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Abstract
We prove two compactness theorems for HOD. First, if 𝜅 is a strong limit singular cardinal with uncountable
cofinality and for stationarily many 𝛿 < 𝜅, (𝛿+)HOD = 𝛿+, then (𝜅+)HOD = 𝜅+. Second, if 𝜅 is a singular cardinal
with uncountable cofinality and stationarily many 𝛿 < 𝜅 are singular in HOD, then 𝜅 is singular in HOD. We also
discuss the optimality of these results and show that the first theorem does not extend from HOD to other 𝜔-club
amenable inner models.
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1. Introduction

In 1963, Cohen established that Cantor’s continuum problem cannot be solved from the accepted ZFC
axioms of set theory [Coh63]. This is the problem of determining which among Cantor’s transfinite
cardinal numbers

ℵ0,ℵ1,ℵ2, . . .ℵ𝜔 ,ℵ𝜔+1, . . .

is the cardinality of the continuum R. More precisely, what Cohen showed is that the axioms cannot
rule out that |R| = ℵ2, while Gödel [Göd39] had already shown that the possibility |R| = ℵ1 could not
be ruled out.

Of course, Cantor himself ruled out that |R| isℵ0 by proving that the real numbers form an uncountable
set. Later, König [Kön05] showed that |R| is not equal to ℵ𝜔 , ℵ𝜔+𝜔 , or, more generally, ℵ𝛼 for any
limit ordinal 𝛼 of countable cofinality. Soon after Cohen’s theorem, Solovay showed that there are no
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restrictions on the cardinality of the continuum besides those established by Cantor and König. For
example, it is consistent with the ZFC axioms that |R| = ℵ19 or |R| = ℵ𝜔 ·𝜔+1 or |R| = ℵ𝜔5 .

The cardinality of the continuum is denoted by 2ℵ0 , recognizing that R is equinumerous with the set
of functions from N into a set of size 2. For each cardinal number 𝜅, 2𝜅 denotes the cardinality of the
set of functions from a set of size 𝜅 to a set of size 2. The function 𝜅 ↦→ 2𝜅 is known as the continuum
function.

After Solovay’s result classifying all possible values of 2ℵ0 , set theorists took up the problem of
classifying the possibilities for the continuum function itself. Obviously, we have 2𝜅 ≤ 2𝜆 whenever
𝜅 ≤ 𝜆. Also, 2𝜅 > 𝜅 by Cantor’s theorem, and furthermore cf(2𝜅 ) > 𝜅 by König’s theorem.

Are there any other restrictions on the continuum function, or is the situation analogous to Solovay’s
theorem for 2ℵ0 , where no further constraints are possible? In 1966, Easton [Eas70] showed the latter for
regular cardinals – that is, those cardinals 𝜅 that are not the limit of fewer than 𝜅 smaller cardinals. That
is, Easton showed that no restrictions on the behavior of the continuum function on regular cardinals
can be established in ZFC except the ones mentioned in the previous paragraphs.

Following Easton’s theorem, the outstanding open problem in set theory was to generalize the result
to all cardinals, showing without restriction that the continuum function obeys no laws other than those
discovered by Cantor and König. This paper is inspired by a theorem of Silver [Sil75], which shows such
a generalization of Easton’s theorem is not possible: in fact, there are intricate and subtle restrictions on
the behavior of the continuum function at singular (i.e., non-regular) cardinals. To this day, the problem
of completely classifying the possible behavior of the continuum function at singular cardinals remains
open, though the theory of singular cardinal arithmetic has since blossomed into one of the deepest
subjects in set theory.

Silver’s theorem reveals that the value of 2ℵ𝜔1 is tied to the values of 2ℵ𝛼 for ordinals 𝛼 < 𝜔1. More
precisely, if 2ℵ𝛼 = ℵ𝛼+1 for all limit ordinals 𝛼 < 𝜔1, then 2ℵ𝜔1 = ℵ𝜔1+1. He showed moreover that if 𝜅
is a singular cardinal of uncountable cofinality and 2𝜆 = 𝜆+ for a stationary set of 𝜆 < 𝜅, then 2𝜅 = 𝜅+.

Silver’s theorem can be construed as a compactness property of the continuum function. Compactness
describes a general pattern in set theory: the properties of a structure are determined by its small
substructures. The most familiar compactness phenomena involve infinite structures and their finite
substructures: for example, the Compactness Theorem in first-order logic states that the satisfiability of
a first-order theory is determined by the satisfiability of its finite fragments. Compactness properties of
larger regular cardinals often turn out to be related to large cardinal properties – for instance, the tree
property and stationary reflection. However, singular cardinals have been found to have compactness
properties that are provable in ZFC – for instance, Shelah’s singular compactness theorem in algebra,
which led to his solution of Whitehead’s problem [She74].

This paper establishes analogs of Silver’s theorem in the context of set-theoretic definability. Gödel
[Göd46] introduced the concept of ordinal definability in an attempt to formalize the intuitive concept
of mathematical definability. A set is ordinal definable if it is definable over the universe of sets using
finitely many ordinal numbers as parameters.

The behavior of ordinal definability is highly sensitive to the structure of the universe of sets, and
for this reason, it is subject to the same independence phenomena that hinder our understanding of the
continuum function. The main results of this paper show for the first time that ordinal definability at
singular cardinals of uncountable cofinality exhibits patterns of compactness parallel to those that Silver
identified for the continuum function.

Our theorems concern two invariants of ordinal definability, which play the role of the continuum
function in our analogs of Silver’s theorem. First, we define the ordinal definable cofinality of an ordinal
𝛼, denoted by cfOD(𝛼), as the least ordinal 𝛿 such that there is an ordinal definable cofinal function from
𝛿 to 𝛼. Second, we define the ordinal definable successor of 𝛼, denoted by 𝛼+OD, as the supremum of
all ordinals 𝛾 for which there is an ordinal definable surjection from 𝛼 to 𝛾.1 With this notation in hand,
we can state our compactness theorems for ordinal definability.

1Of course, cfOD (𝛼) is just the cofinality of 𝛼 as computed in the inner model HOD, and 𝛼+OD is the least cardinal of HOD
that is greater than 𝛼.
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Theorem. Suppose that 𝜅 is a singular cardinal with uncountable cofinality and that {𝛿 < 𝜅 |
cfOD(𝛿) < 𝛿} is stationary. Then cfOD (𝜅) < 𝜅.

Our theorem on the ordinal definable successor function is significantly harder to prove, and moreover,
we do not know how to prove it for arbitrary singular cardinals.

Theorem. Suppose that 𝜅 is a singular strong limit cardinal of uncountable cofinality and {𝛿 < 𝜅 |
𝛿+OD = 𝛿+} is stationary. Then 𝜅+OD = 𝜅+.

The theorems above are proved by combining the technique of generic ultrapowers (see §2.1) with
variants of Vopenka’s theorem that every set belongs to a forcing extension of HOD. In addition, in
§3.1, we employ set-theoretic forcing to show that the hypothesis employed may not be relaxed. Thus,
our results are provably optimal.

Finally, we show that the first of our compactness theorems does not extend to arbitrary 𝜔-club
amenable models (see p.13). This contrasts with the main results of [Gol23] where the first author
showed that most known results about HOD – for example, the HOD dichotomy theorem – can actually
be proved for an arbitrary inner model that is 𝜔-club amenable.

Theorem. Assume that every set T belongs to an inner model with a measurable cardinal of Mitchell
order 2 above rank(𝑇). Then for every cardinal 𝜆, there is an 𝜔-club amenable inner model M that is
correct about cardinals and cofinalities below 𝜆 while (𝜆+)𝑀 < 𝜆+.

The notation of this paper is standard in set theory. In §2, we provide the reader with some prelimi-
naries regarding HOD and the theory of generic ultrapowers. §3 is devoted to prove the above theorems
and discuss their optimality. Finally, in §4, we leave some related open questions.

2. Preliminaries and notation

This section collects some set-theoretic tools employed through the paper. The material here is standard
and is included just for the benefit of our readers. We also introduce some relevant terminology.

