Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-trf7k Total loading time: 0 Render date: 2025-09-23T13:33:30.023Z Has data issue: false hasContentIssue false

Section V - Cognition–Emotion Interactions

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Abivardi, A., & Bach, D. R. (2017). Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo. Human Brain Mapping, 38, 3927–3940.CrossRefGoogle ScholarPubMed
Ahumada-Méndez, F., Lucero, B., Avenanti, A., Saracini, C., Muñoz-Quezada, M. T., Cortés-Rivera, C., & Canales-Johnson, A. (2022). Affective modulation of cognitive control: A systematic review of EEG studies. Physiology & Behavior, 249, 113743.CrossRefGoogle ScholarPubMed
Amting, J. M., Greening, S. G., & Mitchell, D. G. (2010). Multiple mechanisms of consciousness: The neural correlates of emotional awareness. Journal of Neuroscience, 30, 10039–10047.CrossRefGoogle ScholarPubMed
Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature, 411, 305–309.CrossRefGoogle ScholarPubMed
Anderson, B. A. (2019). Neurobiology of value-driven attention. Current Opinion in Psychology, 29, 27–33.CrossRefGoogle ScholarPubMed
Anderson, B. A., Kim, H., Kim, A. J., Liao, M. R., Mrkonja, L., Clement, A., & Grégoire, L. (2021). The past, present, and future of selection history. Neuroscience & Biobehavioral Review, 130, 326–350.CrossRefGoogle ScholarPubMed
Armony, J. L., Quirk, G. J., & LeDoux, J. E. (1998). Differential effects of amygdala lesions on early and late plastic components of auditory cortex spike trains during fear conditioning. Journal of Neuroscience, 18, 2592–2601.CrossRefGoogle ScholarPubMed
Arnal, L. H., Flinker, A., Kleinschmidt, A., Giraud, A. L., & Poeppel, D. (2015). Human screams occupy a privileged niche in the communication soundscape. Current Biology, 25, 2051–2056.CrossRefGoogle ScholarPubMed
Bachman, M. D., Wang, L., Gamble, M. L., & Woldorff, M. G. (2020). Physical salience and value-driven salience operate through different neural mechanisms to enhance attentional selection. Journal of Neuroscience, 40, 5455–5464.CrossRefGoogle ScholarPubMed
Basso, M. A., Bickford, M. E., & Cang, J. (2021). Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron, 109, 918–937.CrossRefGoogle ScholarPubMed
Becker, D. V., & Rheem, H. (2020). Searching for a face in the crowd: Pitfalls and unexplored possibilities. Attention, Perception, & Psychophysics, 82, 626–636.CrossRefGoogle ScholarPubMed
Bekhtereva, V., Craddock, M., & Müller, M. M. (2021). Emotional content overrides spatial attention. Psychophysiology, 58, e13847.CrossRefGoogle ScholarPubMed
Bentley, P., Vuilleumier, P., Thiel, C. M., Driver, J., & Dolan, R. J. (2003). Cholinergic enhancement modulates neural correlates of selective attention and emotional processing. Neuroimage, 20, 58–70.CrossRefGoogle ScholarPubMed
Benuzzi, F., Meletti, S., Zamboni, G., Calandra-Buonaura, G., Serafini, M., Lui, F., … Nichelli, P. (2004). Impaired fear processing in right mesial temporal sclerosis: A fMRI study. Brain Research Bulletin, 63, 269–281.CrossRefGoogle ScholarPubMed
Bourgeois, A., Marti, E., Schnider, A., & Ptak, R. (2022). Task relevance and negative reward modulate the disengagement deficit of patients with spatial neglect. Neuropsychologia, 175, 108365.CrossRefGoogle ScholarPubMed
Bourgeois, A., Sterpenich, V., Iannotti, G. R., & Vuilleumier, P. (2022). Reward-driven modulation of spatial attention in the human frontal eye-field. Neuroimage, 247, 118846.CrossRefGoogle ScholarPubMed
Bourgeois, A., Saj, A., & Vuilleumier, P. (2018). Value-driven attentional capture in neglect. Cortex, 109, 260–271.CrossRefGoogle ScholarPubMed
Brown, C. R. H. (2022). The prioritisation of motivationally salient stimuli in hemi-spatial neglect may be underpinned by goal-relevance: A meta-analytic review. Cortex, 150, 85–107.CrossRefGoogle ScholarPubMed
Calvo, M. G., Fernández-Martín, A., & Nummenmaa, L. (2014). Facial expression recognition in peripheral versus central vision: Role of the eyes and the mouth. Psychological Research, 78, 180–195.CrossRefGoogle ScholarPubMed
Carlson, J. M., & Reinke, K. S. (2014). Attending to the fear in your eyes: Facilitated orienting and delayed disengagement. Cognition and Emotion, 28, 1398–1406.CrossRefGoogle Scholar
Carretié, L., Fernández-Folgueiras, U., Álvarez, F., Cipriani, G. A., Tapia, M., & Kessel, D. (2022). Fast unconscious processing of emotional stimuli in early stages of the visual cortex. Cerebral Cortex, 32, 4331–4344.CrossRefGoogle ScholarPubMed
Chen, T., Becker, B., Camilleri, J., Wang, L., Yu, S., Eickhoff, S. B., & Feng, C. (2018). A domain-general brain network underlying emotional and cognitive interference processing: Evidence from coordinate-based and functional connectivity meta-analyses. Brain Structure and Function, 223, 3813–3840.CrossRefGoogle ScholarPubMed
Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32, 8988–8999.CrossRefGoogle ScholarPubMed
Della Libera, C., & Chelazzi, L. (2006). Visual selective attention and the effects of monetary rewards. Psychological Science, 17, 222–227.Google ScholarPubMed
Diano, M., Celeghin, A., Bagnis, A., & Tamietto, M. (2017). Amygdala response to emotional stimuli without awareness: Facts and interpretations. Frontiers in Psychology, 10, 2029.Google Scholar
Di Plinio, S., Ferri, F., Marzetti, L., Romani, G. L., Northoff, G., & Pizzella, V. (2018). Functional connections between activated and deactivated brain regions mediate emotional interference during externally directed cognition. Human Brain Mapping, 39, 3597–3610.CrossRefGoogle ScholarPubMed
Dolcos, F., Katsumi, Y., Moore, M., Berggren, N., de Gelder, B., Derakshan, N., … Dolcos, S. (2020). Neural correlates of emotion-attention interactions: From perception, learning, and memory to social cognition, individual differences, and training interventions. Neuroscience & Biobehavioral Reviews, 108, 559–601.CrossRefGoogle ScholarPubMed
Domínguez-Borràs, J., Moyne, M., Saj, A., Guex, R., & Vuilleumier, P. (2020). Impaired emotional biases in visual attention after bilateral amygdala lesion. Neuropsychologia, 137, 107292.CrossRefGoogle ScholarPubMed
Domínguez-Borràs, J., Rieger, S. W., Corradi-Dell’Acqua, C., Neveu, R., & Vuilleumier, P. (2017). Fear Spreading across senses: Visual emotional events alter cortical responses to touch, audition, and vision. Cerebral Cortex, 27, 68–82.CrossRefGoogle ScholarPubMed
Domínguez-Borràs, J., Saj, A., Armony, J. L., & Vuilleumier, P. (2012). Emotional processing and its impact on unilateral neglect and extinction. Neuropsychologia, 50, 1054–1071.CrossRefGoogle ScholarPubMed
Doron, N. N., & Ledoux, J. E. (1999). Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. The Journal of Comparative Neurology, 412, 383–409.3.0.CO;2-5>CrossRefGoogle Scholar
Egner, T., Etkin, A., Gale, S., & Hirsch, J. (2008). Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cerebral Cortex, 18, 1475–1484.CrossRefGoogle ScholarPubMed
Elorette, C., Forcelli, P. A., Saunders, R. C., & Malkova, L. (2018). Colocalization of tectal inputs with amygdala-projecting neurons in the macaque pulvinar. Frontiers in Neural Circuits, 12, 91.CrossRefGoogle ScholarPubMed
Enea, V., & Iancu, S. (2016). Processing emotional body expressions: State-of-the-art. Society of Neuroscience, 11, 495–506.CrossRefGoogle ScholarPubMed
Fan, Y., Gold, J. I., & Ding, L. (2020). Frontal eye field and caudate neurons make different contributions to reward-biased perceptual decisions. eLife, 9, 1–24.CrossRefGoogle ScholarPubMed
Fecteau, S., Belin, P., Joanette, Y., & Armony, J. L. (2007). Amygdala responses to nonlinguistic emotional vocalizations. Neuroimage, 36, 480–487.CrossRefGoogle ScholarPubMed
Fenske, M. J., & Eastwood, J. D. (2003). Modulation of focused attention by faces expressing emotion: Evidence from flanker tasks. Emotion, 3, 327–343.CrossRefGoogle ScholarPubMed
Flykt, A. (2005). Visual search with biological threat stimuli: Accuracy, reaction times, and heart rate changes. Emotion, 5, 349–353.CrossRefGoogle ScholarPubMed
Flykt, A., & Caldara, R. (2006). Tracking fear in snake and spider fearful participants during visual search: A multi-response domain study. Cognition and Emotion, 20, 1075–1091.CrossRefGoogle Scholar
Forbes, S. J., Purkis, H. M., & Lipp, O. V. (2011). Better safe than sorry: Simplistic fear-relevant stimuli capture attention. Cognition and Emotion, 25, 794–804.CrossRefGoogle ScholarPubMed
Framorando, D., Moses, E., Legrand, L., Seeck, M., & Pegna, A. J. (2021). Rapid processing of fearful faces relies on the right amygdala: Evidence from individuals undergoing unilateral temporal lobectomy. Scientific Reports, 11, 426.CrossRefGoogle ScholarPubMed
Fredrickson, B. L. (2004). The broaden-and-build theory of positive emotions. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 1367–1378.CrossRefGoogle ScholarPubMed
Freese, J. L., & Amaral, D. G. (2006). Synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. The Journal of Comparative Neurology, 496, 295–317.CrossRefGoogle ScholarPubMed
Frühholz, S., Hofstetter, C., Cristinzio, C., Saj, A., Seeck, M., Vuilleumier, P., & Grandjean, D. (2015). Asymmetrical effects of unilateral right or left amygdala damage on auditory cortical processing of vocal emotions. Proceedings of the National Academy of Sciences of the United States of America, 112, 1583–1588.Google ScholarPubMed
Gerritsen, C., Frischen, A., Blake, A., Smilek, D., & Eastwood, J. D. (2008). Visual search is not blind to emotion. Perception & Psychophysics, 70, 1047–1059.CrossRefGoogle Scholar
Gillet, S. N., Kato, H. K., Justen, M. A., Lai, M., & Isaacson, J. S. (2018). Fear learning regulates cortical sensory representations by suppressing habituation. Frontiers in Neural Circuits, 11, 112.CrossRefGoogle ScholarPubMed
Gootjes, L., Coppens, L. C., Zwaan, R. A., Franken, I. H., & Van Strien, J. W. (2011). Effects of recent word exposure on emotion-word Stroop interference: An ERP study. International Journal of Psychophysiology, 79, 356–363.CrossRefGoogle ScholarPubMed
Grandjean, D., Sander, D., Lucas, N., Scherer, K. R., & Vuilleumier, P. (2008). Effects of emotional prosody on auditory extinction for voices in patients with spatial neglect. Neuropsychologia, 46, 487–496.CrossRefGoogle ScholarPubMed
Grandjean, D., Sander, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). The voices of wrath: Brain responses to angry prosody in meaningless speech. Nature Neuroscience, 8, 145–146.CrossRefGoogle ScholarPubMed
Guex, R., Hofstetter, C., Domínguez-Borràs, J., Méndez-Bértolo, C., Sterpenich, V., Spinelli, L., … Vuilleumier, P. (2019). Neurophysiological evidence for early modulation of amygdala activity by emotional reappraisal. Biological Psychology, 145, 211–223.CrossRefGoogle ScholarPubMed
Guex, R., Méndez-Bértolo, C., Moratti, S., Strange, B. A., Spinelli, L., Murray, R. J., … Domínguez-Borràs, J. (2020). Temporal dynamics of amygdala response to emotion- and action-relevance. Scientific Reports, 10, 11138.CrossRefGoogle ScholarPubMed
Gupta, R. (2019). Positive emotions have a unique capacity to capture attention. Progress in Brain Research, 247, 23–46.CrossRefGoogle ScholarPubMed
Hadj-Bouziane, F., Liu, N., Bell, A. H., Gothard, K. M., Luh, W. M., Tootell, R. B., … Ungerleider, L. G. (2012). Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 109, E3640–E3648.Google ScholarPubMed
Hedger, N., Gray, K. L. H., Garner, M., & Adams, W. J. (2016). Are visual threats prioritized without awareness? A critical review and meta-analysis involving 3 behavioral paradigms and 2696 observers. Psychological Bulletin, 142, 934–968.CrossRefGoogle ScholarPubMed
Heidlmayr, K., Kihlstedt, M., & Isel, F. (2020). A review on the electroencephalography markers of Stroop executive control processes. Brain and Cognition, 146, 105637.CrossRefGoogle ScholarPubMed
Hikosaka, O., Kim, H. F., Yasuda, M., & Yamamoto, S. (2014). Basal ganglia circuits for reward value-guided behavior. Annual Review of Neuroscience, 37, 289–306.CrossRefGoogle ScholarPubMed
Hinojosa, J. A., Mercado, F., & Carretié, L. (2015). N170 sensitivity to facial expression: A meta-analysis. Neuroscience & Biobehavioral Review, 55, 498–509.CrossRefGoogle ScholarPubMed
Holland, P. C., & Gallagher, M. (2004). Amygdala-frontal interactions and reward expectancy. Current Opinion in Neurobiology, 14, 148–155.CrossRefGoogle ScholarPubMed
Holmes, A., Vuilleumier, P., & Eimer, M. (2003). The processing of emotional facial expression is gated by spatial attention: Evidence from event-related brain potentials. Brain Research. Cognitive Brain Research, 16, 174–184.CrossRefGoogle ScholarPubMed
Inagaki, M., Inoue, K., Tanabe, S., Kimura, K., Takada, M., & Fujita, I. (2023). Rapid processing of threatening faces in the amygdala of nonhuman primates: Subcortical inputs and dual roles. Cerebral Cortex, 33, 895–915.CrossRefGoogle ScholarPubMed
Itthipuripat, S., Vo, V. A., Sprague, T. C., & Serences, J. T. (2019). Value-driven attentional capture enhances distractor representations in early visual cortex. PLoS Biology, 17, e3000186.CrossRefGoogle ScholarPubMed
Kawai, N., & Koda, H. (2016). Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: Evolutionary origins of fear-relevant animals. Journal of Comparative Psychology, 130, 299–303.CrossRefGoogle Scholar
Kawasaki, H., Kaufman, O., Damasio, H., Damasio, A. R., Granner, M., Bakken, H., … Adolphs, R. (2001). Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nature Neuroscience, 4, 15–16.CrossRefGoogle Scholar
Keifer, O. P., Gutman, D. A., Hecht, E. E., Keilholz, S. D., & Ressler, K. J. (2015). A comparative analysis of mouse and human medial geniculate nucleus connectivity: A DTI and anterograde tracing study. Neuroimage, 105, 53–66.CrossRefGoogle ScholarPubMed
Keil, A., & Ihssen, N. (2004). Identification facilitation for emotionally arousing verbs during the attentional blink. Emotion, 4, 23–35.CrossRefGoogle ScholarPubMed
Kessel, D., García-Rubio, M. J., González, E. K., Tapia, M., López-Martín, S., Román, F. J., … Carretié, L. (2016). Working memory of emotional stimuli: Electrophysiological characterization. Biological Psychology, 119, 190–199.CrossRefGoogle ScholarPubMed
Khalid, S., Horstmann, G., Ditye, T., & Ansorge, U. (2017). Measuring the emotion-specificity of rapid stimulus-driven attraction of attention to fearful faces: Evidence from emotion categorization and a comparison with disgusted faces. Psychological Research, 81, 508–523.CrossRefGoogle Scholar
Kragel, P. A., Čeko, M., Theriault, J., Chen, D., Satpute, A. B., Wald, L. W., … Wager, T. D. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109, 2404–2412.CrossRefGoogle ScholarPubMed
Kragel, P. A., Kano, M., Van Oudenhove, L., Ly, H. G., Dupont, P., Rubio, A., … Wager, T. D. (2018). Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nature Neuroscience, 21, 283–289.CrossRefGoogle ScholarPubMed
Kragel, P. A., Reddan, M. C., LaBar, K. S., & Wager, T. D. (2019). Emotion schemas are embedded in the human visual system. Science Advances, 5, eaaw4358.CrossRefGoogle ScholarPubMed
