K. S. (2007). Reinstatement of conditioned fear and the hippocampus: An attentional-associative model. Behavioural Brain Research, 177, 242–253.CrossRefGoogle ScholarPubMed
Sehlmeyer, C., Schoning, S., Zwitserlood, P., Pfleiderer, B., Kircher, T., Arolt, V., & Konrad, C. (2009). Human fear conditioning and extinction in neuroimaging: A systematic review. PLoS ONE, 4, e5865.CrossRefGoogle ScholarPubMed
Sevenster, D., Visser, R. M., & D’Hooge, R. (2018). A translational perspective on neural circuits of fear extinction: Current promises and challenges. Neurobiology of Learning and Memory, 155, 113–126.CrossRefGoogle Scholar
Soares, J. J., & Ohman, A. (1993). Backward masking and skin conductance responses after conditioning to nonfeared but fear-relevant stimuli in fearful subjects. Psychophysiology, 30, 460–466.CrossRefGoogle ScholarPubMed
Spencer, D. D., & Spencer, S. S. (1985). Surgery for epilepsy. Neurologic Clinics, 3, 313–330.CrossRefGoogle ScholarPubMed
Starita, F., Pirazzini, G., Ricci, G., Garofalo, S., Dalbagno, D., Degni, L. A. E., … Ursino, M. (2023). Theta and alpha power track the acquisition and reversal of threat predictions and correlate with skin conductance response. Psychophysiology, 60, e14247.CrossRefGoogle ScholarPubMed
Stegmann, Y., Andreatta, M., & Wieser, M. J. (2023). The effect of inherently threatening contexts on visuocortical engagement to conditioned threat. Psychophysiology, 60, e14208.CrossRefGoogle ScholarPubMed
Stout, D. M., Glenn, D. E., Acheson, D. T., Simmons, A. N., & Risbrough, V. B. (2019). Characterizing the neural circuitry associated with configural threat learning. Brain Research, 1719, 225–234.CrossRefGoogle ScholarPubMed
Stout, D. M., Glenn, D. E., Acheson, D. T., Spadoni, A. D., Risbrough, V. B., & Simmons, A. N. (2018). Neural measures associated with configural threat acquisition. Neurobiology of Learn and Memory, 150, 99–106.CrossRefGoogle ScholarPubMed
Tindell, A. J., Smith, K. S., Berridge, K. C., & Aldridge, J. W. (2009). Dynamic computation of incentive salience: “wanting” what was never “liked.” Journal of Neuroscience, 29, 12220–12228.CrossRefGoogle ScholarPubMed
Visser, R. M., Bathelt, J., Scholte, H. S., & Kindt, M. (2021). Robust BOLD responses to faces but not to conditioned threat: Challenging the amygdala’s reputation in human fear and extinction learning. Journal of Neuroscience, 41, 10278–10292.CrossRefGoogle ScholarPubMed
Visser, R. M., Scholte, H. S., Beemsterboer, T., & Kindt, M. (2013). Neural pattern similarity predicts long-term fear memory. Nature Neuroscience, 16, 388–390.CrossRefGoogle ScholarPubMed
Webler, R. D., Berg, H., Fhong, K., Tuominen, L., Holt, D. J., Morey, R. A., … Lissek, S. (2021). The neurobiology of human fear generalization: Meta-analysis and working neural model. Neuroscience & Biobehavioral Reviews, 128, 421–436.CrossRefGoogle ScholarPubMed
Weike, A. I., Hamm, A. O., Schupp, H. T., Runge, U., Schroeder, H. W., & Kessler, C. (2005). Fear conditioning following unilateral temporal lobectomy: Dissociation of conditioned startle potentiation and autonomic learning. Journal of Neuroscience, 25, 11117–11124.CrossRefGoogle ScholarPubMed
Yin, S., Bo, K., Liu, Y., Thigpen, N., Keil, A., & Ding, M. (2020). Fear conditioning prompts sparser representations of conditioned threat in primary visual cortex. Social Cognitive and Affective Neuroscience, 15, 950–964.CrossRefGoogle ScholarPubMed
Zabik, N. L., Peters, C., Iadipaolo, A., Marusak, H. A., & Rabinak, C. A. (2023). Comparison of behavioral and brain indices of fear renewal during a standard vs. novel immersive reality Pavlovian fear extinction paradigm in healthy adults. Behavioral Brain Research, 437, 114154.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×