2.1. Generic ultrapowers

Fix a set X. A set I ⊆ P (𝑋) is called an ideal if ∅ ∈ I, 𝑋 ∉ I and I is closed under subsets and finite
unions. Dually, a set F ⊆ P (𝑋) is a filter if ∅ ∉ F , 𝑋 ∈ F and F is closed under supersets and finite
intersections. A filter U is called an ultrafilter if it satisfies the following additional property: given
𝐴 ∈ P (𝑋), either 𝐴 ∈ U or 𝑋 \ 𝐴 ∈ U ; equivalently, U is a ⊆-maximal filter.

Given an ideal I ⊆ P (𝑋), its dual filter I∗ is defined as {𝑋 \ 𝐴 | 𝐴 ∈ I}. A set 𝐴 ∈ P (𝑋) has
I-positive measure if 𝐴 ∉ 𝐼, and I+ denotes the collection of all sets with I-positive measure. Note that
I∗ is a filter, I∗ ⊆ I+ and 𝐴 ∈ I+ if and only if 𝐴 ∩ 𝐵 ≠ ∅ for all 𝐵 ∈ I∗. These concepts have natural
parallels in the setting of filters F ⊆ P (𝑋) as well [Jec03, §7].

Given an ideal I ⊆ P (𝑋), define an equivalence relation ∼I on 𝑃(𝑋) as follows:

𝐴 ∼I 𝐵 if and only if 𝐴 � 𝐵 ∈ I .

This yields a quotient P (𝑋)/I, which, endowed with the order

[𝑋] ≤ [𝑌 ] ⇐⇒ 𝑋 \ 𝑌 ∈ I,

gives rise to a Boolean algebra. After removing the zero element from P (𝜅)/I, the partial ordering ≤
becomes a separative order.

There is another presentation of the poset (P (𝑋)/I \ {[∅]}, ≤) as P := (I+, ⊂). The two posets are
forcing equivalent in the sense that they give rise to the same generic extensions. Indeed, the former poset
is the separative quotient of the latter. A V-generic filter 𝐺 ⊆ P yields a V-ultrafilter on X extending the
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dual filter I∗. If I is 𝜅-complete, then G is also V-𝜅-complete.2 For details concerning these facts, see
[Jec03, §22].

Suppose that I ⊆ P (𝜅) is an ideal containing all singletons and that it is 𝜅-complete (i.e.,
⋃

𝛼<𝜆 𝐴𝛼 ∈
I provided 〈𝐴𝛼 | 𝛼 < 𝜆〉 ⊆ I with 𝜆 < 𝜅).

Let 𝐺 ⊆ P be a V-generic filter. Working in 𝑉 [𝐺], we can define the generic ultrapower of V by G.
Namely, in 𝑉 [𝐺], one defines the structure

Ult(𝑉, 𝐺) := 〈(𝑋𝑉) ∩𝑉)/=𝐺 , ∈𝐺〉,

where for each two functions 𝑓 , 𝑔 : 𝑋 → 𝑉 (in V)

𝑓 =𝐺 𝑔 if and only if {𝑥 ∈ 𝑋 | 𝑓 (𝑥) = 𝑔(𝑥)} ∈ 𝐺

and
[ 𝑓 ]𝐺 ∈𝐺 [𝑔]𝐺 if and only if {𝑥 ∈ 𝑋 | 𝑓 (𝑥) ∈ 𝑔(𝑥)} ∈ 𝐺.

Here and in the future, we will denote by [ 𝑓 ]𝐺 the =𝐺 equivalence class of f, omitting the subscript
when there is no chance of confusion.

It turns out that Ult(𝑉, 𝐺) is a model of ZFC, yet not necessarily well-founded, even if G is V-
𝜅-complete for an uncountable cardinal 𝜅. As usual, an appropriate version of Łoś’s theorem holds.
Namely,

Ult(𝑉, 𝐺) |= 𝜑([ 𝑓1], . . . , [ 𝑓𝑛]) ⇐⇒ {𝑥 ∈ 𝑋 | 𝑉 |= 𝜑( 𝑓1(𝑥), . . . , 𝑓𝑛 (𝑥))} ∈ 𝐺,

where 𝜑(𝑣1, . . . , 𝑣𝑛) is a first-order formula in the language {=, ∈}.
This ensures that the map 𝑗𝐺 : 〈𝑉, ∈〉 → Ult(𝑉, 𝐺) given by 𝑎 ↦→ [𝑐𝑎]𝐺 is an elementary embedding,

where 𝑐𝑎 : 𝑋 → 𝑉 is the constant function with value a.
The combinatorial properties of the ideal I (in V) are related to the properties of the embedding

𝑗𝐺 : 𝑉 → Ult(𝑉, 𝐺) in the generic extension 𝑉 [𝐺]. For example, I is 𝜅-complete if and only if the
maximal condition [𝑋] forces that the critical point of 𝑗𝐺 is at least 𝜅.

The generic ultrapower construction will play a prominent role in the forthcoming §3. We refer the
reader to [Jec03, §22] or Foreman’s excellent handbook chapter [For09] for any notion not considered
in this account.
Remark 2.1. Let F ⊆ P (𝑋) be a filter and I := {𝑋 \𝐹 | 𝐹 ∈ F } be its dual ideal. Since the F-positive
sets are exactly the I-positive sets, all the previous comments remain valid starting with a filter F and
taking P := (F+, ⊆). This will be the approach we take through §3. We decided to phrase the discussion
here in the language of ideals just because this is the approach pursued in reference texts, such as [Jec03,
For09].
Definition 2.2. Given a filter F ⊆ P (𝑋) and functions 𝑓 , 𝑔 : 𝑋 → 𝑉 , denote

𝑓 <F 𝑔 ⇐⇒ {𝑥 ∈ 𝑋 | 𝑓 (𝑥) < 𝑔(𝑥)} ∈ F .

Similarly, if I ⊆ P (𝑋) is an ideal,

𝑓 <I 𝑔 ⇐⇒ {𝑥 ∈ 𝑋 | 𝑓 (𝑥) ≥ 𝑔(𝑥)} ∈ I .

2.2. Ordinal definability and forcing

A set X is called ordinal definable if it is definable by a formula of the language of set theory using
ordinals as parameters. More formally, there is 𝜑(𝑥, �𝑦) and 〈𝛼∗, 𝛼0, . . . 𝛼𝑛〉 ∈ Ord<𝜔 such that

𝑥 ∈ 𝑋 ⇔ 𝑉𝛼∗ |= 𝜑(𝑥, 𝛼0, . . . , 𝛼𝑛).

2A filter G is V-𝜅-complete if given 𝜆 < 𝜅 and a sequence 〈𝐴𝛼 | 𝛼 < 𝜆〉 in V of sets in G, then
⋂

𝛼<𝜆 𝐴𝛼 ∈ 𝐺.
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The class of ordinal definable sets is denoted by OD. Since OD need not be transitive, one looks at a
special subclass of OD – the Hereditarily ordinal definable sets, HOD. A set X is Hereditarily Ordinal
Definable (or, simply, in HOD) if 𝑋 ∈ OD and the transitive closure of {𝑋} is contained in OD. It turns
that HOD is an inner model; namely, it is a transitive class containing the ordinals and satisfying all the
ZFC axioms.

At many places in this paper, we shall be preoccupied with the following issue. Suppose that P ∈ OD
is a forcing poset and 𝐺 ⊆ P is V-generic – how does HOD𝑉 [𝐺 ] compare to HOD𝑉 ? Here, HOD𝑉

(resp. HOD𝑉 [𝐺 ]) stands for the class HOD as computed in V (resp. in 𝑉 [𝐺]). In special circumstances,
we have HOD𝑉 [𝐺 ] ⊆ HOD – for example, if P is cone/weakly homogeneous:

Definition 2.3. A poset P is weakly homogeneous if for for all 𝑝, 𝑞 ∈ P, there is an automorphism
𝜑 : P→ P making 𝜑(𝑝) and q compatible.