Kunimatsu, J., Yamamoto, S., Maeda, K., & Hikosaka, O. (2021). Environment-based object values learned by local network in the striatum tail. Proceedings of the National Academy of Sciences of the United States of America, 118, e2013623118.Google ScholarPubMed
Le, Q. V., Isbell, L. A., Matsumoto, J., Le, V. Q., Nishimaru, H., Hori, E., … Nishijo, H. (2016). Snakes elicit earlier, and monkey faces, later, gamma oscillations in macaque pulvinar neurons. Scientific Reports, 6, 20595.CrossRefGoogle ScholarPubMed
Lecce, F., Rotondaro, F., Bonnì, S., Carlesimo, A., Thiebaut De Schotten, M., Tomaiuolo, F., & Doricchi, F. (2015). Cingulate neglect in humans: Disruption of contralesional reward learning in right brain damage. Cortex, 62, 73–88.CrossRefGoogle ScholarPubMed
Li, K., Bentley, P., Nair, A., Halse, O., Barker, G., Russell, C., … Malhotra, P. A. (2020). Reward sensitivity predicts dopaminergic response in spatial neglect. Cortex, 122, 213–224.CrossRefGoogle ScholarPubMed
LoBue, V., & Adolph, K. E. (2019). Fear in infancy: Lessons from snakes, spiders, heights, and strangers. Developmental Psychology, 55, 1889–1907.CrossRefGoogle ScholarPubMed
Lucas, N., Schwartz, S., Leroy, R., Pavin, S., Diserens, K., & Vuilleumier, P. (2013). Gambling against neglect: Unconscious spatial biases induced by reward reinforcement in healthy people and brain-damaged patients. Cortex, 49, 2616–2627.CrossRefGoogle ScholarPubMed
Lucas, N., & Vuilleumier, P. (2008). Effects of emotional and non-emotional cues on visual search in neglect patients: Evidence for distinct sources of attentional guidance. Neuropsychologia, 46, 1401–1414.CrossRefGoogle ScholarPubMed
Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences, 4, 432–440.CrossRefGoogle ScholarPubMed
Lundqvist, D., Bruce, N., & Öhman, A. (2015). Finding an emotional face in a crowd: Emotional and perceptual stimulus factors influence visual search efficiency. Cognition and Emotion, 29, 621–633.CrossRefGoogle Scholar
Malhotra, P. A., Soto, D., Li, K., & Russell, C. (2013). Reward modulates spatial neglect. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 366–369.CrossRefGoogle ScholarPubMed
Markovic, J., Anderson, A. K., & Todd, R. M. (2014). Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behavioural Brain Research, 259, 229–241.CrossRefGoogle Scholar
Mashour, G. A., Roelfsema, P., Changeux, J. P., & Dehaene, S. (2020). Conscious processing and the global neuronal workspace hypothesis. Neuron, 105, 776–798.CrossRefGoogle ScholarPubMed
Maunsell, J. H. R. (2004). Neuronal representations of cognitive state: Reward or attention? Trends in Cognitive Sciences, 8, 261–265.CrossRefGoogle ScholarPubMed
McFadyen, J., Dolan, R. J., & Garrido, M. I. (2020). The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nature Reviews Neuroscience, 21, 264–276.CrossRefGoogle ScholarPubMed
McFadyen, J., Mermillod, M., Mattingley, J., Halász, V., & Garrido, M. (2016). A rapid subcortical amygdala route for faces irrespective of spatial frequency and emotion. Journal of Neuroscience, 37, 3864–3874.Google Scholar
McHugo, M., Olatunji, B. O., & Zald, D. H. (2013). The emotional attentional blink: What we know so far. Frontiers in Human Neuroscience, 7, 151.CrossRefGoogle ScholarPubMed
Meaux, E., Sterpenich, V., & Vuilleumier, P. (2019). Emotional learning promotes perceptual predictions by remodeling stimulus representation in visual cortex. Scientific Reports, 9, 16867.CrossRefGoogle ScholarPubMed
Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martinez-Alvarez, R., Mah, Y. H., … Strange, B. A. (2016). A fast pathway for fear in human amygdala. Nature Neuroscience, 19, 1041–1049.CrossRefGoogle ScholarPubMed
Mineur, Y. S., & Picciotto, M. R. (2021). The role of acetylcholine in negative encoding bias: Too much of a good thing? European Journal of Neuroscience, 53, 114–125.CrossRefGoogle ScholarPubMed
Mogg, K., & Bradley, B. P. (2018). Anxiety and threat-related attention: Cognitive-motivational framework and treatment. Trends in Cognitive Sciences, 22, 225–240.CrossRefGoogle ScholarPubMed
Mohanty, A., Egner, T., Monti, J. M., & Mesulam, M. M. (2009). Search for a threatening target triggers limbic guidance of spatial attention. Journal of Neuroscience, 29, 10563–10572.CrossRefGoogle ScholarPubMed
Morris, J. S., Friston, K. J., Buchel, C., Frith, C. D., Young, A. W., Calder, A. J., & Dolan, R. J. (1998). A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain, 121, 47–57.CrossRefGoogle ScholarPubMed
Paulmann, S., Bleichner, M., & Kotz, S. A. E. (2013). Valence, arousal, and task effects in emotional prosody processing. Frontiers in Psychology, 4, 345.CrossRefGoogle ScholarPubMed
Peelen, M. V, Atkinson, A. P., Andersson, F., & Vuilleumier, P. (2007). Emotional modulation of body-selective visual areas. Social Cognitive and Affective Neuroscience, 2, 274–283.CrossRefGoogle ScholarPubMed
Pessoa, L., McKenna, M., Gutierrez, E., & Ungerleider, L. G. (2002). Neural processing of emotional faces requires attention. Proceedings of the National Academy of Sciences of the United States of America, 99, 11458–11463.Google ScholarPubMed
Pessoa, L., Padmala, S., Kenzer, A., & Bauer, A. (2012). Interactions between cognition and emotion during response inhibition. Emotion, 12, 192–197.CrossRefGoogle ScholarPubMed
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175–187.CrossRefGoogle ScholarPubMed
Phelps, E. A., Ling, S., & Carrasco, M. (2006). Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychological Science, 17, 292–299.CrossRefGoogle ScholarPubMed
Pichon, S., Miendlarzewska, E. A., Eryilmaz, H., & Vuilleumier, P. (2015). Cumulative activation during positive and negative events and state anxiety predicts subsequent inertia of amygdala reactivity. Social Cognitive and Affective Neuroscience, 10, 180–190.CrossRefGoogle ScholarPubMed
Piguet, C., Sterpenich, V., Desseilles, M., Cojan, Y., Bertschy, G., & Vuilleumier, P. (2013). Neural substrates of cognitive switching and inhibition in a face processing task. NeuroImage, 82, 489–499.CrossRefGoogle Scholar
Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14, 619–633.CrossRefGoogle ScholarPubMed
Pourtois, G., Schettino, A., & Vuilleumier, P. (2012). Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biological Psychology, 92, 492–512.Google ScholarPubMed
Pourtois, G., Spinelli, L., Seeck, M., & Vuilleumier, P. (2010). Temporal precedence of emotion over attention modulations in the lateral amygdala: Intracranial ERP evidence from a patient with temporal lobe epilepsy. Cognitive, Affective, & Behavioral Neuroscience, 10, 83–93.CrossRefGoogle ScholarPubMed
Provenzano, J., Verduyn, P., Daniels, N., Fossati, P., & Kuppens, P. (2019). Mood congruency effects are mediated by shifts in salience and central executive network efficiency. Social Cognitive and Affective Neuroscience, 14, 987–995.CrossRefGoogle ScholarPubMed
Puls, S., & Rothermund, K. (2018). Attending to emotional expressions: No evidence for automatic capture in the dot-probe task. Cognition and Emotion, 32, 450–463.CrossRefGoogle ScholarPubMed
Qiu, Z., Lei, X., Becker, S. I., & Pegna, A. J. (2022). Neural activities during the processing of unattended and unseen emotional faces: A voxel-wise meta-analysis. Brain Imaging and Behavior, 16, 2426–2443.CrossRefGoogle ScholarPubMed
Reisch, L. M., Wegrzyn, M., Woermann, F. G., Bien, C. G., & Kissler, J. (2020). Negative content enhances stimulus-specific cerebral activity during free viewing of pictures, faces, and words. Human Brain Mapping, 41, 4332–4354.CrossRefGoogle ScholarPubMed
Rotshtein, P., Richardson, M. P., Winston, J. S., Kiebel, S. J., Vuilleumier, P., Eimer, M., … Dolan, R. J. (2010). Amygdala damage affects event-related potentials for fearful faces at specific time windows. Human Brain Mapping, 31, 1089–1105.CrossRefGoogle ScholarPubMed
Sabatinelli, D., & Frank, D. W. (2019). Assessing the primacy of human amygdala-inferotemporal emotional scene discrimination with rapid whole-brain fMRI. Neuroscience, 406, 212–224.CrossRefGoogle ScholarPubMed
Sagliano, L., Trojano, L., Di Mauro, V., Carnevale, P., Di Domenico, M., Cozzolino, C., & D’Olimpio, F. (2018). Attentional biases for threat after fear-related autobiographical recall. Anxiety Stress Coping, 31, 69–78.CrossRefGoogle ScholarPubMed
Savage, R. A., & Lipp, O. V. (2014). The effect of face inversion on the detection of emotional faces in visual search. Cognition and Emotion, 29, 972–991.Google ScholarPubMed
Sawada, R., Sato, W., Nakashima, R., & Kumada, T. (2022). How are emotional facial expressions detected rapidly and accurately? A diffusion model analysis. Cognition, 229, 105235.CrossRefGoogle ScholarPubMed
Schindler, S., & Bublatzky, F. (2020). Attention and emotion: An integrative review of emotional face processing as a function of attention. Cortex, 130, 362–386.CrossRefGoogle ScholarPubMed
Schlochtermeier, L. H., Kuchinke, L., Pehrs, C., Urton, K., Kappelhoff, H., & Jacobs, A. M. (2013). Emotional picture and word processing: An FMRI study on effects of stimulus complexity. PLoS ONE, 8, e55619.CrossRefGoogle Scholar
Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Attentional capture by signals of threat. Cognition and Emotion, 29, 687–694.CrossRefGoogle ScholarPubMed
Schultebraucks, K., Deuter, C. E., Duesenberg, M., Schulze, L., Hellmann-Regen, J., Domke, A., … Wingenfeld, K. (2016). Selective attention to emotional cues and emotion recognition in healthy subjects: The role of mineralocorticoid receptor stimulation. Psychopharmacology, 233, 3405–3415.CrossRefGoogle ScholarPubMed
Schupp, H. T., & Kirmse, U. (2021). Neural correlates of affective stimulus evaluation: A case-by-case analysis. Social Cognitive and Affective Neuroscience, 17, 300–310.Google ScholarPubMed
Senderecka, M. (2018). Emotional enhancement of error detection. The role of perceptual processing and inhibition monitoring in failed auditory stop trials. Cognitive, Affective, & Behavioral Neuroscience, 18, 1–20.CrossRefGoogle ScholarPubMed
Shasteen, J. R., Sasson, N. J., & Pinkham, A. E. (2015). A detection advantage for facial threat in the absence of anger. Emotion, 15, 837–845.CrossRefGoogle ScholarPubMed
Silvert, L., Lepsien, J., Fragopanagos, N., Goolsby, B., Kiss, M., Taylor, J. G., … Nobre, A. C. (2007). Influence of attentional demands on the processing of emotional facial expressions in the amygdala. NeuroImage, 38, 357–366.CrossRefGoogle ScholarPubMed
Song, S., Zilverstand, A., Song, H., d’Oleire Uquillas, F., Wang, Y., Xie, C., … Zou, Z. (2017). The influence of emotional interference on cognitive control: A meta-analysis of neuroimaging studies using the emotional Stroop task. Scientific Reports, 7, 2088.Google ScholarPubMed
Sterpenich, V., Piguet, C., Desseilles, M., Ceravolo, L., Gschwind, M., Van De Ville, D., … Schwartz, S. (2014). Sleep sharpens sensory stimulus coding in human visual cortex after fear conditioning. Neuroimage, 100, 608–618.CrossRefGoogle Scholar
Stolarova, M., Keil, A., & Moratti, S. (2006). Modulation of the C1 visual event-related component by conditioned stimuli: Evidence for sensory plasticity in early affective perception. Cerebral Cortex, 16, 876–887.CrossRefGoogle ScholarPubMed
Todd, R. M., Miskovic, V., Chikazoe, J., & Anderson, A. K. (2020). Emotional objectivity: Neural representations of emotions and their interaction with cognition. Annual Review of Psychology, 71, 25–48.CrossRefGoogle ScholarPubMed
Tolomeo, S., Christmas, D., Jentzsch, I., Johnston, B., Sprengelmeyer, R., Matthews, K., & Douglas Steele, J. (2016). A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control. Brain, 139, 1844–1854.CrossRefGoogle ScholarPubMed
Torres-Quesada, M., Korb, F. M., Funes, M. J., Lupiáñez, J., & Egner, T. (2014). Comparing neural substrates of emotional vs. non-emotional conflict modulation by global control context. Frontiers in Human Neuroscience, 8, 66.CrossRefGoogle ScholarPubMed
Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M., & Adolphs, R. (2009). Intact rapid detection of fearful faces in the absence of the amygdala. Nature Neuroscience, 12, 1224–1225.CrossRefGoogle ScholarPubMed
Vetter, P., Badde, S., Phelps, E. A., & Carrasco, M. (2019). Emotional faces guide the eyes in the absence of awareness. eLife, 8, e43467.CrossRefGoogle ScholarPubMed
Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9, 585–594.CrossRefGoogle ScholarPubMed
Vuilleumier, P. (2013). Mapping the functional neuroanatomy of spatial neglect and human parietal lobe functions: Progress and challenges. Annals of the New York Academy of Sciences, 1296, 50–74.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J. L., Clarke, K., Husain, M., Driver, J., & Dolan, R. J. (2002). Neural response to emotional faces with and without awareness: Event-related fMRI in a parietal patient with visual extinction and spatial neglect. Neuropsychologia, 40, 2156–2166.CrossRefGoogle Scholar
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: An event-related fMRI study. Neuron, 30, 829–841.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6, 624–631.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J., & Dolan, R. J. (2004). Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neuroscience, 7, 1271–1278.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Schwartz, S., Verdon, V., Maravita, A., Hutton, C., Husain, M., & Driver, J. (2008). Abnormal attentional modulation of retinotopic cortex in parietal patients with spatial neglect. Current Biology, 18, 1525–1529.CrossRefGoogle ScholarPubMed
Waechter, S., Nelson, A. L., Wright, C., Hyatt, A., & Oakman, J. (2014). Measuring attentional bias to threat: Reliability of dot probe and eye movement indices. Cognitive Therapy and Research, 38, 313–333.CrossRefGoogle Scholar
Wang, S., Yu, R., Tyszka, J. M., Zhen, S., Kovach, C., Sun, S., … Rutishauser, U. (2017). The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nature Communications, 8, 14821.Google ScholarPubMed
Wang, Y., Luo, L., Chen, G., Luan, G., Wang, X., Wang, Q., & Fang, F. (2023). Rapid processing of invisible fearful faces in the human amygdala. Journal of Neuroscience, 43, 1405–1413.CrossRefGoogle ScholarPubMed
Wei, P., Liu, N., Zhang, Z., Liu, X., Tang, Y., He, X., … Wang, L. (2015). Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nature Communications, 6, 6756.Google ScholarPubMed
Zerbi, V., Floriou-Servou, A., Markicevic, M., Vermeiren, Y., Sturman, O., Privitera, M., … Bohacek, J. (2019). Rapid reconfiguration of the functional connectome after chemogenetic locus coeruleus activation. Neuron, 103, 702–718.CrossRefGoogle ScholarPubMed
Zinchenko, A., Kotz, S. A., Schröger, E., & Kanske, P. (2020). Moving towards dynamics: Emotional modulation of cognitive and emotional control. International Journal of Psychophysiology, 147, 193–201.CrossRefGoogle ScholarPubMed

References

Adams, R. B., Albohn, D. N., & Kveraga, K. (2017). Social vision: Applying a social-functional approach to face and expression perception. Current Directions in Psychological Science, 26, 243–248.CrossRefGoogle ScholarPubMed
Adams, R. B., Jr., Franklin, R. G., Jr., Kveraga, K., Ambady, N., Kleck, R. E., Whalen, P. J., … Nelson, A. J. (2012). Amygdala responses to averted vs direct gaze fear vary as a function of presentation speed. Social Cognitive and Affective Neuroscience, 7, 568–577.CrossRefGoogle ScholarPubMed
Adams, R. B., Im, H. Y., Cushing, C., Boshyan, J., Ward, N., Albohn, D. N., & Kveraga, K. (2019). Differential magnocellular versus parvocellular pathway contributions to the combinatorial processing of facial threat. Progress in Brain Research, 247, 71–87.CrossRefGoogle Scholar
Amodio, D. M. (2019). Social cognition 2.0: An interactive memory systems account. Trends in Cognitive Sciences, 23, 21–33.CrossRefGoogle ScholarPubMed
Bach, D. R., & Dayan, P. (2017). Algorithms for survival: A comparative perspective on emotions. Nature Reviews Neuroscience, 18, 311–319.CrossRefGoogle ScholarPubMed
Barkus, E. (2021). The effects of anhedonia in social context. Current Behavioral Neuroscience Reports, 8, 77–89.CrossRefGoogle Scholar
Barkus, E., & Badcock, J. C. (2019). A transdiagnostic perspective on social anhedonia. Frontiers in Psychiatry, 10, 216.CrossRefGoogle ScholarPubMed
Bastos, A. F., Vieira, A. S., Oliveira, J. M., Oliveira, L., Pereira, M. G., Figueira, I., … Volchan, E. (2016). Stop or move: Defensive strategies in humans. Behavioural Brain Research, 302, 252–262.CrossRefGoogle ScholarPubMed
Beaurenaut, M., Mennella, R., Dezecache, G., & Grèzes, J. (2023). Prioritization of danger-related social signals during threat-induced anxiety. Emotion, 23, 2356–2369.CrossRefGoogle ScholarPubMed
Bertini, C., Pietrelli, M., Braghittoni, D., & Làdavas, E. (2018). Pulvinar lesions disrupt fear-related implicit visual processing in hemianopic patients. Frontiers in Psychology, 9, 2329.CrossRefGoogle ScholarPubMed
Bonini, L., Rotunno, C., Arcuri, E., & Gallese, V. (2022). Mirror neurons 30 years later: Implications and applications. Trends in Cognitive Sciences, 26, 767–781.CrossRefGoogle ScholarPubMed
Borgomaneri, S., Vitale, F., & Avenanti, A. (2015). Early changes in corticospinal excitability when seeing fearful body expressions. Scientific Reports, 5, 14122.CrossRefGoogle ScholarPubMed
Borgomaneri, S., Vitale, F., Battaglia, S., & Avenanti, A. (2021). Early right motor cortex response to happy and fearful facial expressions: A TMS motor-evoked potential study. Brain Sciences, 11, 1203.CrossRefGoogle ScholarPubMed
Borra, E., Gerbella, M., Rozzi, S., Tonelli, S., & Luppino, G. (2014). Projections to the superior colliculus from inferior parietal, ventral premotor, and ventrolateral prefrontal areas involved in controlling goal-directed hand actions in the macaque. Cerebral Cortex, 24, 1054–1065.CrossRefGoogle Scholar
Botta, A., Lagravinese, G., Bove, M., Pelosin, E., Bonassi, G., Avenanti, A., & Avanzino, L. (2022). Sensorimotor inhibition during emotional processing. Scientific Reports, 12, 503–518.CrossRefGoogle ScholarPubMed
Bramson, B., Folloni, D., Verhagen, L., Hartogsveld, B., Mars, R. B., Toni, I., & Roelofs, K. (2020). Human lateral frontal pole contributes to control over emotional approach–avoidance actions. Journal of Neuroscience, 40, 2925–2934.CrossRefGoogle ScholarPubMed
Bramson, B., Jensen, O., Toni, I., & Roelofs, K. (2018). Cortical oscillatory mechanisms supporting the control of human social–emotional actions. The Journal of Neuroscience, 38, 5739–5749.CrossRefGoogle ScholarPubMed
Buades-Rotger, M., Beyer, F., & Krämer, U. M. (2017). Avoidant responses to interpersonal provocation are associated with increased amygdala and decreased mentalizing network activity. eNeuro, 4, ENEURO.0337-16.2017.CrossRefGoogle ScholarPubMed
Buades-Rotger, M., Solbakk, A.-K., Liebrand, M., Endestad, T., Funderud, I., Siegwardt, P., … Krämer, U. M. (2021). Patients with ventromedial prefrontal lesions show an implicit approach bias to angry faces. Journal of Cognitive Neuroscience, 33, 1069–1081.CrossRefGoogle ScholarPubMed
Burra, N., Hervais-Adelman, A., Celeghin, A., de Gelder, B., & Pegna, A. J. (2019). Affective blindsight relies on low spatial frequencies. Neuropsychologia, 128, 44–49.CrossRefGoogle ScholarPubMed
Cain, C. K. (2019). Avoidance problems reconsidered. Current Opinion in Behavioral Sciences, 26, 9–17.CrossRefGoogle ScholarPubMed
Campagner, D., Vale, R., Tan, Y. L., Iordanidou, P., Pavón Arocas, O., Claudi, F., … Branco, T. (2022). A cortico-collicular circuit for orienting to shelter during escape. Nature, 613, 111–119.Google ScholarPubMed
Cauchoix, M., Arslan, A. B., Fize, D., & Serre, T. (2012). The neural dynamics of visual processing in monkey extrastriate cortex: A comparison between univariate and multivariate techniques. In Langs, G., Rish, I., Grosse-Wentrup, M., & Murphy, B. (Eds.), Machine learning and interpretation in neuroimaging (pp. 164–171). Springer.Google Scholar
Chareyron, L. J., Banta Lavenex, P., Amaral, D. G., & Lavenex, P. (2011). Stereological analysis of the rat and monkey amygdala. The Journal of Comparative Neurology, 519, 3218–3239.CrossRefGoogle ScholarPubMed
Chen, M., & Bargh, J. A. (1999). Consequences of automatic evaluation: Immediate behavioral predispositions to approach or avoid the stimulus. Personality and Social Psychology Bulletin, 25, 215–224.CrossRefGoogle Scholar
Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1585–1599.CrossRefGoogle ScholarPubMed
Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.CrossRefGoogle ScholarPubMed
Claudi, F., Campagner, D., & Branco, T. (2022). Innate heuristics and fast learning support escape route selection in mice. Current Biology, 32, 2980–2987.e5.CrossRefGoogle ScholarPubMed
Conty, L., Dezecache, G., Hugueville, L., & Grèzes, J. (2012). Early binding of gaze, gesture, and emotion: Neural time course and correlates. The Journal of Neuroscience, 32, 4531–4539.CrossRefGoogle Scholar
Craske, M. G., Sandman, C. F., & Stein, M. B. (2022). How can neurobiology of fear extinction inform treatment? Neuroscience & Biobehavioral Reviews, 143, 104923.CrossRefGoogle ScholarPubMed
de Borst, A. W., & de Gelder, B. (2022). Threat detection in nearby space mobilizes human ventral premotor cortex, intraparietal sulcus, and amygdala. Brain Sciences, 12, 391.CrossRefGoogle ScholarPubMed
de Gelder, B. (2023). Social affordances, mirror neurons, and how to understand the social brain. Trends in Cognitive Sciences, 27, 218–219.CrossRefGoogle ScholarPubMed
De Houwer, J., Thomas, S., & Baeyens, F. (2001). Associative learning of likes and dislikes: A review of 25 years of research on human evaluative conditioning. Psychological Bulletin, 127, 853–869.CrossRefGoogle ScholarPubMed
Delgado, M. R., Jou, R. L., LeDoux, J. E., & Phelps, L. (2009). Avoiding negative outcomes: Tracking the mechanisms of avoidance learning in humans during fear conditioning. Frontiers in Behavioral Neuroscience, 3, 33.CrossRefGoogle ScholarPubMed
Dezecache, G., Conty, L., & Grèzes, J. (2013). Social affordances: Is the mirror neuron system involved? Behavioral and Brain Sciences, 36, 417–418.CrossRefGoogle Scholar
Diano, M., Tamietto, M., Celeghin, A., Weiskrantz, L., Tatu, M.-K., Bagnis, A., … Costa, T. (2017). Dynamic changes in amygdala psychophysiological connectivity reveal distinct neural networks for facial expressions of basic emotions. Scientific Reports, 7, 45260.CrossRefGoogle ScholarPubMed
Dima, D. C., Perry, G., Messaritaki, E., Zhang, J., & Singh, K. D. (2018). Spatiotemporal dynamics in human visual cortex rapidly encode the emotional content of faces. Human Brain Mapping, 39, 3993–4006.CrossRefGoogle Scholar
Dinh, H. T., Meng, Y., Matsumoto, J., Setogawa, T., Nishimaru, H., & Nishijo, H. (2022). Fast detection of snakes and emotional faces in the macaque amygdala. Frontiers in Behavioral Neuroscience, 16, 839123.CrossRefGoogle ScholarPubMed
Distler, C., & Hoffmann, K.-P. (2015). Direct projections from the dorsal premotor cortex to the superior colliculus in the macaque (Macaca mulatta). Journal of Comparative Neurology, 523, 2390–2408.Google Scholar
Dorfman, H. M., & Gershman, S. J. (2019). Controllability governs the balance between Pavlovian and instrumental action selection. Nature Communications, 10, 5826.CrossRefGoogle ScholarPubMed
Eder, A. B., & Hommel, B. (2013). Anticipatory control of approach and avoidance: An ideomotor approach. Emotion Review, 5, 275–279.CrossRefGoogle Scholar
El Zein, M., Mennella, R., Sequestro, M., Meaux, E., Wyart, V., & Grèzes, J. (2024). Prioritized neural processing of social threats during perceptual decision-making. iScience, 27, 109951.CrossRefGoogle ScholarPubMed
El Zein, M., Wyart, V., & Grèzes, J. (2015). Anxiety dissociates the adaptive functions of sensory and motor response enhancements to social threats. eLife, 4, e10274.CrossRefGoogle ScholarPubMed
Engelen, T., de Graaf, T. A., Sack, A. T., & de Gelder, B. (2015). A causal role for inferior parietal lobule in emotion body perception. Cortex, 73, 195–202.CrossRefGoogle ScholarPubMed
Engelen, T., Zhan, M., Sack, A. T., & de Gelder, B. (2018). Dynamic interactions between emotion perception and action preparation for reacting to social threat: A combined cTBS-fMRI study. eNeuro, 5, ENEURO.0408-17.2018.CrossRefGoogle ScholarPubMed
Evans, D. A., Stempel, A. V., Vale, R., & Branco, T. (2019). Cognitive control of escape behaviour. Trends in Cognitive Sciences, 23, 334–348.CrossRefGoogle ScholarPubMed
Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Bolles, R. C. & Beecher, M. D. (Eds.), Evolution and learning (pp. 185–212). Lawrence Erlbaum Associates.Google Scholar
Faul, L., Stjepanović, D., Stivers, J. M., Stewart, G. W., Graner, J. L., Morey, R. A., & LaBar, K. S. (2020). Proximal threats promote enhanced acquisition and persistence of reactive fear-learning circuits. Proceedings of the National Academy of Sciences of the United States of America, 117, 16678–16689.Google ScholarPubMed
Fernandez-Leon, J. A., Engelke, D. S., Aquino-Miranda, G., Goodson, A., Rasheed, M. N., & Do Monte, F. H. (2021). Neural correlates and determinants of approach–avoidance conflict in the prelimbic prefrontal cortex. eLife, 10, e74950.CrossRefGoogle ScholarPubMed
Ferrari, C., Fiori, F., Suchan, B., Plow, E. B., & Cattaneo, Z. (2021). TMS over the posterior cerebellum modulates motor cortical excitability in response to facial emotional expressions. European Journal of Neuroscience, 53, 1029–1039.CrossRefGoogle ScholarPubMed
Gangopadhyay, P., Chawla, M., Dal Monte, O., & Chang, S. W. C. (2021). Prefrontal–amygdala circuits in social decision-making. Nature Neuroscience, 24, 5–18.CrossRefGoogle ScholarPubMed
George, D. T., Ameli, R., & Koob, G. F. (2019). Periaqueductal gray sheds light on dark areas of psychopathology. Trends in Neurosciences, 42, 349–360.CrossRefGoogle ScholarPubMed
Ghashghaei, H. T., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34, 905–923.CrossRefGoogle ScholarPubMed
Gothard, K. M., Battaglia, F. P., Erickson, C. A., Spitler, K. M., & Amaral, D. G. (2007). Neural responses to facial expression and face identity in the monkey amygdala. Journal of Neurophysiology, 97, 1671–1683.CrossRefGoogle ScholarPubMed
Grèzes, J., Adenis, M.-S., Pouga, L., & Armony, J. L. (2013). Self-relevance modulates brain responses to angry body expressions. Cortex, 49, 2210–2220.CrossRefGoogle ScholarPubMed
Grèzes, J., & Dezecache, G. (2014). How do shared-representations and emotional processes cooperate in response to social threat signals? Neuropsychologia, 55, 105–114.CrossRefGoogle ScholarPubMed
Grèzes, J., Erblang, M., Vilarem, E., Quiquempoix, M., Van Beers, P., Guillard, M., … Rabat, A. (2021). Impact of total sleep deprivation and related mood changes on approach-avoidance decisions to threat-related facial displays. Sleep, 44, zsab186.CrossRefGoogle ScholarPubMed
Grèzes, J., Risch, N., Courtet, P., Olié, E., & Mennella, R. (2023). Depression and approach-avoidance decisions to emotional displays: The role of anhedonia. Behaviour Research and Therapy, 164, 104306.CrossRefGoogle ScholarPubMed
Grèzes, J., Valabrègue, R., Gholipour, B., & Chevallier, C. (2014). A direct amygdala-motor pathway for emotional displays to influence action: A diffusion tensor imaging study. Human Brain Mapping, 35, 5974–5983.CrossRefGoogle Scholar
Guex, R., Méndez-Bértolo, C., Moratti, S., Strange, B. A., Spinelli, L., Murray, R. J., … Domínguez-Borràs, J. (2020). Temporal dynamics of amygdala response to emotion- and action-relevance. Scientific Reports, 10, 11138.CrossRefGoogle ScholarPubMed
Han, H.-B., Shin, H.-S., Jeong, Y., Kim, J., & Choi, J. H. (2023). Dynamic switching of neural oscillations in the prefrontal–amygdala circuit for naturalistic freeze-or-flight. Proceedings of the National Academy of Sciences of the United States of America, 120, e2308762120.Google ScholarPubMed
Hashemi, M. M., Gladwin, T. E., de Valk, N. M., Zhang, W., Kaldewaij, R., van Ast, V., … Roelofs, K. (2019). Neural dynamics of shooting decisions and the switch from freeze to fight. Scientific Reports, 9, 4240.CrossRefGoogle ScholarPubMed
Hersman, S., Allen, D., Hashimoto, M., Brito, S. I., & Anthony, T. E. (2020). Stimulus salience determines defensive behaviors elicited by aversively conditioned serial compound auditory stimuli. eLife, 9, e53803.CrossRefGoogle ScholarPubMed
Holley, D., & Fox, A. S. (2022). The central extended amygdala guides survival-relevant tradeoffs: Implications for understanding common psychiatric disorders. Neuroscience & Biobehavioral Reviews, 142, 104879.CrossRefGoogle ScholarPubMed
Hortensius, R., de Gelder, B., & Schutter, D. J. L. G. (2016). When anger dominates the mind: Increased motor corticospinal excitability in the face of threat. Psychophysiology, 53, 1307–1316.CrossRefGoogle ScholarPubMed
Hulsman, A. M., Terburg, D., Roelofs, K., & Klumpers, F. (2021). Chapter 28 – Roles of the bed nucleus of the stria terminalis and amygdala in fear reactions. In Swaab, D. F., Kreier, F., Lucassen, P. J., Salehi, A., & Buijs, R. M. (Eds.), Handbook of clinical neurology, vol. 179 (pp. 419–432). Elsevier.Google Scholar
Inagaki, M., Inoue, K., Tanabe, S., Kimura, K., Takada, M., & Fujita, I. (2023). Rapid processing of threatening faces in the amygdala of nonhuman primates: Subcortical inputs and dual roles. Cerebral Cortex, 33, 895–915.CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167, 748–751.CrossRefGoogle Scholar
Isa, T., Marquez-Legorreta, E., Grillner, S., & Scott, E. K. (2021). The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Current Biology, 31, R741–R762.CrossRefGoogle Scholar
Kaldewaij, R., Koch, S. B. J., Volman, I., Toni, I., & Roelofs, K. (2016). On the control of social approach–avoidance behavior: Neural and endocrine mechanisms. In Wöhr, M. & Krach, S. (Eds.), Social behavior from rodents to humans, vol. 30 (pp. 275–293). Springer International Publishing.Google Scholar