Similarly, P is cone-homogeneous if for all 𝑝, 𝑞 ∈ P, there are 𝑝∗ ≤ 𝑝 and 𝑞∗ ≤ 𝑞 together with an
isomorphism 𝜑 : P/𝑝∗ → P/𝑞∗.

We used P/𝑝 to denote the subposet of P with universe {𝑞 ∈ P | 𝑞 ≤ 𝑝}. It is clear that every weakly
homogeneous forcing is cone-homogeneous.

Lemma 2.4 (Folklore). If P ∈ OD is a cone-homogeneous forcing poset, then HOD𝑉 [𝐺 ] ⊆ HOD𝑉 for
all V-generic 𝐺 ⊆ P.

Sometimes we will need to assume (see, for example, §3.1) that HOD encompasses large cardinals
which exist in V. This can be done by forcing “𝑉 = HOD” with McAloon iteration coding V into the
continuum function. The said iteration preserves large cardinals (see [FHR15, BP23]) and produces a
model V such that 𝑉 ⊆ HOD𝑉 Q for any set-sized forcing Q.

3. Two compactness theorems for HOD

In this section, we prove our compactness theorems for HOD (Theorems 3.4 and 3.5). Our results are
very much in the spirit of Silver’s classical theorem that the generalized continuum hypothesis cannot
first fail at a singular cardinal of uncountable cofinality [Sil75]. The overall idea is to extract some
information about ordinal definability from Silver’s argument, which heavily uses the technique of
generic ultrapowers from §2.1.

Let us begin with the following key result:

Theorem 3.1 (Casey–Goldberg). For any strong limit cardinal 𝜆,

cf(𝜆+HOD) ∈ {𝜔, cf(𝜆), 𝜆+}.

Proof. Let 𝜅 � 𝜆+HOD and let 𝛿 � cf (𝜅). Let us assume that 𝜔 < 𝛿 < 𝜆+.
We must show that 𝛿 = cf (𝜆). Let ℱ denote the restriction of the closed unbounded filter on 𝜅 to

HOD; that is, ℱ � Cub𝜅 ∩ HOD. Since Cub𝜅 is ordinal definable it is easy to check that ℱ ∈ HOD
and that it is a filter in HOD. We will denote by ℱ+ the ℱ-positive sets, as computed in HOD – namely,
the collection of all 𝐴 ∈ P (𝜅)HOD intersecting all members of ℱ.

Claim 3.1.1. In HOD, ℱ is weakly normal in the sense that if 𝑆 ∈ ℱ+ and 𝑓 : 𝑆 → 𝜅 is a regressive
function in HOD, there is 𝛽 < 𝜅 such that

{𝛼 ∈ 𝑆 | 𝑓 (𝛼) ≤ 𝛽} ∈ ℱ+.3

Moreover, if 𝛾 ∈ Ord, cf𝑉 (𝛾) ≠ 𝛿, 𝑆 ∈ ℱ+, and 𝑓 : 𝑆 → 𝛾 is any function in HOD, then there is some
𝛽 < 𝛾 such that

3This notion of weak normality is weaker than the one considered in Kan76.
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{𝛼 ∈ 𝑆 | 𝑓 (𝛼) ≤ 𝛽} ∈ ℱ+.

Finally, (ℱ+, ⊂) is forcing equivalent in HOD to a poset of size less than (2𝛿)+𝑉 .

Proof of claim. The bounding properties of ℱ in HOD follow from the corresponding properties of
Cub𝜅 in V. That is, if 𝑆 ∈ ℱ+ and 𝑓 : 𝑆 → 𝜅 is a regressive function in V, then f is bounded on a
stationary set, and if 𝛾 is an ordinal whose cofinality is not 𝛿 and 𝑓 : 𝑆 → 𝛾 is any function in V, then f
is bounded on a stationary set. We leave these as exercises with the following hints. First, by restricting
to a club in 𝜅 of ordertype 𝛿, one can reduce to the more familiar case that 𝜅 = 𝛿. Second, to prove the
statement about functions into 𝛾, one can split into cases based on whether the cofinality of 𝛾 is less
than 𝛿 or greater than 𝛿; in the former case, one appeals to the 𝛿-completeness of the club filter, and in
the latter case, one uses that functions from 𝛿 to 𝛾 are bounded everywhere.

Finally, (ℱ+, ⊂) is equivalent in HOD to a forcing of size less than (2𝛿)+𝑉 because its separative
quotient Q has cardinality less than (2𝛿)+𝑉 : note that the underlying set of Q is precisely the set of
equivalence classes of ℱ+ modulo the non-stationary ideal on 𝜅 (in V). In HOD, choose a set 𝒯 ⊆ ℱ+

such that for each 𝑆 ∈ ℱ+, there is exactly one 𝑆′ ∈ 𝒯 such that 𝑆 � 𝑆′ is non-stationary (in V). Then
|𝒯 |HOD = |Q|HOD, and 𝑉 |= “|𝒯 | ≤ 2𝛿”. To see this last inequality, fix a closed unbounded set 𝐶 ⊆ 𝜅
of ordertype 𝛿. Then 〈𝑆 ∩𝐶 | 𝑆 ∈ 𝒯〉 is a sequence of distinct subsets of C from which we deduce that
𝑉 |= |𝒯 | ≤ |P (𝐶) | = 2𝛿 . �

By forcing over HOD with (ℱ+, ⊂), we extend ℱ to a HOD-weakly normal HOD-ultrafilter G on 𝜅
with the property that if 𝛾 is an ordinal with cf𝑉 (𝛾) ≠ 𝛿 then every 𝑓 : 𝜅 → 𝛾 in HOD is bounded on
a set in G. (This is by the moreover part of the claim together with a density argument.) In particular,
the generic ultrapower map 𝑖 : HOD → 𝑁 := Ult(HOD, 𝐺) is continuous at ordinals 𝛾 of V-cofinality
distinct from 𝛿. Note that N may not be well-founded, so N-ordinals may fail to be ordinals.

Since G is HOD-weakly normal (because so is ℱ), it follows that

[id]𝐺 = sup 𝑖[𝜅] < 𝑖(𝜅).

(Since N may not be well-founded, these objects are not really ordinals, but elements of Ord𝑁 , and the
order relation, which we will simply denote by <, is the canonical order of the ordinals as computed in
N. If 𝐴 ⊆ Ord𝑁 , we write sup(𝐴) for the least upper bound of A in this order, if it exists. Note that this
least upper bound exists whenever A belongs to N, and may or may not exist otherwise. In this particular
case, sup 𝑖[𝜅] exists and is equal to [id]𝐺 by weak normality, even though 𝑖[𝜅] may not belong to N.)

Assume towards a contradiction that

cf(𝜆) ≠ 𝛿.

By this assumption and our previous comments, 𝑖(𝜆) = sup 𝑖[𝜆] (i.e., i is continuous at 𝜆) as every
𝑓 : 𝜅 → 𝜆 is bounded on a set in G.

Since 𝜅 = 𝜆+HOD, {𝜉 < 𝜅 | cfHOD (𝜉) ≤ 𝜆} ∈ 𝐺, and so cf(sup 𝑖[𝜅]) ≤ sup 𝑖[𝜆]. Let us next argue
that this inequality is strict.

Note that HOD[𝐺] |= “ cf (sup 𝑖[𝜅]) = 𝜅”: Indeed, 𝜅 remains regular in HOD[𝐺] because G comes
from a forcing equivalent to another of cardinality less than (2𝛿)+𝑉 < 𝜆.

Because HOD[𝐺] |= “ cf (sup 𝑖[𝜆]) = cf(𝜆) ≤ 𝜆 < 𝜅”, it follows that

HOD[𝐺] |= “ cf (sup 𝑖[𝜅]) ≠ cf (sup 𝑖[𝜆])”.

Therefore, N satisfies the same; namely,

𝑁 |= “ cf (sup 𝑖[𝜅]) ≠ cf(sup 𝑖[𝜆])”.
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In particular, we must have

𝑁 |= “ cf (sup 𝑖[𝜅]) < sup 𝑖[𝜆] ′′.