Kaldewaij, R., Koch, S. B. J., Zhang, W., Hashemi, M. M., Klumpers, F., & Roelofs, K. (2019). Frontal control over automatic emotional action tendencies predicts acute stress responsivity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4, 975–983.Google ScholarPubMed
Keefer, S. E., Gyawali, U., & Calu, D. J. (2021). Choose your path: Divergent basolateral amygdala efferents differentially mediate incentive motivation, flexibility and decision-making. Behavioural Brain Research, 409, 113306.CrossRefGoogle ScholarPubMed
Kim, E. J., Kong, M.-S., Park, S. G., Mizumori, S. J. Y., Cho, J., & Kim, J. J. (2018). Dynamic coding of predatory information between the prelimbic cortex and lateral amygdala in foraging rats. Science Advances, 4, eaar7328.CrossRefGoogle ScholarPubMed
Klaassen, F. H., Held, L., Figner, B., O’Reilly, J. X., Klumpers, F., de Voogd, L. D., & Roelofs, K. (2021). Defensive freezing and its relation to approach–avoidance decision-making under threat. Scientific Reports, 11, 12030.CrossRefGoogle ScholarPubMed
Koller, K., Rafal, R. D., Platt, A., & Mitchell, N. D. (2019). Orienting toward threat: Contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia, 128, 78–86.CrossRefGoogle Scholar
Kragel, P. A., Čeko, M., Theriault, J., Chen, D., Satpute, A. B., Wald, L. W., … Wager, T. D. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109, 2404–2412.e5.CrossRefGoogle ScholarPubMed
Laham, S. M., Kashima, Y., Dix, J., & Wheeler, M. (2015). A meta-analysis of the facilitation of arm flexion and extension movements as a function of stimulus valence. Cognition and Emotion, 29, 1069–1090.CrossRefGoogle ScholarPubMed
Le, Q. V., Le, Q. V., Nishimaru, H., Matsumoto, J., Takamura, Y., Hori, E., … Nishijo, H. (2020). A prototypical template for rapid face detection is embedded in the monkey superior colliculus. Frontiers in Systems Neuroscience, 14, 5.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1996). The emotional brain: The mysterious underpinnings of emotional life (p. 384). Simon & Schuster.Google Scholar
LeDoux, J. E., & Daw, N. D. (2018). Surviving threats: Neural circuit and computational implications of a new taxonomy of defensive behaviour. Nature Reviews Neuroscience, 19, 269–282.CrossRefGoogle ScholarPubMed
Leng, L., Beckers, T., & Vervliet, B. (2022). No joy – why bother? Higher anhedonia relates to reduced pleasure from and motivation for threat avoidance. Behaviour Research and Therapy, 159, 104227.CrossRefGoogle ScholarPubMed
Levita, L., Hoskin, R., & Champi, S. (2012). Avoidance of harm and anxiety: A role for the nucleus accumbens. NeuroImage, 62, 189–198.CrossRefGoogle ScholarPubMed
Lichtenberg, N. T., Sepe-Forrest, L., Pennington, Z. T., Lamparelli, A. C., Greenfield, V. Y., & Wassum, K. M. (2021). The medial orbitofrontal cortex–basolateral amygdala circuit regulates the influence of reward cues on adaptive behavior and choice. Journal of Neuroscience, 41, 7267–7277.CrossRefGoogle ScholarPubMed
Ligneul, R., Mainen, Z. F., Ly, V., & Cools, R. (2022). Stress-sensitive inference of task controllability. Nature Human Behaviour, 6, 812–822.CrossRefGoogle ScholarPubMed
Lima Portugal, L. C., Alves, R. C. S., Junior, O. F., Sanchez, T. A., Mocaiber, I., Volchan, E., … Pereira, M. G. (2020). Interactions between emotion and action in the brain. NeuroImage, 214, 116728.CrossRefGoogle ScholarPubMed
Liu, M., Liu, C. H., Zheng, S., Zhao, K., & Fu, X. (2021). Reexamining the neural network involved in perception of facial expression: A meta-analysis. Neuroscience & Biobehavioral Reviews, 131, 179–191.CrossRefGoogle ScholarPubMed
Livermore, J., Klaassen, F., Bramson, B., Hulsman, A., Meijer, S., Held, L., … Roelofs, K. (2021). Approach-avoidance decisions under threat: The role of autonomic psychophysiological states. Frontiers in Neuroscience, 15, 621517.CrossRefGoogle ScholarPubMed
Lu, J., Kemmerer, S., Riecke, L., & Gelder, B. (2023). Early threat perception is independent of later cognitive and behavioral control. A virtual reality-EEG-ECG study. Cerebral Cortex, 33, 8748–8758.CrossRefGoogle ScholarPubMed
Marsh, A. A., Ambady, N., & Kleck, R. E. (2005). The effects of fear and anger facial expressions on approach- and avoidance-related behaviors. Emotion, 5, 119–124.CrossRefGoogle ScholarPubMed
McCall, C., Hildebrandt, L. K., Hartmann, R., Baczkowski, B. M., & Singer, T. (2016). Introducing the Wunderkammer as a tool for emotion research: Unconstrained gaze and movement patterns in three emotionally evocative virtual worlds. Computers in Human Behavior, 59, 93–107.CrossRefGoogle Scholar
McFadyen, J., Dolan, R. J., & Garrido, M. I. (2020). The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nature Reviews. Neuroscience, 21, 264–276.CrossRefGoogle ScholarPubMed
McFadyen, J., Mattingley, J. B., & Garrido, M. I. (2019). An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife, 8, e40766.CrossRefGoogle Scholar
Méndez, C. A., Celeghin, A., Diano, M., Orsenigo, D., Ocak, B., & Tamietto, M. (2022). A deep neural network model of the primate superior colliculus for emotion recognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 377, 20210512.CrossRefGoogle ScholarPubMed
Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martínez-Alvarez, R., Mah, Y. H., … Strange, B. A. (2016). A fast pathway for fear in human amygdala. Nature Neuroscience, 19, 1041–1049.CrossRefGoogle ScholarPubMed
Mendl, M., & Paul, E. S. (2020). Animal affect and decision-making. Neuroscience & Biobehavioral Reviews, 112, 144–163.CrossRefGoogle ScholarPubMed
Mennella, R., Bavard, S., Mentec, I., & Grèzes, J. (2022). Spontaneous instrumental avoidance learning in social contexts. Scientific Reports, 12, 33.CrossRefGoogle ScholarPubMed
Mennella, R., Vilarem, E., & Grèzes, J. (2020). Rapid approach-avoidance responses to emotional displays reflect value-based decisions: Neural evidence from an EEG study. NeuroImage, 222, 117253.CrossRefGoogle ScholarPubMed
Mobbs, D., Headley, D. B., Ding, W., & Dayan, P. (2020). Space, time, and fear: Survival computations along defensive circuits. Trends in Cognitive Sciences, 24, 228–241.CrossRefGoogle ScholarPubMed
Mobbs, D., Marchant, J. L., Hassabis, D., Seymour, B., Tan, G., Gray, M., … Frith, C. D. (2009). From threat to fear: The neural organization of defensive fear systems in humans. Journal of Neuroscience, 29, 12236–12243.CrossRefGoogle ScholarPubMed
Moors, A., Boddez, Y., & De Houwer, J. (2017). The power of goal-directed processes in the causation of emotional and other actions. Emotion Review, 9, 310–318.CrossRefGoogle Scholar
Moors, A., Fini, C., Everaert, T., Bardi, L., Bossuyt, E., Kuppens, P., & Brass, M. (2019). The role of stimulus-driven versus goal-directed processes in fight and flight tendencies measured with motor evoked potentials induced by transcranial magnetic stimulation. PLoS ONE, 14, e0217266.CrossRefGoogle ScholarPubMed
Morris, J. S., Öhman, A., & Dolan, R. J. (1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the National Academy of Sciences of the United States of America, 96, 1680–1685.Google Scholar
Moscarello, J. M., & Hartley, C. A. (2017). Agency and the calibration of motivated behavior. Trends in Cognitive Sciences, 21, 725–735.CrossRefGoogle ScholarPubMed
Murray, E. A., & Fellows, L. K. (2022). Prefrontal cortex interactions with the amygdala in primates. Neuropsychopharmacology, 47, 163–179.CrossRefGoogle ScholarPubMed
Nguyen, M. N., Nishimaru, H., Matsumoto, J., Van Le, Q., Hori, E., Maior, R. S., … Nishijo, H. (2016). Population coding of facial information in the monkey superior colliculus and pulvinar. Frontiers in Neuroscience, 10, 583.CrossRefGoogle ScholarPubMed
Noordewier, M. K., Scheepers, D. T., & Hilbert, L. P. (2020). Freezing in response to social threat: A replication. Psychological Research, 84, 1890–1896.CrossRefGoogle ScholarPubMed
Orban, G. A., Lanzilotto, M., & Bonini, L. (2021). From observed action identity to social affordances. Trends in Cognitive Sciences, 25, 493–505.CrossRefGoogle ScholarPubMed
Orban, G. A., Sepe, A., & Bonini, L. (2021). Parietal maps of visual signals for bodily action planning. Brain Structure and Function, 226, 2967–2988.CrossRefGoogle ScholarPubMed
Paulus, A., & Wentura, D. (2016). It depends: Approach and avoidance reactions to emotional expressions are influenced by the contrast emotions presented in the task. Journal of Experimental Psychology: Human Perception and Performance, 42, 197–212.Google ScholarPubMed
Pessiglione, M., Vinckier, F., Bouret, S., Daunizeau, J., & Le Bouc, R. (2018). Why not try harder? Computational approach to motivation deficits in neuro-psychiatric diseases. Brain, 141, 629–650.CrossRefGoogle Scholar
Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews Neuroscience, 11, 773–783.CrossRefGoogle Scholar
Pichon, S., de Gelder, B., & Grèzes, J. (2012). Threat prompts defensive brain responses independently of attentional control. Cerebral Cortex, 22, 274–285.CrossRefGoogle ScholarPubMed
Pierce, J. E., & Péron, J. (2020). The basal ganglia and the cerebellum in human emotion. Social Cognitive and Affective Neuroscience, 15, 599–613.CrossRefGoogle ScholarPubMed
Pittig, A., Boschet, J. M., Glück, V. M., & Schneider, K. (2021). Elevated costly avoidance in anxiety disorders: Patients show little downregulation of acquired avoidance in face of competing rewards for approach. Depression and Anxiety, 38, 361–371.CrossRefGoogle ScholarPubMed
Pittig, A., & Scherbaum, S. (2020). Costly avoidance in anxious individuals: Elevated threat avoidance in anxious individuals under high, but not low competing rewards. Journal of Behavior Therapy and Experimental Psychiatry, 66, 101524.CrossRefGoogle Scholar
Pizzagalli, D. A., & Roberts, A. C. (2022). Prefrontal cortex and depression. Neuropsychopharmacology, 47, 225–246.Google ScholarPubMed
Qi, S., Hassabis, D., Sun, J., Guo, F., Daw, N., & Mobbs, D. (2018). How cognitive and reactive fear circuits optimize escape decisions in humans. Proceedings of the National Academy of Sciences of the United States of America, 115, 3186–3191.Google ScholarPubMed
Reichardt, R. (2018). Farsighted and automatic: Affective stimuli facilitate ultimately compatible approach–avoidance tendencies even in the absence of evaluation goals. Motivation and Emotion, 42, 738–747.CrossRefGoogle Scholar
Reis, F. M. C. V., Mobbs, D., Canteras, N. S., & Adhikari, A. (2023). Orchestration of innate and conditioned defensive actions by the periaqueductal gray. Neuropharmacology, 228, 109458.CrossRefGoogle ScholarPubMed
Rizzo, G., Milardi, D., Bertino, S., Basile, G. A., Di Mauro, D., Calamuneri, A., … Cacciola, A. (2018). The limbic and sensorimotor pathways of the human amygdala: A structural connectivity study. Neuroscience, 385, 166–180.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., & Rozzi, S. (2014). Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiological Reviews, 94, 655–706.CrossRefGoogle ScholarPubMed
Roberts, A. C., & Clarke, H. F. (2019). Why we need nonhuman primates to study the role of ventromedial prefrontal cortex in the regulation of threat- and reward-elicited responses. Proceedings of the National Academy of Sciences of the United States of America, 116, 26297–26304.Google Scholar
Roberts, I. D., & Hutcherson, C. A. (2019). Affect and decision making: Insights and predictions from computational models. Trends in Cognitive Sciences, 23, 602–614.CrossRefGoogle ScholarPubMed
Roelofs, K., & Dayan, P. (2022). Freezing revisited: Coordinated autonomic and central optimization of threat coping. Nature Reviews Neuroscience, 23, 568–580.CrossRefGoogle ScholarPubMed
Roelofs, K., Hagenaars, M. A., & Stins, J. (2010). Facing freeze: Social threat induces bodily freeze in humans. Psychological Science, 21, 1575–1581.CrossRefGoogle ScholarPubMed
Rolls, E. T., Deco, G., Huang, C.-C., & Feng, J. (2023). Prefrontal and somatosensory-motor cortex effective connectivity in humans. Cerebral Cortex, 33, 4939–4963.CrossRefGoogle ScholarPubMed
Rosén, J., Kastrati, G., Reppling, A., Bergkvist, K., & Åhs, F. (2019). The effect of immersive virtual reality on proximal and conditioned threat. Scientific Reports, 9, 17407.CrossRefGoogle ScholarPubMed
Rosenberg, B. M., Taschereau-Dumouchel, V., Lau, H., Young, K. S., Nusslock, R., Zinbarg, R. E., & Craske, M. G. (2023). A multivoxel pattern analysis of anhedonia during fear extinction: Implications for safety learning. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8, 417–425.Google ScholarPubMed
Sander, D., Grandjean, D., Kaiser, S., Wehrle, T., & Scherer, K. R. (2007). Interaction effects of perceived gaze direction and dynamic facial expression: Evidence for appraisal theories of emotion. European Journal of Cognitive Psychology, 19, 470–480.CrossRefGoogle Scholar
Sandman, C. F., & Craske, M. G. (2022). Psychological treatments for anhedonia. Current Topics in Behavioral Neurosciences, 58, 491–513.CrossRefGoogle ScholarPubMed
Schutter, D. J. L. G., Hofman, D., & Van Honk, J. (2008). Fearful faces selectively increase corticospinal motor tract excitability: A transcranial magnetic stimulation study. Psychophysiology, 45, 345–348.CrossRefGoogle ScholarPubMed
Seibt, B., Neumann, R., Nussinson, R., & Strack, F. (2008). Movement direction or change in distance? Self- and object-related approach–avoidance motions. Journal of Experimental Social Psychology, 44, 713–720.CrossRefGoogle Scholar
Seqfuestro, M., Serfaty, J., Grèzes, J., & Mennella, R. (2024). Social threat avoidance depends on action-outcome predictability. Communications Psychology, 2, 100.Google Scholar
Shine, J. M. (2022). Adaptively navigating affordance landscapes: How interactions between the superior colliculus and thalamus coordinate complex, adaptive behaviour. Neuroscience & Biobehavioral Reviews, 143, 104921.CrossRefGoogle ScholarPubMed
Soares, S. C., Maior, R. S., Isbell, L. A., Tomaz, C., & Nishijo, H. (2017). Fast detector/first responder: Interactions between the superior colliculus-pulvinar pathway and stimuli relevant to primates. Frontiers in Neuroscience, 11, 67.CrossRefGoogle ScholarPubMed
Sporrer, J. K., Brookes, J., Hall, S., Zabbah, S., Serratos Hernandez, U. D., & Bach, D. R. (2023). Functional sophistication in human escape. iScience, 26, 108240.CrossRefGoogle Scholar
Stins, J. F., Roelofs, K., Villan, J., Kooijman, K., Hagenaars, M. A., & Beek, P. J. (2011). Walk to me when I smile, step back when I’m angry: Emotional faces modulate whole-body approach–avoidance behaviors. Experimental Brain Research, 212, 603–611.CrossRefGoogle ScholarPubMed
Tamietto, M., & de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11, 697–709.CrossRefGoogle ScholarPubMed
Taylor, C. T., Hoffman, S. N., & Khan, A. J. (2022). Anhedonia in anxiety disorders. In Pizzagalli, D. A. (Ed.), Anhedonia: Preclinical, translational, and clinical integration (pp. 201–218). Springer International Publishing.Google Scholar
Terburg, D., Scheggia, D., Triana del Rio, R., Klumpers, F., Ciobanu, A. C., Morgan, B., … van Honk, J. (2018). The basolateral amygdala is essential for rapid escape: A human and rodent study. Cell, 175, 723–735.e16.CrossRefGoogle ScholarPubMed