Let 𝐶 ∈ 𝑁 be such that

𝑁 |= “𝐶 is a closed cofinal subset of sup 𝑖[𝜅] of order-type cf (sup 𝑖[𝜅])′′.

Recall that i is continuous at ordinals whose V-cofinality is not equal to 𝛿. In particular, i is continuous
at ordinals whose 𝑉 [𝐺]-cofinality 𝛾 lies between (2𝛿)+ and 𝜆: by preservation of regular cardinals, such
an ordinal has the same cofinality in V. Thus, for any such 𝛾, a familiar argument shows that 𝑖[𝜅] ∩𝐶 is
𝛾-closed cofinal in sup 𝑖[𝜅]. Hence, 𝑖−1 [𝐶] is cofinal in 𝜅.

Let 𝐵 � 𝑖−1 [𝐶], and note that there is some 𝐴 ∈ HOD unbounded in 𝜅 contained in B because G is
generic for a partial order which in HOD has size less than (2𝛿)+𝑉 < 𝜆 < 𝜅. Since 𝑖[𝐴] ⊆ 𝐶, letting
𝑓 : 𝐴 → 𝜅 be the transitive collapse, 𝑖[𝜅] ⊆ �̄� where �̄� := 𝑖( 𝑓 ) [𝐶].

Note that

𝑁 |= “ otp(�̄�) = otp(𝐶)′′.

Fix a 𝑉 [𝐺]-regular cardinal 𝛾 ∈ (𝛿, 𝜆) such that

𝑁 |= “otp(𝐶) < 𝑖(𝛾)′′.

Then 𝑖[𝛾] ⊆ �̄� ∩ 𝑖(𝛾), and so

𝑁 |= “𝑖[𝛾] is bounded above by sup(�̄� ∩ 𝑖(𝛾)) < 𝑖(𝛾)′′.

In particular, i is discontinuous at 𝛾. However, i must be continuous at 𝛾 because cf (𝛾) ≠ 𝛿. This yields
a contradiction showing that our original assumption that cf (𝜆) ≠ 𝛿 was false. �

The proof of Theorem 3.4 requires another technical result.

Definition 3.2. Let 𝑉 ⊆ 𝑊 be two transitive models of ZFC and 𝜅 ∈ 𝑉 be such that 𝑉 |= ‘𝜅 is a regular
cardinal’. We say that the pair (𝑉, 𝑊) has the 𝜅-uniform cover property if for every function 𝑓 ∈ 𝑊 with
dom( 𝑓 ) ∈ 𝑉 and ran( 𝑓 ) ⊆ 𝑉 , there is yet another function 𝐹 ∈ 𝑉 with dom(𝐹) = dom( 𝑓 ), and for all
𝑖 ∈ dom( 𝑓 ), 𝑓 (𝑖) ∈ 𝐹 (𝑖) and 𝑉 |= |𝐹 (𝑖) | < 𝜅.

If P ∈ 𝑉 is a 𝜅-cc forcing poset and 𝐺 ⊆ P is a generic filter, then standard arguments show that
(𝑉,𝑉 [𝐺]) has the 𝜅-uniform cover property. Conversely, a remarkable theorem by Bukovský [Buk73]
says that if (𝑉, 𝑊) has the 𝜅-uniform cover property, then there is a poset P ∈ 𝑉 that has the 𝜅-cc in V,
𝑊 |= “|P| ≤ 2𝜅” and W is a generic extension of V by P (see [Sch20, Theorem 3.11])

Lemma 3.3. Suppose P ∈ OD is a 𝜅-cc forcing and 𝐺 ⊆ P is a V-generic. Let N be the class of sets
that are hereditarily definable in the structure 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉 from ordinal parameters. Then the pair
(HOD, 𝑁) has the 𝜅-uniform cover property.

In particular, N is a forcing extension of HOD by a forcing Q ∈ HOD such that HOD |= “Q is 𝜅-cc”
and 𝑁 |= “|Q| ≤ 2𝜅”.

Proof. Clearly, HOD ⊆ 𝑁 . We verify that (HOD, 𝑁) has the 𝜅-uniform cover property. Fix an ordinal
𝜆 and a function 𝑓 : 𝜆 → 𝜆 that is definable in the structure 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉 from ordinal parameters.
Let 𝜑(𝑥0, 𝑥1, 𝑥2) be a formula in the language of 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉 such that for some ordinal 𝛽, 𝑓 (𝜉) = 𝜁
if and only if 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉 satisfies 𝜑(𝜉, 𝜁 , 𝛽). Then let

𝐹 (𝜉) = {𝜁 < 𝜆 | ∃𝑝 ∈ P (𝑝 �P 𝜑(𝜉, 𝜁 , 𝛽))}.
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Note that F is ordinal definable (because so is P) and that 𝑓 (𝜉) ∈ 𝐹 (𝜉). Since P is 𝜅-cc, it also follows
that HOD |= |𝐹 (𝜉) | < 𝜅. �

We are now in a position to prove our first main result:

Theorem 3.4. If 𝜅 is a strong limit singular cardinal of uncountable cofinality and {𝛿 < 𝜅 | (𝛿+)HOD =
𝛿+} is stationary, then (𝜅+)HOD = 𝜅+.

Proof. The first attempt at a proof, on which the correct proof will elaborate, proceeds as follows. Let
𝜄 = cf(𝜅) and fix 𝑓 : 𝜄 → 𝜅 an increasing continuous cofinal function. Let F be the club filter on 𝜄. Then,
by assumption,

𝑆 := {𝜉 < 𝜄 | 𝑓 (𝜉)+HOD = 𝑓 (𝜉)+} ∈ F+.

By forcing with F+ below S, one produces a generic filter 𝐺 ⊆ F+ extending the filter F , which is
V-𝜄-complete and V-normal. In particular,

(†) {𝜉 < 𝜄 | 𝑓 (𝜉)+HOD = 𝑓 (𝜉)+} ∈ 𝐺.

Then we take the generic ultrapower 𝑗𝐺 : 𝑉 → 𝑀𝐺 , using only functions 𝑓 : 𝜄 → 𝑉 in the ground
model V (see §2.1). By V-normality of G,

(††) 𝑋 ∈ 𝐺 ⇐⇒ 𝜄 ∈ 𝑗𝐺 (𝑋).

The ultrapower 𝑀𝐺 has its own version of 𝜅, the unique ordinal 𝜅∗ of 𝑀𝐺 that is ‘𝜅-like’ in the sense that
each of its predecessors has cardinality less than 𝜅, whereas the set of predecessors of 𝜅∗ has cardinality
exactly 𝜅. Indeed, 𝜅∗ = 𝑗𝐺 ( 𝑓 ) (𝜄), where as above 𝑓 : 𝜄 → 𝜅 is any cofinal continuous function in V. Note
that if 𝑀𝐺 is well-founded, then 𝜅∗ = 𝜅, but we must deal with the possibility that 𝑀𝐺 is ill-founded.

Let us begin with an easy (yet useful) observation.

Claim 3.4.1. In 𝑉 [𝐺], | (𝜅+∗ )𝑀𝐺 | ≥ 𝜅+.

Proof of claim. In V, fix a sequence of functions 〈ℎ𝛼〉𝛼<𝜅+ ⊆
∏

𝜉<𝜄 𝑓 (𝜉)+ that is increasing in the order
of domination modulo the bounded ideal on 𝜄; namely, for each 𝛼 < 𝛽 < 𝜅+, {𝜉 < 𝜄 | ℎ𝛼 (𝜉) ≥ ℎ𝛽 (𝜉)}
is bounded in 𝜄. Such a sequence exists because this reduced product is 𝜅+-directed. Note that in 𝑉 [𝐺],
〈 𝑗𝐺 (ℎ𝛼) (𝜄)〉𝛼<𝜅+ is an increasing sequence of length 𝜅+ consisting of predecessors of (𝜅+∗ )𝑀𝐺 . Thus,
| (𝜅+∗ )

𝑀𝐺 | ≥ 𝜅+𝑉 . But 𝜅+𝑉 = 𝜅+𝑉 [𝐺 ] since G is added by (F+, ⊆), which is a forcing of size 2 𝜄 < 𝜅. �

Let 𝐻 � HOD𝑀𝐺 . By (†) and (††) above, (𝜅+∗ )𝐻 = (𝜅+∗ )
𝑀𝐺 .