Tovote, P., Esposito, M. S., Botta, P., Chaudun, F., Fadok, J. P., Markovic, M., … Lüthi, A. (2016). Midbrain circuits for defensive behaviour. Nature, 534, 206–212.CrossRefGoogle ScholarPubMed
Vale, R., Evans, D. A., & Branco, T. (2017). Rapid spatial learning controls instinctive defensive behavior in mice. Current Biology, 27, 1342–1349.CrossRefGoogle ScholarPubMed
Vetter, P., Badde, S., Phelps, E. A., & Carrasco, M. (2019). Emotional faces guide the eyes in the absence of awareness. eLife, 8, e43467.CrossRefGoogle ScholarPubMed
Vilarem, E., Armony, J. L., & Grèzes, J. (2020). Action opportunities modulate attention allocation under social threat. Emotion, 20, 890–903.CrossRefGoogle ScholarPubMed
Vinckier, F., Gourion, D., & Mouchabac, S. (2017). Anhedonia predicts poor psychosocial functioning: Results from a large cohort of patients treated for major depressive disorder by general practitioners. European Psychiatry, 44, 1–8.CrossRefGoogle ScholarPubMed
Wallis, J. D., & Rushworth, M. F. S. (2014). Chapter 22 – Integrating benefits and costs in decision making. In Glimcher, P. W. & Fehr, E. (Eds.), Neuroeconomics, 2nd ed. (pp. 411–433). Academic Press.Google Scholar
Wang, S., Leri, F., & Rizvi, S. J. (2021). Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 110, 110289.CrossRefGoogle ScholarPubMed
Wang, X., Zhen, Z., Song, Y., Huang, L., Kong, X., & Liu, J. (2016). The hierarchical structure of the face network revealed by its functional connectivity pattern. The Journal of Neuroscience, 36, 890–900.CrossRefGoogle ScholarPubMed
Wang, Y., Luo, L., Chen, G., Luan, G., Wang, X., Wang, Q., & Fang, F. (2023). Rapid processing of invisible fearful faces in the human amygdala. Journal of Neuroscience, 43, 1405–1413.CrossRefGoogle ScholarPubMed
Wassum, K. M. (2022). Amygdala-cortical collaboration in reward learning and decision making. eLife, 11, e80926.CrossRefGoogle ScholarPubMed
Wendt, J., Löw, A., Weymar, M., Lotze, M., & Hamm, A. O. (2017). Active avoidance and attentive freezing in the face of approaching threat. NeuroImage, 158, 196–204.CrossRefGoogle ScholarPubMed
Young, K. S., Bookheimer, S. Y., Nusslock, R., Zinbarg, R. E., Damme, K. S. F., Chat, I. K.-Y., … Craske, M. G. (2021). Dysregulation of threat neurocircuitry during fear extinction: The role of anhedonia. Neuropsychopharmacology, 46, 1650–1657.CrossRefGoogle ScholarPubMed

References

Adhikari, A., Topiwala, M. A., & Gordon, J. A. (2010). Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron, 65, 257–269.CrossRefGoogle ScholarPubMed
Alhadeff, A. L. (2021). The power of hunger. Science, 374, 547–548.CrossRefGoogle ScholarPubMed
Al-Mosleh, S., Choi, G. P. T., Abzhanov, A., & Mahadevan, L. (2021). Geometry and dynamics link the form, function, and evolution of finch beaks. Proceedings of the National Academy of Sciences of the United States of America, 118, e2105957118.Google ScholarPubMed
Avery, S. N., Clauss, J. A., & Blackford, J. U. (2016). The human BNST: Functional role in anxiety and addiction. Neuropsychopharmacology, 41, 126–141.CrossRefGoogle ScholarPubMed
Bach, D. R., Guitart-Masip, M., Packard, P. A., Miró, J., Falip, M., Fuentemilla, L., & Dolan, R. J. (2014). Human hippocampus arbitrates approach-avoidance conflict. Current Biology, 24, 541–547.CrossRefGoogle ScholarPubMed
Barbee, B., & Pinter-Wollman, N. (2022). Nutritional needs and mortality risk combine to shape foraging decisions in ants. Current Zoology, 69, 747–755.Google ScholarPubMed
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12, 1–23.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2017). How emotions are made: The secret life of the brain. Pan Macmillan.Google Scholar
Barrett, L. F., Wilson-Mendenhall, C. D., & Barsalou, L.W. (2015). The conceptual act theory: A road map. In Barrett, L. F. & Russell, J. A. (Eds.), The psychological construction of emotion (pp. 83–110). Guilford.Google Scholar
Barsbai, T., Lukas, D., & Pondorfer, A. (2021). Local convergence of behavior across species. Science, 371(6526), 292–295.CrossRefGoogle ScholarPubMed
Beauchamp, G. (2015). Animal vigilance: Monitoring predators and competitors. Elsevier.CrossRefGoogle Scholar
Blanchard, R. J., & Blanchard, D. C. (1989). Antipredator defensive behaviors in a visible burrow system. Journal of Comparative Psychology, 103, 70–82.CrossRefGoogle Scholar
Canteras, N. S., & Swanson, L. W. (1992). The dorsal premammillary nucleus: An unusual component of the mammillary body. Proceedings of the National Academy of Sciences of the United States of America, 89, 10089–10093.Google ScholarPubMed
Casas, J., Steinmann, T., & Dangles, O. (2008). The aerodynamic signature of running spiders. PLoS ONE, 3, e2116.CrossRefGoogle ScholarPubMed
Cisek, P. (2021). Evolution of behavioural control from chordates to primates. Philosophical Transactions of the Royal Society B, 377, 20200522.Google ScholarPubMed
Critchley, H. D., & Garfinkel, S. N. (2017). Interoception and emotion. Current Opinion in Psychology, 17, 7–14.CrossRefGoogle ScholarPubMed
Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray.CrossRefGoogle Scholar
Darwin, E. (1794). Zoonomia, vol. 1. Nova Science Publishers.Google Scholar
Dawkins, R., & Krebs, J. R. (1979). Arms races between and within species. Proceedings of the Royal Society of London. Series B, Biological Sciences, 205, 489–511.Google ScholarPubMed
Dejean, C., Courtin, J., Karalis, N., Chaudun, F., Wurtz, H., Bienvenu, T. C. M., & Herry, C. (2016). Prefrontal neuronal assemblies temporally control fear behaviour. Nature, 535, 420–424.CrossRefGoogle ScholarPubMed
Dill, L. M., & Fraser, A. H. (1984). Risk of predation and the feeding behavior of juvenile coho salmon (Oncorhynchus kisutch). Behavioral Ecology and Sociobiology, 16, 65–71.CrossRefGoogle Scholar
Dillon, D. G., & LaBar, K. S. (2005). Startle modulation during conscious emotion regulation is arousal-dependent. Behavioral Neuroscience, 119, 1118–1124.CrossRefGoogle ScholarPubMed
Duvarci, S., & Pare, D. (2014). Amygdala microcircuits controlling learned fear. Neuron, 82, 966–980.CrossRefGoogle ScholarPubMed
Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Beecher, R. C. B. M. D. (Ed.), Evolution and learning (pp. 185–211). Erlbaum.Google Scholar
Fanselow, M. S., & Pennington, Z. T. (2018). A return to the psychiatric dark ages with a two-system framework for fear. Behaviour Research and Therapy, 100, 24–29.CrossRefGoogle Scholar
Faull, O. K., & Pattinson, K. T. (2017). The cortical connectivity of the periaqueductal gray and the conditioned response to the threat of breathlessness. eLife, 6, e21749.CrossRefGoogle Scholar
Fung, B., Qi, S., Hassabis, D., Daw, N., & Mobbs, D. (2019). Slow escape decisions are swayed by trait anxiety. Nature Human Behavior, 3, 702–708.Google ScholarPubMed
Garcia-Pelegrin, E., Wilkins, C., & Clayton, N. S. (2021). The ape that lived to tell the tale. The evolution of the art of storytelling and its relationship to mental time travel and theory of mind. Frontiers in Psychology, 12, 755783.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Minati, L., Gray, M. A., Seth, A. K., Dolan, R. J., & Critchley, H. D. (2014). Fear from the heart: Sensitivity to fear stimuli depends on individual heartbeats. The Journal of Neuroscience, 34, 6573–6582.CrossRefGoogle ScholarPubMed
Gromer, D., Kiser, D. P., & Pauli, P. (2021). Thigmotaxis in a virtual human open field test. Scientific Reports, 11, 6670.CrossRefGoogle Scholar
Halladay, L. R., & Blair, H. T. (2015). Distinct ensembles of medial prefrontal cortex neurons are activated by threatening stimuli that elicit excitation vs. inhibition of movement. Journal of Neurophysiology, 114, 793–807.CrossRefGoogle ScholarPubMed
Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences of the United States of America, 104, 1726–1731.Google ScholarPubMed
Janak, P. H., & Tye, K. M. (2015). From circuits to behaviour in the amygdala. Nature, 517, 284–292.CrossRefGoogle ScholarPubMed
Jimenez, J. C., Su, K., Goldberg, A. R., Luna, V. M., Biane, J. S., Ordek, G., … Kheirbek, M. A. (2018). Anxiety cells in a hippocampal-hypothalamic circuit. Neuron, 97, 670–683.e6.CrossRefGoogle Scholar
Kunwar, P. S., Zelikowsky, M., Remedios, R., Cai, H., Yilmaz, M., Meister, M., & Anderson, D. J. (2015). Ventromedial hypothalamic neurons control a defensive emotion state. eLife, 4, e06633.CrossRefGoogle ScholarPubMed
Lagos, P. A., Meier, A., Tolhuysen, L. O., Castro, R. A., Bozinovic, F., & Ebensperger, L. A. (2009). Flight initiation distance is differentially sensitive to the costs of staying and leaving food patches in a small-mammal prey. Canadian Journal of Zoology, 87, 1016–1023.CrossRefGoogle Scholar
LeDoux, J. E. (1996). The emotional brain: The mysterious underpinnings of emotional life (p. 384). Simon & Schuster.Google Scholar
LeDoux, J. E. (2012). Rethinking the emotional brain. Neuron, 73, 653–676.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2022). As soon as there was life, there was danger: The deep history of survival behaviours and the shallower history of consciousness. Philosophical Transactions of the Royal Society London B. Biological Sciences, 377, 20210292.CrossRefGoogle Scholar
LeDoux, J. E., Iwata, J., Cicchetti, P., & Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. Journal of Neuroscience, 8, 2517–2529.CrossRefGoogle ScholarPubMed
LeDoux, J. E., & Pine, D. S. (2016). Using neuroscience to help understand fear and anxiety: A two-system framework. The American Journal of Psychiatry, 173, 1083–1093.CrossRefGoogle ScholarPubMed
Liao, W. B., Jiang, Y., Li, D. Y., Jin, L., Zhong, M. J., Qi, Y., … Kotrschal, A. (2022). Cognition contra camouflage: How the brain mediates predator-driven crypsis evolution. Science Advances, 8, eabq1878.CrossRefGoogle ScholarPubMed
Lima, S. L., & Dill, L. M. (1990). Behavioural decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology, 68, 619–640.CrossRefGoogle Scholar
Lovett-Barron, M., Chen, R., Bradbury, S., Andalman, A. S., Wagle, M., Guo, S., & Deisseroth, K. (2020). Multiple convergent hypothalamus–brainstem circuits drive defensive behavior. Nature Neuroscience, 23, 959–967.CrossRefGoogle ScholarPubMed
MacIver, M. A., & Finlay, B. L. (2022). The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Philosophical Transactions of the Royal Society B, 377, 20200523.CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman and Company.Google Scholar
Miller, W. B. (2016). Cognition, information fields and hologenomic entanglement: Evolution in light and shadow. Biology, 5, 21.CrossRefGoogle ScholarPubMed
Milinski, M. (1984). A predator’s costs of overcoming the confusion-effect of swarming prey. Animal Behaviour, 32, 1157–1162.CrossRefGoogle Scholar
Mobbs, D. (2018). The ethological deconstruction of fear(s). Current Opinion in Behavioral Sciences, 24, 32–37.CrossRefGoogle ScholarPubMed
Mobbs, D., Adolphs, R., Fanselow, M. S., Barrett, L. F., LeDoux, J. E., Ressler, K., & Tye, K. M. (2019). Viewpoints: Approaches to defining and investigating fear. Nature Neuroscience, 22, 1205–1216.CrossRefGoogle ScholarPubMed
Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B., & Prevost, C. (2015). The ecology of human fear: Survival optimization and the nervous system. Frontiers in Neuroscience, 9, 55.CrossRefGoogle ScholarPubMed
Mobbs, D., Headley, D., Ding, W., & Dayan, P. (2020). Space, time, and fear: Survival computations along defensive circuits. Trends in Cognitive Science, 24, 228–241.CrossRefGoogle ScholarPubMed
Mobbs, D., & Kim, J. J. (2015). Neuroethological studies of fear and risky decision-making in rat and humans. Current Opinion in Behavioral Sciences, 5, 8–15.CrossRefGoogle Scholar
Mobbs, D., & LeDoux, J. L. (2018). Editorial overview: Survival behaviors and circuits. Current Opinion in Behavioral Sciences, 24, 168–171.CrossRefGoogle Scholar
Mobbs, D., Marchant, J., Hassabis, D., Seymour, B., Gray, M., Tan, G., … Frith, C. D. (2009). From threat to fear: The neural organization of defensive fear systems in humans. Journal of Neuroscience, 39, 12236–12243.Google Scholar
Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N., Seymour, B., … Frith, C. D. (2007). When fear is near: Threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science, 317, 1079–1083.CrossRefGoogle ScholarPubMed
Mobbs, D., Trimmer, P., Blumstein, D. T., & Dayan, P. (2018). Foraging for foundations in decision neuroscience: Insights from ethology. Nature Reviews Neuroscience, 19, 419–427.CrossRefGoogle ScholarPubMed
Mobbs, D., Wise, T., Suthana, N., Guzman, N., Kriegeskorte, N., & Leibo, J. (2021). The promises and challenges of human computational ethology. Neuron, 109, 2224–2238.CrossRefGoogle ScholarPubMed
Mobbs, D., Yu, R., Rowe, J., Eich, H., Feldmanhall, O., & Dalgleish, T. (2010). Neural activity associated with monitoring the oscillating threat value of a tarantula. Proceedings of the National Academy of Sciences of the United States of America, 107, 20582–20586.Google ScholarPubMed
Namburi, P., Beyeler, A., Yorozu, S., Calhoon, G. G., Halbert, S. A., Wichmann, R., … Tye, K. M. (2015). A circuit mechanism for differentiating positive and negative associations. Nature, 520, 675–678.CrossRefGoogle ScholarPubMed
Nashold, B. S., Wilson, W. P., & Slaughter, D. G. (1969). Sensations evoked by stimulation in the midbrain of man. Journal of Neurosurgery, 30, 14–24.CrossRefGoogle ScholarPubMed
O’Neill, P.-K., Gore, F., & Salzman, C. D. (2018). Basolateral amygdala circuitry in positive and negative valence. Current Opinion in Neurobiology, 49, 175–183.CrossRefGoogle ScholarPubMed
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. Oxford University Press.CrossRefGoogle Scholar
Pierson, L. M., & Trout, M. (2017). What is consciousness for? New Ideas in Psychology, 47, 62–71.CrossRefGoogle Scholar
Qi, S., Hassabis, D., Sun, J., Guo, F., Daw, N., & Mobbs, D. (2018). How cognitive and reactive fear circuits optimize escape decisions in humans. Proceedings of the National Academy of Sciences of the United States of America, 115, 3186–3191.Google ScholarPubMed
Rempel-Clower, N. L., & Barbas, H. (1998). Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. The Journal of Comparative Neurology, 398, 393–419.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Sengupta, A., Yau, J. O. Y., Jean-Richard-Dit-Bressel, P., Liu, Y., Millan, E. Z., Power, J. M., & McNally, G. P. (2018). Basolateral amygdala neurons maintain aversive emotional salience. Journal of Neuroscience, 38, 3001–3012.CrossRefGoogle ScholarPubMed
Sherrington, C. S. (1906). The integrative action of the nervous system. Yale University Press.Google Scholar
Sih, A. (1980). Optimal behavior: Can foragers balance two conflicting demands? Science, 210, 1041–1043.CrossRefGoogle ScholarPubMed
Smith, D., Schlaepfer, P., Major, K., Dyble, M., Page, A. E., Thompson, J., Migliano, A. B. (2017). Cooperation and the evolution of hunter-gatherer storytelling. Nature Communications, 8, 1853.CrossRefGoogle ScholarPubMed