Let N denote the inner model of 𝑉 [𝐺] consisting of all sets hereditarily ordinal definable in the
structure 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉. The model N is a 𝜅-cc forcing extension of HOD by Lemma 3.3, and so
(𝜅+)HOD = (𝜅+)𝑁 .4 If the structure H were a subclass of N, then we could finally conclude that

(𝜅+)HOD = (𝜅+)𝑁 ≥ |(𝜅+∗ )
𝐻 | = | (𝜅+∗ )

𝑀𝐺 | ≥ 𝜅+.

The intuition that H should be a subclass of N comes from our experience with well-founded
ultrapowers. The structure 𝑀𝐺 is definable over the structure 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉, and so if 𝑀𝐺 were
well-founded, then any element of H, being ordinal definable in 𝑀𝐺 , would be ordinal definable in
〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉; this would yield 𝐻 ⊆ 𝑁 . If H is ill-founded, however, then ordinals of 𝑀𝐺 are not really
ordinals, so it is not clear that ordinal definable elements of 𝑀𝐺 are ordinal definable in 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉.
To handle the possibility that H is not well-founded, we take a different approach.

Instead, we consider the V-ultrafilter U on 𝜅 given by U � 𝑓∗(𝐺), where

𝑓∗(𝐺) := {𝐴 ∈ P (𝜅)𝑉 | 𝑓 −1 [𝐴] ∈ 𝐺},

4Here, and hereafter, HOD is in the sense of V.
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and the ultrapower

𝐻0 � Ult(HOD,U ∩ HOD)

of HOD by U ∩ HOD, using only functions in HOD.
An important observation is that U is ordinal definable in the structure 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉. This is

because 𝑓 ′∗ (𝐺) = U for any increasing continuous cofinal map 𝑓 ′ : 𝜄 → 𝜅. Therefore, 𝐻0 ⊆ 𝑁: The
point is that the structure 𝐻0 has for its universe the class of ordinal definable functions from 𝜅 into
HOD, which is a subclass of HOD and hence of N; the (possibly non-standard) membership and equality
predicates of 𝐻0 are ordinal definable over 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉 as they are definable from U ∩HOD, which
belongs to N.

Let 𝜅0 � [id]U . Then 𝜅0 is the unique 𝜅-like ordinal of 𝐻0, in the same sense that 𝜅∗ is the unique
𝜅-like ordinal of 𝑀𝐺 . In fact, there is an embedding 𝑘 : 𝐻0 → 𝐻 defined by

𝑘 ([𝑔]U ) � 𝑗𝐺 (𝑔) (𝜅∗)

such that 𝑘◦ 𝑗U = 𝑗𝐺�HOD, which one can easily check is well-defined and elementary. This embedding
restricts to an injective map from 𝜅0 to 𝜅∗, so that the 𝜅-likeness of 𝜅0 follows from that of 𝜅∗.

The argument from above shows that | (𝜅+0 )
𝐻0 | = | (𝜅+)HOD | in N. We also obtain the following:

Claim 3.4.2. 𝑁 |= 𝜅+ = | (𝜅+0 )
𝐻0 |.

Proof of claim. By Lemma 3.3, (𝜅+)𝑁 = (𝜅+)HOD. Thus, as 𝐻0, HOD ⊆ 𝑁 and | (𝜅+0 )
𝐻0 | = | (𝜅+)HOD |

in N, 𝑁 |= | (𝜅+0 )
𝐻0 | = | (𝜅+)HOD | = 𝜅+. �

Next, we work towards showing that the previous claim is incompatible with “(𝜅+)HOD < 𝜅+”. This
will yield the desired contradiction and as a result will lead to the proof of the theorem.

Let us begin with an auxiliary claim:
Claim 3.4.3. There is a <U -increasing sequence 〈𝑔𝛼 | 𝛼 < (𝜅+)HOD〉 ⊆

∏
𝛿<𝜅 (𝛿

+)𝑉 in HOD, such that
letting 𝛾𝛼 � [𝑔𝛼]U , 〈𝛾𝛼 | 𝛼 < (𝜅+)HOD〉 is an increasing cofinal sequence in (𝜅+0 )

𝐻0 .
Proof of claim. We note first that there is such a sequence in N. This is simply because N satisfies that
| (𝜅+0 )

𝐻0 | = (𝜅+)HOD = 𝜅+, and moreover by the proof of this fact, N satisfies that cf ((𝜅+0 )
𝐻0) = 𝜅+,

so in N, one can choose representatives for an increasing cofinal sequence in (𝜅+0 )
𝐻0 , which is simply

a <U -increasing sequence 〈𝑔𝛼 | 𝛼 < (𝜅+)HOD〉 ⊆
∏

𝛿<𝜅 (𝛿
+)𝑉 such that letting 𝛾𝛼 � [𝑔𝛼]U , 〈𝛾𝛼 |

𝛼 < (𝜅+)HOD〉 is cofinal in (𝜅+0 )
𝐻0 .

Now we pull the sequence down to HOD. Let P := (F+, ⊆) denote our poset. Since 𝜅 is a strong
limit cardinal (in V) and |P|𝑉 < 𝜅, there is some V-regular 𝛾 < 𝜅 such that P is 𝛾-cc. By Lemma 3.3,
the pair (HOD, 𝑁) has the 𝛾-uniform cover property, so there is Q ∈ HOD with 𝑁 |= “|Q| = 2𝛾” and
𝑁 = HOD[𝐹] where F is a HOD-generic filter for Q. Note that

(2𝛾)𝑁 ≤ (2𝛾)𝑉 [𝐺 ] < 𝜅,

because 𝜅 remains a strong limit cardinal in 𝑉 [𝐺].
Let 〈 �𝑔𝛼 | 𝛼 < (𝜅+)HOD〉 ∈ HOD be a sequence of Q-names for functions in HOD such that

( �𝑔𝛼)𝐹 = 𝑔𝛼. Since |Q| < 𝜅, there is a condition 𝑝 ∈ 𝐹 deciding the value of �𝑔𝛼 for unboundedly many
𝛼 < 𝜅+HOD; that is, for an unbounded set 𝑆 ⊆ (𝜅+)HOD in HOD, for each 𝛼 ∈ 𝑆, 𝑝 �P �𝑔𝛼 = �̌�𝛼. Now
〈𝑔𝛼 | 𝛼 ∈ 𝑆〉 ∈ HOD is as desired.5 �

Assume towards a contradiction that (𝜅+)HOD < 𝜅+. We would like to derive a uniform 𝐻0-ultrafilter
D on 𝜅+𝐻0

0 from the factor embedding 𝑘 : 𝐻0 → 𝐻. The next claim allows us to ensure that D will be
ordinal definable in the structure 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉:

5We thank the second referee for pointing that the proof of this claim that appeared in the first draft of this paper was garbled
to the point of incorrectness.
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Claim 3.4.4. 𝑘 [𝜅+𝐻0
0 ] has a least upper bound 𝜈 < (𝜅+∗ )

𝐻 in H.

Proof of claim. By Theorem 3.1, cf (𝜅+HOD) ≤ 𝜄. Let 𝜌 � cf(𝜅+HOD) and 𝐴 ⊆ 𝜅+HOD be a cofinal set
of ordertype 𝜌. Then 〈𝛾𝛼〉𝛼∈𝐴 is cofinal in (𝜅+0 )

𝐻0 , and hence, 〈𝑘 (𝛾𝛼)〉𝛼∈𝐴 is cofinal in 𝑘 [𝜅+𝐻0
0 ]. But

〈𝑘 (𝛾𝛼)〉𝛼∈𝐴 ∈ 𝑀𝐺 : Letting 〈𝑔∗
𝛼〉𝛼< 𝑗𝐺 (𝜅+HOD) = 𝑗𝐺 (〈𝑔𝛼〉𝛼<𝜅+HOD),

〈𝑘 (𝛾𝛼)〉𝛼∈𝐴 = 〈𝑔∗
𝛼 (𝜅∗)〉𝛼∈ 𝑗𝐺 [𝐴]

with 𝑗𝐺 [𝐴] ∈ 𝑀𝐺 . (As crit( 𝑗𝐺) = 𝜄, 𝐴 ∈ 𝑉 , and |𝐴| ≤ 𝜄.) Since 〈𝑘 (𝛾𝛼)〉𝛼∈𝐴 is a set of ordinals in 𝑀𝐺 ,
it has a least upper bound 𝜈, and since 〈𝑘 (𝛾𝛼)〉𝛼∈𝐴 is cofinal in 𝑘 [𝜅+𝐻0

0 ], 𝜈 is the least upper bound of
𝑘 [𝜅+𝐻0

0 ].
Note that 𝜈 < (𝜅+∗ )

𝐻 : First, by our comments after Claim 3.4.1, (𝜅+∗ )𝐻 = (𝜅+∗ )
𝑀𝐺 , so (𝜅+∗ )

𝐻 is
regular in 𝑀𝐺 . Second, the previous argument shows that cf𝑀𝐺 (𝜈) ≤ 𝜄, which is less than 𝜅. Therefore,
𝜈 < (𝜅+∗ )

𝐻 . �

Let D be the 𝐻0-ultrafilter on (𝜅+0 )
𝐻0 derived from k using 𝜈; namely,

D = {𝑆 ∈ P𝐻0 ((𝜅+0 )
𝐻0) | 𝜈 ∈ 𝑘 (𝑆)}.

Let 𝐻1 � Ult(𝐻0,D), again using only functions in 𝐻0. Let 𝑖 : 𝐻0 → 𝐻1 be the ultrapower embedding,
and let �̄� � [id]D. Then,

�̄� = sup 𝑖[𝜅+𝐻0
0 ] < 𝑖(𝜅+𝐻0

0 ).

Note that D is ordinal definable in the structure 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉, and hence, 𝐻1 ⊆ 𝑁 , by the same
argument as for 𝐻0. Since the ultrapower embedding 𝑖 : 𝐻0 → 𝐻1 is definable over 〈𝑉 [𝐺], 𝑉, 𝐺, ∈〉
from ordinal parameters,

𝑖 � 𝜅+𝐻0
0 ∈ 𝑁.

The next claim yields the desired contradiction with Claim 3.4.2:

Claim 3.4.5. 𝑁 |= | (𝜅+0 )
𝐻0 | ≤ 𝜅.

Proof of claim. Since 𝑖[𝜅+𝐻0
0 ] ⊆ �̄�, it follows that |𝜅+𝐻0

0 |𝑁 ≤ |�̄� |𝑁 . Also, �̄� < 𝑖(𝜅+𝐻0
0 ) = 𝑖(𝜅0)

+𝐻1 . Since
𝐻1 ⊆ 𝑁 , we have the following inequalities:

|𝜅+𝐻0
0 |𝑁 ≤ |�̄� |𝑁 ≤ |𝑖(𝜅0) |

𝑁 = 𝜅.

The latter equality being true in that 𝑖(𝜅0) is 𝜅-like, as it embeds into 𝜅∗. �

Since we get a contradiction, our initial assumption that “(𝜅+)HOD < 𝜅+” was false, and this proves
the theorem. �

Let us now prove our second compactness theorem. This uses a slightly different technique (due to
Casey–Goldberg) to prove the theorem for an arbitrary singular cardinal of uncountable cofinality; a
direct adaptation of the argument from Theorem 3.4 would only prove the result for strong limit cardinals.

Theorem 3.5. If 𝜅 is a singular cardinal of uncountable cofinality and {𝛿 < 𝜅 | cfHOD (𝛿) < 𝛿} is
stationary in 𝜅, then cfHOD(𝜅) < 𝜅.

Proof. Assume towards a contradiction that 𝜅 is a regular cardinal in HOD. For the rest of the proof, F
denotes the closed unbounded filter on 𝜅.
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We claim that in HOD, the filter F̄ = F ∩ HOD is weakly normal in the sense that every regressive
function 𝑓 : 𝐴 → 𝜅 in HOD defined on a set 𝐴 ∈ F̄ admits some 𝛾 < 𝜅 such that {𝛼 ∈ 𝐴 | 𝑓 (𝛼) <
𝛾} ∈ F̄ .6 Fix 𝑓 ∈ HOD, and assume towards a contradiction that no such 𝛾 exists.

By Fodor’s Lemma, it is not hard to see that any regressive function defined on a stationary subset of
𝜅 is bounded on a stationary set. (This is the argument used in Claim 3.1.1.) Therefore, let 𝛾0 be least
such that the function 𝑓 : 𝐴 → 𝜅 is bounded by 𝛾0 on a stationary subset of A. By our assumption, the
set 𝐴1 of ordinals 𝛼 ∈ 𝐴 such that 𝑓 (𝛼) ≥ 𝛾0 is stationary as well. Let 𝛾1 be least such that 𝑓 � 𝐴1
is bounded below 𝛾1 on a stationary set. Continuing this way, we can produce a continuous sequence
〈𝛾𝑖 | 𝑖 < 𝜅〉 such that for all 𝑖 < 𝛿,

{𝛼 ∈ 𝐴 | 𝑓 (𝛼) ∈ [𝛾𝑖 , 𝛾𝑖+1)}

is stationary. We use our assumption that 𝜅 is regular in HOD to ensure that the process can be continued
at limit ordinals 𝑖 < 𝜅. (Note that the entire construction is internal to HOD.) But since cf (𝜅) < 𝜅, there
cannot be 𝜅-many disjoint stationary subsets of 𝜅.

A similar argument shows that if 𝛾 < 𝜅 is regular in HOD, greater than cf(𝜅), and of a different
V-cofinality from 𝜅, then F̄ is 𝛾-indecomposable in HOD in the following sense: Working in HOD, any
function 𝑓 : 𝐵 → 𝛾 with 𝐵 ∈ F̄ is bounded below 𝛾 on a set in F̄ .

Until further notice, let us work in HOD and denote

𝑆 := {𝛿 < 𝜅 | cf(𝛿) < 𝛿}.

Since 𝑆 ∈ F̄+, there is an ultrafilter U extending

F̄ ∪ {𝑆}.

Since F̄ is weakly normal, U is weakly normal, and since 𝑆 ∈ 𝑈, U concentrates on singular cardinals.
Therefore, by [Ket72, Theorem 1.3], U is (𝜈, 𝜅)-regular for some 𝜈 < 𝜅.7
Claim 3.5.1. U is 𝛾-decomposable for every regular cardinal in (𝜈, 𝜅).
Proof of claim. Let 〈𝐴𝛼〉𝛼<𝜅 be a witness for “𝑈 is (𝜈, 𝜅)-regular”. Namely, this is a collection of U-
measure one sets such that

⋂
𝛼∈𝐼 𝐴𝛼 = ∅ for all 𝐼 ⊆ 𝜅 with |𝐼 | = 𝜈. Let 𝛾 ∈ (𝜈, 𝜅) be regular, and

define a function 𝑓 : 𝜅 → 𝛾 as 𝑓 (𝛼) := sup{𝛽 < 𝛾 | 𝛼 ∈ 𝐴𝛽}. The fact that 〈𝐴𝛼〉𝛼<𝜅 witnesses
(𝜈, 𝜅)-regularity ensures that f is well-defined. Note that f cannot be bounded below 𝛾 on a set in U:
Otherwise, 𝐴 := {𝛼 < 𝜅 | 𝑓 (𝛼) < 𝛽} ∈ 𝑈, for some 𝛽 < 𝛾, but by definition, 𝐴 ∩ 𝐴𝛽 = ∅. Therefore, U
is 𝛾-decomposable. �

Now we return to V. Since F̄ is 𝛾-indecomposable in HOD for all ordinals 𝛾 that are regular in HOD,
greater than cf (𝜅), and of different V-cofinality from 𝜅, U is 𝛾-indecomposable for such ordinals.