Silston, B., Wise, T., Qi, S., Sui, X., Dayan, P., & Mobbs, D. (2021). Neural encoding of socially adjusted value during competitive and hazardous foraging. Nature Communications, 12, 5478.CrossRefGoogle Scholar
Stankowich, T., & Blumstein, D. T. (2005). Fear in animals: A meta-analysis and review of risk assessment. Proceedings. Biological Sciences, 272, 2627–2634.Google ScholarPubMed
Sternson, S. M. (2013). Hypothalamic survival circuits: Blueprints for purposive behaviors. Neuron, 77, 810–824.CrossRefGoogle ScholarPubMed
Tashjian, S. M., Zbozinek, T. D., & Mobbs, D. (2021). A decision architecture for safety computations. Trends in Cognitive Sciences, 25, 342–354.CrossRefGoogle ScholarPubMed
Terburg, D., Scheggia, D., Triana del Rio, R., Klumpers, F., Ciobanu, A. C., Morgan, B., … van Honk, J. (2018). The basolateral amygdala is essential for rapid escape: A human and rodent study. Cell, 175, 723–735.e16.CrossRefGoogle ScholarPubMed
Treit, D., & Fundytus, M. (1988). Thigmotaxis as a test for anxiolytic activity in rats. Pharmacology, Biochemistry, and Behavior, 31, 959–962.CrossRefGoogle ScholarPubMed
Verma, D., Wood, J., Lach, G., Herzog, H., Sperk, G., & Tasan, R. (2016). Hunger promotes fear extinction by activation of an amygdala microcircuit. Neuropsychopharmacology, 41, 431–439.CrossRefGoogle ScholarPubMed
Walker, D. L., Miles, L. A., & Davis, M. (2009). Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33, 1291–1308.CrossRefGoogle ScholarPubMed
Wang, W., Schuette, P. J., Nagai, J., Tobias, B. C., Cuccovia, V., Reis, F. M., … Adhikari, A. (2021). Coordination of escape and spatial navigation circuits orchestrates versatile flight from threats. Neuron, 109, 1848–1860.e8.CrossRefGoogle ScholarPubMed
Willems, E. P., & van Schaik, C. P. (2017). The social organization of Homo ergaster: Inferences from anti-predator responses in extant primates. Journal of Human Evolution, 109, 11–21.CrossRefGoogle ScholarPubMed
Xu, C., Krabbe, S., Gründemann, J., Botta, P., Fadok, J. P., Osakada, F., … Lüthi, A. (2016). Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell, 167, 961–972.e16.CrossRefGoogle ScholarPubMed
Ydenberg, R. C., & Dill, L. M. (1986). The economics of fleeing from predators. Advances in the Study of Behavior, 16, 229–249.CrossRefGoogle Scholar
Yu, K., Garcia da Silva, P., Albeanu, D. F., & Li, B. (2016). Central amygdala somatostatin neurons gate passive and active defensive behaviors. The Journal of Neuroscience, 36, 6488–6496.CrossRefGoogle ScholarPubMed

References

Adams, C. D. (1982). Variations in the sensitivity of instrumental responding to reinforcer devaluation. The Quarterly Journal of Experimental Psychology, 34, 77–98.CrossRefGoogle Scholar
Adams, C. D., & Dickinson, A. (1981). Instrumental responding following reinforcer devaluation. The Quarterly Journal of Experimental Psychology Section B, 33, 109–121.CrossRefGoogle Scholar
Averbeck, B. B., & Duchaine, B. (2009). Integration of social and utilitarian factors in decision making. Emotion, 9, 599–608.CrossRefGoogle ScholarPubMed
Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35, 48–69.CrossRefGoogle ScholarPubMed
Beierholm, U. R., Anen, C., Quartz, S., & Bossaerts, P. (2011). Separate encoding of model-based and model-free valuations in the human brain. NeuroImage, 58, 955–962.CrossRefGoogle ScholarPubMed
Bennett, D., Davidson, G., & Niv, Y. (2022). A model of mood as integrated advantage. Psychological Review, 129, 513–541.CrossRefGoogle Scholar
Berridge, K. C., & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. American Psychologist, 71, 670–679.CrossRefGoogle ScholarPubMed
Botvinick, M., & Weinstein, A. (2014). Model-based hierarchical reinforcement learning and human action control. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130480.CrossRefGoogle ScholarPubMed
Brown, V. M., Chen, J., Gillan, C. M., & Price, R. B. (2020). Improving the reliability of computational analyses: Model-based planning and its relationship with compulsivity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5, 601–609.Google ScholarPubMed
Burke, C. J., Tobler, P. N., Baddeley, M., & Schultz, W. (2010). Neural mechanisms of observational learning. Proceedings of the National Academy of Sciences of the United States of America, 107, 14431–14436.Google ScholarPubMed
Camerer, C. F., & Li, X. (2021). Neural autopilot and context-sensitivity of habits. Current Opinion in Behavioral Sciences, 41, 185–190.CrossRefGoogle Scholar
Charpentier, C. J., Iigaya, K., & O’Doherty, J. P. (2020). A neuro-computational account of arbitration between choice imitation and goal emulation during human observational learning. Neuron, 106, 687–699.CrossRefGoogle ScholarPubMed
Charpentier, C. J., & O’Doherty, J. P. (2021). Computational approaches to mentalizing during observational learning and strategic social interactions. In Gilead, M. & Ochsner, K. N. (Eds.), The neural basis of mentalizing (pp. 489–501). Springer.Google Scholar
Chen, C., Takahashi, T., Nakagawa, S., Inoue, T., & Kusumi, I. (2015). Reinforcement learning in depression: A review of computational research. Neuroscience Biobehavioral Reviews, 55, 247–267.CrossRefGoogle ScholarPubMed
Collette, S., Pauli, W. M., Bossaerts, P., & O’Doherty, J. (2017). Neural computations underlying inverse reinforcement learning in the human brain. eLife, 6, e29718.CrossRefGoogle ScholarPubMed
Collins, A. G. E., & Cockburn, J. (2020). Beyond dichotomies in reinforcement learning. Nature Reviews Neuroscience, 21, 576–586.CrossRefGoogle ScholarPubMed
Collins, A. G. E, & Shenhav, A. (2022). Advances in modeling learning and decision-making in neuroscience. Neuropsychopharmacology, 47, 104–118.CrossRefGoogle ScholarPubMed
Cooper, J. C., Dunne, S., Furey, T., & O’Doherty, J. P. (2017). Human dorsal striatum encodes prediction errors during observational learning of instrumental actions. Journal of Cognitive Neuroscience, 24, 106–118.Google Scholar
Cushman, F., & Morris, A. (2015). Habitual control of goal selection in humans. Proceedings of the National Academy of Sciences of the United States of America, 112, 13817–13822.Google ScholarPubMed
Daw, N. D., & Dayan, P. (2014). The algorithmic anatomy of model-based evaluation. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130478.CrossRefGoogle ScholarPubMed
Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69, 1204–1215.CrossRefGoogle ScholarPubMed
Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711.CrossRefGoogle ScholarPubMed
Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441, 876–879.CrossRefGoogle ScholarPubMed
Deserno, L., Huys, Q. J. M., Boehme, R., Buchert, R., Heinze, H. J., Grace, A. A., … Schlagenhauf, F. (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences of the United States of America, 112, 1595–1600.Google ScholarPubMed
Dickinson, A. (1985). Actions and habits: The development of behavioural autonomy. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 308, 67–78.Google Scholar
Doll, B. B., Duncan, K. D., Simon, D. A., Shohamy, D., & Daw, N. D. (2015). Model-based choices involve prospective neural activity. Nature Neuroscience, 18, 767–772.CrossRefGoogle ScholarPubMed
Doll, B. B., Simon, D. A., & Daw, N. D. (2012). The ubiquity of model-based reinforcement learning. Current Opinion in Neurobiology, 22, 1075–1081.CrossRefGoogle ScholarPubMed
Eldar, E., & Niv, Y. (2015). Interaction between emotional state and learning underlies mood instability. Nature Communications, 6, 6149.CrossRefGoogle ScholarPubMed
Eldar, E., Rutledge, R. B., Dolan, R. J., & Niv, Y. (2016). Mood as representation of momentum. Trends in Cognitive Sciences, 20, 15–24.CrossRefGoogle ScholarPubMed
Fanselow, M. S., & Wassum, K. M. (2016). The origins and organization of vertebrate Pavlovian conditioning. Cold Spring Harbor Perspectives in Biology, 8, a021717.CrossRefGoogle Scholar
Fetter, M. (2007). Vestibulo-ocular reflex. Neuro-Ophthalmology, 40, 35–51.CrossRefGoogle ScholarPubMed
Galton, F. (1907). Vox populi. Nature, 75, 450–451.CrossRefGoogle Scholar
Gera, R., Or, M. B., Tavor, I., Roll, D., Cockburn, J., Barak, S., … Schonberg, T. (2023). Characterizing habit learning in the human brain at the individual and group levels: A multi-modal MRI study. NeuroImage, 272, 120002.CrossRefGoogle Scholar
Gershman, S. J., Markman, A. B., & Otto, A. R. (2014). Retrospective revaluation in sequential decision making: A tale of two systems. Journal of Experimental Psychology: General, 143, 182–194.Google ScholarPubMed
Gläscher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66, 585–595.CrossRefGoogle ScholarPubMed
Hampton, A. N., Bossaerts, P., & O’Doherty, J. P. (2006). The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans. Journal of Neuroscience, 26, 8360–8367.CrossRefGoogle ScholarPubMed
Hill, M. R., Boorman, E. D., & Fried, I. (2016). Observational learning computations in neurons of the human anterior cingulate cortex. Nature Communications, 7, 1272.CrossRefGoogle ScholarPubMed
Huang, Y., Yaple, Z. A., & Yu, R. (2020). Goal-oriented and habitual decisions: Neural signatures of model-based and model-free learning. NeuroImage, 215, 116834.CrossRefGoogle ScholarPubMed
Kahneman, D. (2011). Thinking, fast and slow. Macmillan.Google Scholar
Keramati, M., Dezfouli, A., & Piray, P. (2011). Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Computational Biology, 7, e1002055.CrossRefGoogle ScholarPubMed
Keramati, M., Smittenaar, P., Dolan, R. J., & Dayan, P. (2016). Adaptive integration of habits into depth-limited planning defines a habitual-goal-directed spectrum. Proceedings of the National Academy of Sciences of the United States of America, 113, 12868–12873.Google ScholarPubMed
Kim, D., Park, G. Y., O’Doherty, J. P., & Lee, S. W. (2019). Task complexity interacts with state-space uncertainty in the arbitration between model-based and model-free learning. Nature Communications, 10, 5738.CrossRefGoogle ScholarPubMed
Kool, W., Cushman, F. A., & Gershman, S. J. (2018). Competition and cooperation between multiple reinforcement learning systems. In Morris, R., Bornstein, A., & Shenhav, A. (Eds.), Goal-directed decision making (pp. 153–178). Elsevier Academic Press.Google Scholar
Kool, W., Gershman, S. J., & Cushman, F. A. (2017). Cost-benefit arbitration between multiple reinforcement-learning systems. Psychological Science, 28, 1321–1333.CrossRefGoogle ScholarPubMed
Korn, C. W., & Bach, D. R. (2018). Heuristic and optimal policy computations in the human brain during sequential decision- making. Nature Communications, 9, 325.CrossRefGoogle ScholarPubMed
Kroemer, N. B., Lee, Y., Pooseh, S., Eppinger, B., Goschke, T., & Smolka, M. N. (2019). L-DOPA reduces model-free control of behavior by attenuating the transfer of value to action. NeuroImage, 186, 113–125.CrossRefGoogle ScholarPubMed
Kumar, P., Goer, F., Murray, L., Dillon, D. G., Beltzer, M. L., Cohen, A. L., … Pizzagalli, D. A. (2018). Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology, 43, 1581–1588.CrossRefGoogle ScholarPubMed
Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in soar: The anatomy of a general learning mechanism. Machine Learning, 1, 11–46.CrossRefGoogle Scholar
Lee, S. W., Shimojo, S., & O’Doherty, J. P. (2014). Neural computations underlying arbitration between model-based and model-free learning. Neuron, 81, 687–699.CrossRefGoogle ScholarPubMed
Ligneul, R., Mainen, Z. F., Ly, V., & Cools, R. (2022). Stress-sensitive inference of task controllability. Nature Human Behaviour, 6, 812–822.CrossRefGoogle ScholarPubMed
Maier, S. F., & Seligman, M. E. P. (2016). Learned helplessness at fifty: Insights from neuroscience. Psychological Review, 123, 349–367.CrossRefGoogle ScholarPubMed
McClure, S. M., Berns, G. S., & Montague, P. R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38, 339–346.CrossRefGoogle Scholar
McGovern, A., & Barto, A. G. (2001). “Automatic discovery of subgoals in reinforcement learning using diverse density,” in Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001). Morgan Kaufmann, pp. 361–368.Google Scholar
McNamee, D., Liljeholm, M., Zika, O., & O’Doherty, J. P. (2015). Characterizing the associative content of brain structures involved in habitual and goal-directed actions in humans: A multivariate FMRI study. Journal of Neuroscience, 5, 3764–3771.Google Scholar
Miller, K. J., Ludvig, E. A., Pezzulo, G., & Shenhav, A. (2018). Realigning models of habitual and goal-directed decision-making. In Morris, R., Bornstein, A, & Shenhav, A. (Eds.), Goal-directed decision making: Computations and neural circuits (pp. 407–428). Elsevier Academic Press.Google Scholar
Moskovitz, T., Miller, K., Sahani, M., & Botvinick, M. M. (2024). Understanding dual process cognition via the minimum description length principle. PLoS Computational Biology, 20, e1012383.CrossRefGoogle ScholarPubMed
Niv, Y., & Schoenbaum, G. (2008). Dialogues on prediction errors. Trends in Cognitive Sciences, 12, 265–272.CrossRefGoogle ScholarPubMed
Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In Davidson, R. J., Schwarts, G. E., & Shapiro, D. (Eds.), Consciousness and self-regulation, vol. 4 (pp. 1–18). Springer.Google Scholar
O’Doherty, J. P. (2016). Multiple systems for the motivational control of behavior and associated neural substrates in humans. In Simpson, E. H. & Balsam, P. D. (Eds.), Behavioral Neuroscience of Motivation, (pp. 291–312). Springer.Google Scholar
O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452–454.Google ScholarPubMed
O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.Google ScholarPubMed
O’Doherty, J. P., Lee, S. W., Tadayonnejad, R., Cockburn, J., Iigaya, K., & Charpentier, C. J. (2021). Why and how the brain weights contributions from a mixture of experts. Neuroscience Biobehavioral Reviews, 123, 14–23.CrossRefGoogle ScholarPubMed
Pauli, W. M., Gentile, G., Collette, S., Tyszka, J. M., & O’Doherty, J. P. (2019). Evidence for model-based encoding of Pavlovian contingencies in the human brain. Nature Communications, 10, 1099.CrossRefGoogle ScholarPubMed
Pearson, J. M., Hayden, B. Y., & Platt, M. L. (2010). Explicit information reduces discounting behavior in monkeys. Frontiers in Psychology, 1, 237.CrossRefGoogle ScholarPubMed
Pezzulo, G., Rigoli, F., & Chersi, F. (2013). The mixed instrumental controller: Using value of information to combine habitual choice and mental simulation. Frontiers in Psychology, 4, 92.CrossRefGoogle ScholarPubMed
Pezzulo, G., Rigoli, F., & Friston, K. J. (2018). Hierarchical active inference: A theory of motivated control. Trends in Cognitive Sciences, 22, 294–306.CrossRefGoogle ScholarPubMed
Phelps, E. A., Lempert, K. M., & Sokol-Hessner, P. (2014). Emotion and decision making: Multiple modulatory neural circuits. Annual Review of Neuroscience, 37, 263–287.CrossRefGoogle ScholarPubMed
Philippe, R., Janet, R., Khalvati, K., Rao, R. P. N., Lee, D., & Dreher, J. C. C. (2024). Neurocomputational mechanisms involved in adaptation to fluctuating intentions of others. Nature Communications, 15, 3189.CrossRefGoogle ScholarPubMed
Pool, E. R., Pauli, W. M., Kress, C. S., & O’Doherty, J. P. (2019) Behavioural evidence for parallel outcome-sensitive and outcome- insensitive Pavlovian learning systems in humans. Nature Human Behaviour, 3, 284–296.CrossRefGoogle ScholarPubMed
Reeve, C. D. C. (2014). Nicomachean ethics. Hackett Publishing.Google Scholar
Rolls, E. T. (1990). A theory of emotion, and its application to understanding the neural basis of emotion. Cognition Emotion, 4, 161–190.CrossRefGoogle Scholar
Rutledge, R. B., Skandali, N., Dayan, P., & Dolan, R. J. (2014). A computational and neural model of momentary subjective well-being. Proceedings of the National Academy of Sciences of the United States of America, 111, 12252–12257.Google ScholarPubMed
Sander, D. (2013). Models of emotion: The affective neuroscience approach. In Armony, J. L. & Vuilleumier, P. (Eds.), The Cambridge handbook of human affective neuroscience (pp. 5–56). Cambridge University Press.Google Scholar
Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44, 695–729.CrossRefGoogle Scholar
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.CrossRefGoogle Scholar
Seok, D., Tadayonnejad, R., Wong, W.-W., O’Neill, J., Cockburn, J., Bari, A. A., … Feusner, J. D. (2022). Neurocircuit dynamics of arbitration between decision-making strategies across obsessive-compulsive and related disorders. NeuroImage: Clinical, 35, 103073.Google ScholarPubMed
Seymour, B., & Dolan, R. (2008). Emotion, decision making, and the amygdala. Neuron, 58, 662–671.CrossRefGoogle ScholarPubMed
Simon, D. A., & Daw, N. D. (2011). Neural correlates of forward planning in a spatial decision task in humans. Journal of Neuroscience, 31, 5526–5539.CrossRefGoogle Scholar
Surowiecki, J. (2005). The wisdom of crowds. Anchor.Google Scholar
Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In Porter, B. & Mooney, R. (Eds.), Machine learning proceedings (pp. 216–224). Morgan Kaufmann.Google Scholar
Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112, 181–211.CrossRefGoogle Scholar
Tricomi, E., Balleine, B. W., & O’Doherty, J. P. (2009). A specific role for posterior dorsolateral striatum in human habit learning. European Journal of Neuroscience, 29, 2225–2232.CrossRefGoogle Scholar
Valentin, V. V., Dickinson, A., & O’Doherty, J. P. (2007). Determining the neural substrates of goal-directed learning in the human brain. Journal of Neuroscience, 27, 4019–4026.CrossRefGoogle ScholarPubMed
Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning: Application of a theory. In Boakes, R. A. & Halliday, M. S. (Eds.), Inhibition and learning (pp. 301–336). Academic Press.Google Scholar
Wimmer, G. E., Daw, N. D., & Shohamy, D. (2012). Generalization of value in reinforcement learning by humans. European Journal of Neuroscience, 35, 1092–1104.CrossRefGoogle ScholarPubMed
Winkielman, P., Berridge, K. C., & Wilbarger, J. L. (2005). Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value. Personality and Social Psychology Bulletin, 31, 121–135.CrossRefGoogle ScholarPubMed
Wunderlich, K., Dayan, P., & Dolan, R. J. (2012). Mapping value based planning and extensively trained choice in the human brain. Nature Neuroscience, 15, 786–791.CrossRefGoogle ScholarPubMed
Wunderlich, K., Rangel, A., & O’Doherty, J. P. (2009). Neural computations underlying action-based decision making in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 106, 17199–17204.Google ScholarPubMed
Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 7, 464–476.CrossRefGoogle ScholarPubMed

References

Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12, 169–177.CrossRefGoogle ScholarPubMed
Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191, 42–61.CrossRefGoogle ScholarPubMed
Aldao, A. (2013). The future of emotion regulation research: Capturing context. 8, 155–172.Google ScholarPubMed
Aldao, A., Gee, D. G., De Los Reyes, A., & Seager, I. (2016). Emotion regulation as a transdiagnostic factor in the development of internalizing and externalizing psychopathology: Current and future directions. Development and Psychopathology, 28, 927–946.CrossRefGoogle ScholarPubMed
Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30, 217–237.CrossRefGoogle ScholarPubMed
Aldao, A., & Tull, M. T. (2015). Putting emotion regulation in context. Current Opinion in Psychology, 3, 100–107.CrossRefGoogle Scholar
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177.CrossRefGoogle ScholarPubMed
Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2, 303–312.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12, 1–23.CrossRefGoogle ScholarPubMed
Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23, 361–372.CrossRefGoogle ScholarPubMed
Berboth, S., & Morawetz, C. (2021). Amygdala-prefrontal connectivity during emotion regulation: A meta-analysis of psychophysiological interactions. Neuropsychologia, 153, 107767.CrossRefGoogle ScholarPubMed
Berboth, S., Windischberger, C., Kohn, N., & Morawetz, C. (2021). Test-retest reliability of emotion regulation networks using fMRI at ultra-high magnetic field. NeuroImage, 232, 117917.CrossRefGoogle ScholarPubMed
Berking, M., & Wupperman, P. (2012). Emotion regulation and mental health: Recent findings, current challenges, and future directions. Current Opinion in Psychiatry, 25, 128–134.CrossRefGoogle ScholarPubMed
Berthold-Losleben, M., Habel, U., Brehl, A.-K., Freiherr, J., Losleben, K., Schneider, F., … Kohn, N. (2018). Implicit affective rivalry: A behavioral and fMRI study combining olfactory and auditory stimulation. Frontiers in Behavioral Neuroscience, 12, 313.CrossRefGoogle ScholarPubMed
Bo, K., Kraynak, T. E., Kwon, M., Sun, M., Gianaros, P. J., & Wager, T. D. (2024). A systems identification approach using Bayes factors to deconstruct the brain bases of emotion regulation. Nature Neuroscience, 27, 975–987.CrossRefGoogle ScholarPubMed
Bonanno, G. A., & Burton, C. L. (2013). Regulatory flexibility: An individual differences perspective on coping and emotion regulation. Perspectives on Psychological Science, 8, 591–612.CrossRefGoogle ScholarPubMed
Brady, B., Kneebone, I. I., Denson, N., & Bailey, P. E. (2018). Systematic review and meta-analysis of age-related differences in instructed emotion regulation success. PeerJ, 6, e6051.CrossRefGoogle ScholarPubMed
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14, 277–290.CrossRefGoogle ScholarPubMed
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24, 2981–2990.CrossRefGoogle ScholarPubMed
Cheng, C.-M., Li, C.-T., & Tsai, S.-J. (2021). Current updates on newer forms of transcranial magnetic stimulation in major depression. Advances in Experimental Medicine and Biology, 1305, 333–349.CrossRefGoogle ScholarPubMed
Clemens, B., Wagels, L., Bauchmüller, M., Bergs, R., Habel, U., & Kohn, N. (2017). Alerted default mode: Functional connectivity changes in the aftermath of social stress. Scientific Reports, 7, 40180.CrossRefGoogle ScholarPubMed
Craig, A. D. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13, 500–505.Google ScholarPubMed
Derryberry, D., & Rothbart, M. K. (1997). Reactive and effortful processes in the organization of temperament. Development and Psychopathology, 9, 633–652.CrossRefGoogle ScholarPubMed
Diamond, L. M., & Aspinwall, L. G. (2003). Emotion regulation across the life span: An integrative perspective emphasizing self-regulation, positive affect, and dyadic processes. Motivation and Emotion, 27, 125–156.CrossRefGoogle Scholar
Diekhof, E. K., Geier, K., Falkai, P., & Gruber, O. (2011). Fear is only as deep as the mind allows: a coordinate-based meta-analysis of neuroimaging studies on the regulation of negative affect. NeuroImage, 58, 275–285.CrossRefGoogle Scholar
Dixon-Gordon, K. L., Bernecker, S. L., & Christensen, K. (2015). Recent innovations in the field of interpersonal emotion regulation. Current Opinion in Psychology, 3, 36–42.CrossRefGoogle Scholar
Doré, B., Silvers, J., & Ochsner, K. (2016). Toward a personalized science of emotion regulation. Social and Personality Psychology Compass, 10, 171–187.CrossRefGoogle Scholar
Dörfel, D., Gärtner, A., & Scheffel, C. (2020). Resting state cortico-limbic functional connectivity and dispositional use of emotion regulation strategies: A replication and extension study. Frontiers in Behavioral Neuroscience, 14, 128.CrossRefGoogle ScholarPubMed
Eftekhari, A., Zoellner, L. A., & Vigil, S. A. (2009). Patterns of emotion regulation and psychopathology. Anxiety Stress and Coping, 22, 571–586.CrossRefGoogle ScholarPubMed
Eisenberg, N., Spinrad, T. L., & Eggum, N. D. (2010). Emotion-related self-regulation and its relation to children’s maladjustment. Annual Review of Clinical Psychology, 6, 495–525.CrossRefGoogle ScholarPubMed
Esposito, F., Otto, T., Zijlstra, F. R. H., & Goebel, R. (2014). Spatially distributed effects of mental exhaustion on resting-state FMRI networks. PLoS ONE, 9, e94222.CrossRefGoogle ScholarPubMed
Etkin, A., Büchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Review Neuroscience, 16, 693–700.CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51, 871–882.CrossRefGoogle ScholarPubMed
Fernandez, K. C., Jazaieri, H., & Gross, J. J. (2016). Emotion regulation: A transdiagnostic perspective on a new RDoC domain. Cognitive Therapy and Research, 40, 426–440.CrossRefGoogle ScholarPubMed
Ferstl, M., Teckentrup, V., Lin, W. M., Kräutlein, F., Kühnel, A., Klaus, J., … Kroemer, N. B. (2022). Non-invasive vagus nerve stimulation boosts mood recovery after effort exertion. Psychological Medicine, 52, 3029–3039.CrossRefGoogle ScholarPubMed
Fischer, A. H., & Manstead, A. S. R. (2008). Social functions of emotion. In Lewis, M., Haviland-Jones, J. M., & Barrett, L. F. (Eds.), Handbook of emotions, 3rd ed. (pp. 456–468). The Guildford Press.Google Scholar
Fischer, A. H., Manstead, A. S. R., & Zaalberg, R. (2003). Social influences on the emotion process. European Review of Social Psychology, 14, 171–201.CrossRefGoogle Scholar
Frank, D. W., Dewitt, M., Hudgens-Haney, M., Schaeffer, D. J., Ball, B. H., Schwarz, N. F., … Sabatinelli, D. (2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neuroscience and Biobehavioral Reviews, 45, 202–211.CrossRefGoogle ScholarPubMed
Gazzaley, A., & D’Esposito, M. (2007). Unifying prefrontal cortex function: Executive control, neural networks and top-down modulation. In Miller, B. & Cummings, J. (Eds.), The human frontal lobes (pp. 187–206). The Guildford Press.Google Scholar
Grecucci, A., & Sanfey, A. G. (2014). Emotion regulation and decision making. In Gross, J. J. (Ed.), Handbook of emotion regulation, 2nd ed. (pp. 140–153). The Guilford Press.Google Scholar
Gross, J. J. (1998). Antecedent- and response-focused emotion regulation: Divergent consequences for experience, expression, and physiology. Journal of Personality and Social Psychology, 74, 224–237.CrossRefGoogle ScholarPubMed
Gross, J. J. (2002). Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology, 39, 281–291.CrossRefGoogle ScholarPubMed
Gross, J. J. (2013). Emotion regulation: Taking stock and moving forward. Emotion, 13, 359–365.CrossRefGoogle ScholarPubMed
Gross, J. J. (2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26, 1–26.CrossRefGoogle Scholar
Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85, 348–362.CrossRefGoogle ScholarPubMed
Gross, J. J., & Muñoz, R. F. (1995). Emotion regulation and mental health. Clinical Psychology Science and Practice, 2, 151–164.CrossRefGoogle Scholar
Gross, J. J., Sheppes, G., & Urry, H. L. (2011). Cognition and emotion lecture at the 2010 SPSP Emotion Preconference: Emotion generation and emotion regulation: A distinction we should make (carefully). Cognition & Emotion, 25, 765–781.CrossRefGoogle Scholar
Gross, J. J., & Thompson, R. A. (2007). Emotion regulation: Conceptual foundations. In Gross, J. J. (Ed.), Handbook of emotion regulation, vol. 3 (pp. 3–24). The Guilford Press.Google Scholar
Gruber, R., & Cassoff, J. (2014). The interplay between sleep and emotion regulation: Conceptual framework empirical evidence and future directions. Current Psychiatry Reports, 16, 500.CrossRefGoogle ScholarPubMed
Gyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition & Emotion, 25, 400–412.CrossRefGoogle ScholarPubMed
Higgins, E. T., & Pittman, T. S. (2008). Motives of the human animal: Comprehending, managing, and sharing inner states. Annual Review of Psychology, 59, 361–385.CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167, 748–751.CrossRefGoogle Scholar
Jamieson, A. J., Harrison, B. J., Razi, A., & Davey, C. G. (2021). Rostral anterior cingulate network effective connectivity in depressed adolescents and associations with treatment response in a randomized controlled trial. Neuropsychopharmacology, 47, 1240–1248.Google ScholarPubMed
Jazaieri, H., Urry, H. L., & Gross, J. J. (2013). Affective disturbance and psychopathology: An emotion regulation perspective. Journal of Experimental Psychopathology, 4, 584–599.CrossRefGoogle Scholar
Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. The Journal of Neuroscience, 27, 8877–8884.CrossRefGoogle ScholarPubMed
Kappas, A. (2011). Emotion and regulation are one! Emotion Review, 3, 17–25.CrossRefGoogle Scholar
Khodadadifar, T., Soltaninejad, Z., Ebneabbasi, A., Eickhoff, C. R., Sorg, C., Van Eimeren, T., … Tahmasian, M. (2022). In search of convergent regional brain abnormality in cognitive emotion regulation: A transdiagnostic neuroimaging meta-analysis. Human Brain Mapping, 43, 1309–1325.CrossRefGoogle ScholarPubMed
Kohn, N., Eickhoff, S. B. S. B., Scheller, M., Laird, A. R. A. R., Fox, P. T., & Habel, U. (2014). Neural network of cognitive emotion regulation – An ALE meta-analysis and MACM analysis. NeuroImage, 87, 345–355.CrossRefGoogle ScholarPubMed
Kohn, N., Hermans, E. J., & Fernández, G. (2017). Cognitive benefit and cost of acute stress is differentially modulated by individual brain state. Social Cognitive and Affective Neuroscience, 12, 1179–1187.CrossRefGoogle ScholarPubMed
Kohn, N., Morawetz, C., Weymar, M., Yuan, J., & Dolcos, F. (2021). Editorial: Cognitive control of emotions in challenging contexts. Frontiers in Behavioral Neuroscience, 15, 785875.CrossRefGoogle ScholarPubMed
Kohn, N., Toygar, T., Weidenfeld, C., Berthold-Losleben, M., Chechko, N., Orfanos, S., … Habel, U. (2015). In a sweet mood? Effects of experimental modulation of blood glucose levels on mood-induction during fMRI. NeuroImage, 113, 246–256.CrossRefGoogle Scholar
Koole, S. L. (2009). The psychology of emotion regulation: An integrative review. Cognition & Emotion, 23, 4–41.CrossRefGoogle Scholar
Koush, Y., Meskaldji, D.-E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E. J., … Scharnowski, F. (2017). Learning control over emotion networks through connectivity-based neurofeedback. Cerebral Cortex, 27, 1193–1202.Google ScholarPubMed
Kring, A. M., & Sloan, D. M. (2010). Emotion regulation and psychopathology: A transdiagnostic approach to etiology and treatment. The Guilford Press.Google Scholar