It follows that for all ordinals 𝛾 ∈ (max{𝜈, cf (𝜅)}, 𝜅), if 𝛾 is regular in HOD, then cf (𝛾) = cf (𝜅);
otherwise, the previous paragraph implies U is 𝛾-indecomposable while the paragraph preceding it
implies U is 𝛾-decomposable. But 𝜅 is a limit of V-regular cardinals, and these are certainly regular in
HOD and do not have the same cofinality as 𝜅. This is a contradiction. �

3.1. Optimality

In this section, we discuss the optimality of Theorems 3.4 and 3.5. Some of our arguments require
rather technical Prikry-type forcings. Instead of elaborating on their precise definitions (which are fairly

6Note that this is a stronger form of normality than the one proved in Claim 3.1.1.
7Here, one cannot directly use Ketonen’s result since U is not countably complete. Ketonen’s result refers to the ‘first function’

of an ultrafilter, which in the case of a weakly normal ultrafilter is the identity. As Ketonen remarks after the proof of Theorem
1.3, the result only requires the existence of a first function, not the countable completeness of U. Since our ultrafilter does have
a first function – namely, the identity – the required result is true.
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long), we give appropriate references. Let us begin with Theorem 3.4. The next shows that the cofinality
assumption is necessary in Theorem 3.4:

Proposition 3.6. Assume that 𝜅 is a 𝜅+-supercompact cardinal. Then, there is a generic extension where

1. 𝜅 is a strong limit cardinal with cf (𝜅) = 𝜔,
2. 𝛿+HOD = 𝛿+ for all 𝛿 < 𝜅,
3. and (𝜅+HOD) < 𝜅+.

Proof. By forcing with McAloon iteration, we may assume that “𝑉 = HOD” holds (see p.5). Let U
be a 𝜅-complete, normal and fine ultrafilter over P𝜅 (𝜅

+). Let us force with the Supercompact Prikry
forcing with respect to U ([Git10, §1]). This forcing is easily shown to be cone-homogeneous so that
HOD𝑉 [𝐺 ] = 𝑉 holds for all V-generic 𝐺 ⊆ P. This forcing does not introduce bounded subsets of 𝜅 so,
in 𝑉 [𝐺], 𝑉 [𝐺]𝜅 = 𝑉𝜅 . Also, 𝜅 becomes a strong limit cardinal with cf (𝜅) = 𝜔. This gives (1) and (2)
above. Finally, in 𝑉 [𝐺], (𝜅+)𝑉 is collapsed to 𝜅, and hence, (𝜅+)HOD𝑉 [𝐺 ]

= (𝜅+)𝑉 < 𝜅+. �

The hypothesis ‘{𝛿 < 𝜅 | 𝛿+HOD = 𝛿+} is stationary’ is also necessary:

Theorem 3.7. Suppose that 𝜅 is a 𝜅+2-supercompact cardinal such that 2𝜅+𝑛 = 𝜅𝑛+1 for 𝑛 < 𝜔. Then,
for each regular uncountable cardinal 𝜇 < 𝜅, there is a generic extension where

1. 𝜅 is a strong limit cardinal with cofinality 𝜇.
2. 𝜅+HOD < 𝜅+.
3. There is a club 𝐶 ⊆ 𝜅 with otp(𝐶) = 𝜇 such that

𝛿+HOD = 𝛿+ for all cardinals 𝛿 < 𝜅 not in acc(𝐶).

Proof. By preliminarily forcing with McAloon’s iteration, we may assume that 𝑉 ⊆ HOD𝑉 Q for any
set-sized forcing Q. If this iteration is started at a sufficiently large regular cardinal, our hypothesis on
𝜅 are maintained.

Suppose that 𝑗 : 𝑉 → 𝑀 is a 𝜅+2-supercompact embedding. Let 𝜇 < 𝜅 be a regular cardinal and
let u be the (𝜅, 𝜅+)-measure sequence of length 𝜇 derived from j. Namely, 𝑢 = 〈𝑢𝛼 | 𝛼 < 𝜇〉, where
𝑢0 � 𝑗“𝜅+ and 𝑢𝛼 � {𝑋 ⊆ 𝑉𝜅 | 𝑢 �𝛼 ∈ 𝑗 (𝑋)} for 𝛼 > 0. Notice that M contains every (𝜅, 𝜅+)-measure
sequence of length less than 𝜇 so u above indeed exists. In addition, by the argument in [CFG15, Lemma
3.2], u belongs to U sup

∞ .8
Let Rsup

𝑢 be the supercompact Radin forcing defined from u [CFG15]. Let 𝐺 ⊆ R
sup
𝑢 a V-generic

filter. Combining [CFG15, Corollary 4.2] with our forcing preparation,

𝑉 ⊆ HOD𝑉 [𝐺 ] ⊆ 𝑉 [𝐺𝜙],

where 𝐺𝜙 is a V-generic for a plain Radin forcing R𝑢 – hence, for a cardinal-preserving poset. In
particular, the following inequalities hold:

(𝜅+)𝑉 ≤ (𝜅+)HOD𝑉 [𝐺 ]

≤ (𝜅+)𝑉 [𝐺𝜙 ] = (𝜅+)𝑉 < (𝜅+)𝑉 [𝐺 ] .

The above yields item (2) of the theorem.
Let 〈𝑤𝛼 | 𝛼 < 𝜇〉 be an injective enumeration of {𝑤 | 𝑤appears in𝑝 ∈ 𝐺}. Denote 𝜅𝑤𝛼 �

min(Ord \𝑤𝛼 (0)) and 𝜆𝑤𝛼 � otp(𝑤𝛼 (0)). The increasing enumeration of {𝜅𝑤𝛼 | 𝛼 < 𝜇} yields a
club 𝐶 ⊆ 𝜅 of order-type 𝜇 and by forcing below an appropriate condition 𝜇 remains regular in 𝑉 [𝐺].
In addition, standard arguments show that 𝜅 remains a strong limit in 𝑉 [𝐺] (see [CFG15, Lemma

8Our assumption that ‘2𝜅+𝑛 = 𝜅+𝑛+1 holds for all 𝑛 < 𝜔’ is used precisely at this stage. A close inspection of the proof of
[CFG15, Lemma 3.2] indicates that less instances of the GCH suffice to run the argument. However, we opted for this slightly
stronger assumption for the sake of a more neat presentation.
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3.10(6)]). These two observations combined yield item (1) of the theorem. Finally, [CFG15, Lemma
3.10(8)] shows that the only V-cardinals ≤𝜅 that survive after passing to 𝑉 [𝐺] are those outside

⋃
𝛼∈Lim∩𝜇 (𝜅𝑤𝛼 , 𝜆𝑤𝛼 ] .

Thus, for every 𝑉 [𝐺]-cardinal 𝛿 ∉ acc(𝐶), we have that (𝛿+)𝑉 does not belong to the above union and
thus (𝛿+)𝑉 = (𝛿+)𝑉 [𝐺 ] . By our previous observations, this yields (𝛿+)HOD𝑉 [𝐺 ]

= (𝛿+)𝑉 = (𝛿+)𝑉 [𝐺 ] ,
as claimed. �

Remark 3.8. The exact consistency strength of the configuration described above is unclear to us. Since
the configuration violates the weak covering theorem for K [JS13, MSS97], one obtains the lower bound
of a Woodin cardinal, but presumably one can obtain a stronger lower bound.