Laird, A. R., Riedel, M. C., Sutherland, M. T., Eickhoff, S. B., Ray, K. L., Uecker, A. M., … Fox, P. T. (2015). Neural architecture underlying classification of face perception paradigms. NeuroImage, 119, 70–80.CrossRefGoogle ScholarPubMed
Lakey, B., & Orehek, E. (2011). Relational regulation theory: A new approach to explain the link between perceived social support and mental health. Psychological Review, 118, 482–495.CrossRefGoogle ScholarPubMed
Lee, H., Heller, A. S., van Reekum, C. M., Nelson, B., & Davidson, R. J. (2012). Amygdala-prefrontal coupling underlies individual differences in emotion regulation. NeuroImage, 62, 1575–1581.CrossRefGoogle ScholarPubMed
Lincoln, T. M., Schulze, L., & Renneberg, B. (2022). The role of emotion regulation in the characterization, development and treatment of psychopathology. Nature Reviews Psychology, 1, 272–286.CrossRefGoogle Scholar
Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., & Schramek, T. E. (2007). The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain and Cognition, 65, 209–237.CrossRefGoogle ScholarPubMed
Marroquín, B. (2011). Interpersonal emotion regulation as a mechanism of social support in depression. Clinical Psychology Review, 31, 1276–1290.CrossRefGoogle ScholarPubMed
McRae, K., Ciesielski, B., & Gross, J. J. (2012). Unpacking cognitive reappraisal: Goals, tactics, and outcomes. Emotion, 12, 250–255.CrossRefGoogle ScholarPubMed
McRae, K., Misra, S., Prasad, A. K., Pereira, S. C., & Gross, J. J. (2012). Bottom-up and top-down emotion generation: Implications for emotion regulation. Social Cognitive and Affective Neuroscience, 7, 253–262.CrossRefGoogle ScholarPubMed
McTeague, L. M., Huemer, J., Carreon, D. M., Jiang, Y., Eickhoff, S. B., & Etkin, A. (2017). Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. American Journal of Psychiatry, 174, 676–685.CrossRefGoogle ScholarPubMed
McTeague, L. M., Rosenberg, B. M., Lopez, J. W., Carreon, D. M., Huemer, J., Jiang, Y., … Etkin, A. (2020). Identification of common neural circuit disruptions in emotional processing across psychiatric disorders. American Journal of Psychiatry, 177, 411–421.CrossRefGoogle ScholarPubMed
Messina, I., Bianco, S., Sambin, M., & Viviani, R. (2015). Executive and semantic processes in reappraisal of negative stimuli: Insights from a meta-analysis of neuroimaging studies. Frontiers in Psychology, 6, 974–983.CrossRefGoogle ScholarPubMed
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefGoogle ScholarPubMed
Morawetz, C., Berboth, S., & Bode, S. (2021). With a little help from my friends: The effect of social proximity on emotion regulation-related brain activity. NeuroImage, 230, 117817.CrossRefGoogle ScholarPubMed
Morawetz, C., Berboth, S., Chirokoff, V., Chanraud, S., Misdrahi, D., Serre, F., … Swendsen, J. (2023). Mood variability craving and substance use disorders: From intrinsic brain network connectivity to daily life experience. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8, 940–955.Google ScholarPubMed
Morawetz, C., Berboth, S., Kohn, N., Jackson, P. L., & Jauniaux, J. (2022). Reappraisal and empathic perspective-taking – More alike than meets the eyes. NeuroImage, 255, 119194.CrossRefGoogle ScholarPubMed
Morawetz, C., Bode, S., Derntl, B., & Heekeren, H. R. (2017). The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 72, 111–128.CrossRefGoogle ScholarPubMed
Morawetz, C., Kellermann, T., Kogler, L., Radke, S., Jens, B., & Derntl, B. (2016). Intrinsic functional connectivity underlying successful emotion regulation of angry faces. Social Cognitive and Affective Neuroscience, 11, 1980–1991.CrossRefGoogle ScholarPubMed
Morawetz, C., Riedel, M. C., Salo, T., Berboth, S., Eickhoff, S. B., Laird, A. R., & Kohn, N. (2020). Multiple large-scale neural networks underlying emotion regulation. Neuroscience & Biobehavioral Reviews, 116, 382–395.CrossRefGoogle ScholarPubMed
Morawetz, C., Steyrl, D., Berboth, S., Heekeren, H. R., & Bode, S. (2020). Emotion regulation modulates dietary decision-making via activity in the prefrontal–striatal valuation system. Cerebral Cortex, 30, 5731–5749.CrossRefGoogle ScholarPubMed
Niven, K., Totterdell, P., & Holman, D. (2009). A classification of controlled interpersonal affect regulation strategies. Emotion, 9, 498–509.CrossRefGoogle ScholarPubMed
Niven, K., Totterdell, P., Holman, D., & Headley, T. (2012). Does regulating others’ feelings influence people’s own affective well-being? The Journal of Social Psychology, 152, 246–260.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking feelings: An FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14, 1215–1229.CrossRefGoogle ScholarPubMed
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242–249.CrossRefGoogle ScholarPubMed
Ochsner, K. N., & Gross, J. J. (2014). The neural bases of emotion and emotion regulation: A valuation perspective. In Gross, J. J. (Ed.), Handbook of emotion regulation, 2nd ed. (pp. 23–42). The Guilford Press.Google Scholar
Ochsner, K. N., Ray, R. R., Hughes, B., McRae, K., Cooper, J. C., Weber, J., … Gross, J. J. (2009). Bottom-up and top-down processes in emotion generation: Common and distinct neural mechanisms. Psychological Science, 20, 1322–1331.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Silvers, J., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1–E24.CrossRefGoogle ScholarPubMed
Orfanos, S., Toygar, T., Berthold-Losleben, M., Chechko, N., Durst, A., Laoutidis, Z. G., … Karges, W. (2018). Investigating the impact of overnight fasting on intrinsic functional connectivity: A double-blind fMRI study. Brain Imaging and Behavior, 12, 1150–1159.CrossRefGoogle ScholarPubMed
Otto, B., Misra, S., Prasad, A., & McRae, K. (2014). Functional overlap of top-down emotion regulation and generation: An fMRI study identifying common neural substrates between cognitive reappraisal and cognitively generated emotions. Cognitive, Affective & Behavioral Neuroscience, 14, 923–938.CrossRefGoogle ScholarPubMed
Palmer, C. A., & Alfano, C. A. (2017). Sleep and emotion regulation: An organizing, integrative review. Sleep Medicine Reviews, 31, 6–16.CrossRefGoogle ScholarPubMed
Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews. Neuroscience, 9, 148–158.CrossRefGoogle ScholarPubMed
Pessoa, L. (2018). Understanding emotion with brain networks. Current Opinion in Behavioral Sciences, 19, 19–25.CrossRefGoogle ScholarPubMed
Petrova, K., & Gross, J. J. (2023). The future of emotion regulation research: Broadening our field of view. Affective Science, 4, 609–616.CrossRefGoogle ScholarPubMed
Phillips, M. L., Ladouceur, C., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13, 829–857.Google ScholarPubMed
Picó-Pérez, M., Alonso, P., Contreras-Rodríguez, O., Martínez-Zalacaín, I., López-Solà, C., Jiménez-Murcia, S., … Soriano-Mas, C. (2018). Dispositional use of emotion regulation strategies and resting-state cortico-limbic functional connectivity. Brain Imaging and Behavior, 12, 1022–1031.CrossRefGoogle ScholarPubMed
Posner, M. I., & Rothbart, M. K. (2000). Developing mechanisms of self-regulation. Development and Psychopathology, 12, 427–441.CrossRefGoogle Scholar
Quirk, G. J., & Beer, J. S. (2006). Prefrontal involvement in the regulation of emotion: Convergence of rat and human studies. Current Opinion in Neurobiology, 16, 723–727.CrossRefGoogle ScholarPubMed
Rammensee, R. A., Morawetz, C., & Basten, U. (2023). Individual differences in emotion regulation: Personal tendency in strategy selection is related to implementation capacity and well-being. Emotion, 23, 2331–2343.CrossRefGoogle ScholarPubMed
Ray, R. D., & Zald, D. H. (2012). Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience and Biobehavioral Reviews, 36, 479–501.CrossRefGoogle ScholarPubMed
Reeck, C., Ames, D. R., & Ochsner, K. N. (2016). The social regulation of emotion: An integrative, cross-disciplinary model. Trends in Cognitive Sciences, 20, 47–63.CrossRefGoogle ScholarPubMed
Riedel, M. C., Yanes, J. A., Ray, K. L., Eickhoff, S. B., Fox, P. T., Sutherland, M. T., & Laird, A. R. (2018). Dissociable meta-analytic brain networks contribute to coordinated emotional processing. Human Brain Mapping, 39, 2514–2531.CrossRefGoogle ScholarPubMed
Roelofs, K., Bramson, B., & Toni, I. (2023). A neurocognitive theory of flexible emotion control: The role of the lateral frontal pole in emotion regulation. Annals of the New York Academy of Sciences, 1525, 28–40.CrossRefGoogle ScholarPubMed
Sander, D., Grandjean, D., & Scherer, K. R. (2005). A systems approach to appraisal mechanisms in emotion. Neural Networks: The Official Journal of the International Neural Network Society, 18, 317–352.CrossRefGoogle ScholarPubMed
Sandi, C. (2013). Stress and cognition. Wiley Interdisciplinary Reviews. Cognitive Science, 4, 245–261.CrossRefGoogle ScholarPubMed
Scherer, K. R. (2022). Theory convergence in emotion science is timely and realistic. Cognition and Emotion, 36, 154–170.CrossRefGoogle ScholarPubMed
Shafir, R., Schwartz, N., Blechert, J., & Sheppes, G. (2015). Emotional intensity influences pre-implementation and implementation of distraction and reappraisal. Social Cognitive and Affective Neuroscience, 10, 1329–1337.CrossRefGoogle ScholarPubMed
Shafir, R., Thiruchselvam, R., Suri, G., Gross, J., & Sheppes, G. (2016). Neural processing of emotional-intensity predicts emotion regulation choice. Social Cognitive and Affective Neuroscience, 11, 1863–1871.CrossRefGoogle ScholarPubMed
Sheppes, G. (2020). Transcending the ‘good & bad’ and ‘here & now’ in emotion regulation: Costs and benefits of strategies across regulatory stages. In Gawronski, B. (Ed.), Advances in experimental social psychology (pp. 185–236). Elsevier Academic Press.Google Scholar
Sheppes, G., Suri, G., & Gross, J. J. (2015). Emotion regulation and psychopathology. Annual Review of Clinical Psychology, 11, 379–405.CrossRefGoogle ScholarPubMed
Sloan, E., Hall, K., Moulding, R., Bryce, S., Mildred, H., & Staiger, P. K. (2017). Emotion regulation as a transdiagnostic treatment construct across anxiety, depression, substance, eating and borderline personality disorders: A systematic review. Clinical Psychology Review, 57, 141–163.CrossRefGoogle ScholarPubMed
Smith, R., & Lane, R. D. (2015). The neural basis of one’s own conscious and unconscious emotional states. Neuroscience & Biobehavioral Reviews, 57, 1–29.CrossRefGoogle ScholarPubMed
Sripada, C., Angstadt, M., Kessler, D., Phan, K. L., Liberzon, I., Evans, G. W., … Swain, J. E. (2014). Volitional regulation of emotions produces distributed alterations in connectivity between visual, attention control, and default networks. NeuroImage, 89, 110–121.CrossRefGoogle ScholarPubMed
Stern, E. R., Grimaldi, S. J., Muratore, A., Murrough, J., Leibu, E., Fleysher, L., … Burdick, K. E. (2017). Neural correlates of interoception: Effects of interoceptive focus and relationship to dimensional measures of body awareness. Human Brain Mapping, 38, 6068–6082.CrossRefGoogle ScholarPubMed
Steward, T., Davey, C. G., Jamieson, A. J., Stephanou, K., Soriano-Mas, C., Felmingham, K. L., & Harrison, B. J. (2021). Dynamic neural interactions supporting the cognitive reappraisal of emotion. Cerebral Cortex, 31, 961–973.CrossRefGoogle ScholarPubMed
Thiruchselvam, R., Blechert, J., Sheppes, G., Rydstrom, A., & Gross, J. J. (2011). The temporal dynamics of emotion regulation: An EEG study of distraction and reappraisal. Biological Psychology, 87, 84–92.CrossRefGoogle ScholarPubMed
Thompson, R. A. (1994). Emotion regulation: A theme in search of definition. Monographs of the Society for Research in Child Development, 59, 25–52.CrossRefGoogle ScholarPubMed
Thompson, R. A. (2011). Emotion and emotion regulation: Two sides of the developing coin. Emotion Review, 3, 53–61.CrossRefGoogle Scholar
Thompson-Schill, S. L., Bedny, M., & Goldberg, R. F. (2005). The frontal lobes and the regulation of mental activity. Current Opinion in Neurobiology, 15, 219–224.CrossRefGoogle ScholarPubMed
Tibubos, A. N., Grammes, J., Beutel, M. E., Michal, M., Schmutzer, G., & Brähler, E. (2018). Emotion regulation strategies moderate the relationship of fatigue with depersonalization and derealization symptoms. Journal of Affective Disorders, 227, 571–579.CrossRefGoogle ScholarPubMed
Uchida, M., Biederman, J., Gabrieli, J. D. E., Micco, J., de Los Angeles, C., Brown, A., … Whitfield-Gabrieli, S. (2015). Emotion regulation ability varies in relation to intrinsic functional brain architecture. Social Cognitive and Affective Neuroscience, 10, 1738–1748.CrossRefGoogle ScholarPubMed
Urry, H. L., & Gross, J. J. (2010). Emotion regulation in older age. Current Directions in Psychological Science, 19, 352–357.CrossRefGoogle Scholar
Urry, H. L., Reekum, V., Marije, C., Johnstone, T., Kalin, N. H., Thurow, M. E., … Davidson, R. J. (2006). Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. Journal of Neuroscience, 26, 4415–4425.CrossRefGoogle ScholarPubMed
Van Kleef, G. A. (2010). The emerging view of emotion as social information. Social and Personality Psychology Compass, 4, 331–343.CrossRefGoogle Scholar
Van Kleef, G. A., Cheshin, A., Fischer, A. H., & Schneider, I. K. (2016). Editorial: The social nature of emotions. Frontiers in Psychology, 7, 896.CrossRefGoogle ScholarPubMed
Vandekerckhove, M., & Wang, Y. (2017). Emotion, emotion regulation and sleep: An intimate relationship. AIMS Neuroscience, 5, 1–17.CrossRefGoogle ScholarPubMed
Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., & Ochsner, K. N. (2008). Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 59, 1037–1050.CrossRefGoogle ScholarPubMed
Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3, 255–274.CrossRefGoogle ScholarPubMed
Wang, C., Trongnetrpunya, A., Samuel, I. B. H., Ding, M., & Kluger, B. M. (2016). Compensatory neural activity in response to cognitive fatigue. Journal of Neuroscience, 36, 3919–3924.CrossRefGoogle ScholarPubMed
Webb, T. L., Miles, E., & Sheeran, P. (2012). Dealing with feeling: A meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychological Bulletin, 138, 775–808.CrossRefGoogle ScholarPubMed
Wiens, S. (2005). Interoception in emotional experience. Current Opinion in Neurology, 18, 442–447.CrossRefGoogle ScholarPubMed
Xie, X., Mulej Bratec, S., Schmid, G., Meng, C., Doll, A., Wohlschlaeger, A., … Sorg, C. (2016). How do you make me feel better? Social cognitive emotion regulation and the default mode network. NeuroImage, 134, 270–280.CrossRefGoogle Scholar
Zaki, J., & Williams, W. C. (2013). Interpersonal emotion regulation. Emotion, 13, 803–810.CrossRefGoogle ScholarPubMed
Zhang, J.-X., Dixon, M. L., Goldin, P. R., Spiegel, D., & Gross, J. J. (2023). The neural separability of emotion reactivity and regulation. Affective Science, 4, 617–629.CrossRefGoogle ScholarPubMed
Zouaoui, I., Zellag, M., Hernout, J., Dumais, A., Potvin, S., & Lavoie, M. E. (2023). Alpha and theta oscillations during the cognitive reappraisal of aversive pictures: A spatio-temporal qEEG investigation. International Journal of Psychophysiology, 192, 13–25.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×