The following theorem shows that the assumptions of Theorem 3.5 are provably optimal. Starting
with appropriate large cardinal assumptions, it is consistent for {𝛿 < 𝜅 | cfHOD (𝛿) < 𝛿} to be non-
stationary and 𝜅 to be inaccessible in HOD. This is a special case of a recent theorem of the authors
[GOP24, Theorem 4.6] which utilizes the Supercompact Radin forcing of Theorem 3.7. We state the
theorem without proof:

Theorem 3.9. Suppose that 𝛿 is a supercompact cardinal and the GCH holds. Then, there is a generic
extension where 𝛿 remains supercompact and there is a club 𝐷 ⊆ 𝛿 consisting of cardinals 𝜅 for which

HOD |= “𝜅 is regular”.

In particular, every 𝜆 ∈ 𝐸 𝜅
𝜔1 ∩ acc(𝐷) is a singular of uncountable cofinality for which {𝜃 < 𝜆 |

cfHOD(𝜃) = 𝜃} contains a club and cfHOD(𝜆) = 𝜆.

To obtain the above configuration, it would be natural to utilize Ben-Neria-Unger’s method from
[BNU17, Theorem 1.3]. However, an apparent drawback of this alternative approach is that it does
not seem amenable to preserving large cardinals at the level of strong compactness. This limitation is
primarily caused by the club-shooting poset used after the nonstationary support iteration of Prikry-type
forcings. It turns out that the preservation of supercompacts becomes interesting in light of the HOD
dichotomy theorem proved in [Gol23].

3.2. On 𝜔-club amenability

The first author showed that many of the known results on HOD – for example, the HOD dichotomy
theorem – can actually proved for an arbitrary inner model that is 𝜔-club amenable [Gol23].

A set 𝐶 ⊆ 𝛿 is an 𝜔-club in 𝛿 (for cf (𝛿) ≥ 𝜔1) if it is unbounded (in 𝛿) and whenever S is a countable
subset of C, sup(𝑆) ∈ 𝐶. The 𝜔-club filter on 𝛿, denoted by 𝒞𝛿 , is the collection of all subsets of 𝛿 that
contain an 𝜔-club.

Definition 3.10. An inner model M is 𝜔-club amenable if 𝒞𝛿 ∩ 𝑀 ∈ 𝑀 for all ordinals 𝛿 with
uncountable cofinality.

Not much is known about the size of HOD that does not already hold of any 𝜔-club amenable model,
so it is natural to seek properties that are more specific to HOD. In this section, we show that Theorem
3.4 does not generalize to an arbitrary 𝜔-club amenable model.

Let �𝒞 denote the proper class {(𝛿, 𝑆) | cf (𝛿) ≥ 𝜔1, 𝑆 ∈ 𝒞𝛿}. If one builds the constructible universe
relative to the sequence �𝒞, then one obtains an 𝜔-club amenable model. More generally,

Lemma 3.11. For any class A, 𝑀 = 𝐿 [𝐴, �𝒞] is 𝜔-club amenable.

To construct 𝜔-club amenable models that do not satisfy the conclusion of Theorem 3.4, we need a
mild large cardinal hypothesis. Namely, we will assume that for all sets X, X-sword exists. Let us now
define this hypothesis precisely.
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If X is a set of rank 𝜆, we say that X-sword exists if there is a coarse X-sword mouse, which is an
iterable transitive structure (𝑀, �𝑈, 𝑈, 𝑊) with the following properties:

◦ M is an transitive model of ZFC− with largest cardinal 𝜅.
◦ 𝑋 ∩ 𝑀 ∈ 𝑀 and �𝑈 ∈ 𝑀 .
◦ 𝑀 � �𝑈 is a coherent sequence of normal ultrafilters of length 𝜅.
◦ 𝑜

�𝑈 (𝛿) = 0 whenever 𝛿 ≤ 𝜆

◦ 𝑜
�𝑈 (𝛿) ≤ 1 whenever 𝜆 < 𝛿 < 𝜅.

◦ W is a weakly amenable M-normal M-ultrafilter on 𝜅
◦ 𝑗𝑀𝑊 ( �𝑈) � 𝜅 + 1 = �𝑈⌢𝑈.

The notation for coherent sequences comes from Mitchell’s handbook article [Mit09]. Things are a bit
simpler here since all measures on �𝑈 have order 0. One may therefore think of �𝑈 as a partial function
with 𝑜

�𝑈 (𝛼) = 0 if �𝑈 is not defined on 𝛼, and 𝑜
�𝑈 (𝛼) = 1 if it is.

We emphasize that the notion of a coarse X-sword mouse is defined for an arbitrary set X, not
necessarily a set of ordinals, and this will be relevant below.

The hypothesis that X-sword exists for every set X follows from the existence of a proper class of
measurable cardinals of Mitchell order 2. To see this, assume W is a measure on 𝜅 of order 1 and
�𝑈 is a sequence of measures of order 0 defined on all measurable cardinals between 𝛾 and 𝜅. Let
𝑈 = [𝛼 ↦→ 𝑈𝛼]𝑊 . Then (𝐻𝜅+ , �𝑈, 𝑈, 𝑊) is a coarse X-sword mouse for every 𝑋 ∈ 𝑉𝛾 .

In terms of consistency strength, the hypothesis that X-sword exists for every set X is a bit weaker
than the existence of a single measurable cardinal of Mitchell order 2: it is not hard to show that it holds
in 𝑉𝜅 if 𝜅 is a measurable cardinal of Mitchell order 2.

Suppose M = (𝑀, �𝑈, 𝑈, 𝑊) is a coarse X-sword mouse and H is transitive with a Σ1-elementary
𝜋 : H → M such that 𝑋 ∩ 𝑀 ∈ ran(𝜋). Then H is a coarse 𝜋−1 (𝑋 ∩ 𝑀)-sword mouse. Similarly, if
M is a coarse X-sword mouse and there is a cofinal Σ0-elementary 𝜋 : M → N , then N is a coarse
𝜋(𝑋 ∩ 𝑀)-sword mouse if it is iterable. These facts are straightforward, except that the statement that
a structure M satisfies ZFC− may seem too complicated to be preserved under such weak forms of
elementarity. This is not really an issue, however, since the fact that M satisfies ZFC− follows from the
fact that M satisfies Σ0-Separation and the Well-Ordering Theorem combined with the weak amenability
of 𝑊, which yields that 𝑀 = 𝐻 (𝜅+)Ult0 (𝑀,𝑊 ) , which is a model of ZFC−.

The following lemmas, suggested by one of the anonymous referees, vastly simplify the proof of
Lemma 3.14 below.

Lemma 3.12. Suppose X is a set and M = (𝑀, �𝑈, 𝑈, 𝑊) is a coarse X-sword mouse such that 𝑜(𝑀) is
as small as possible. Then cf (𝑜(𝑀)) = 𝜔.

Proof. Let 𝜃 > 𝜆 be a sufficiently large regular cardinal, and let H be a countable transitive set
admitting an elementary embedding 𝜋 : 𝐻 → 𝐻 (𝜃) with {𝑋,M} ⊆ ran(𝜋). Let �̄� = 𝜋−1 (𝑋) and
M̄ = 𝜋−1 (M), and note that M̄ is countable and 𝜋 restricts to an elementary embedding 𝑖 : M̄ → M.
We claim 𝑖[𝑜(�̄�)] is cofinal in 𝑜(𝑀), which will establish the lemma. Suppose not, and let 𝑁 ⊆ 𝑀
be the transitive closure of 𝑖[�̄�]. Then 𝑜(𝑁) < 𝑜(𝑀). To get a contradiction, it suffices to show that
N = (𝑁, �𝑈, 𝑈 ∩ 𝑁, 𝑊 ∩ 𝑁) is a coarse X-sword mouse. Everything except iterability follows from the
fact that 𝑖 : M̄ → N is a cofinal Σ0-elementary embedding. The iterability of N follows from that of
M since any iterate of N admits a Σ0-elementary embedding into an iterate of M. �

Lemma 3.13. Suppose X is a set and M = (𝑀, �𝑈, 𝑈, 𝑊) is a coarse X-sword mouse with largest
cardinal 𝜅. Assume the following hold:

◦ 𝑀 = HullMΣ1
(𝛼 ∪ {𝑝}) for some 𝑝 ∈ 𝑀 and 𝛼 ≥ rank(𝑋).

◦ 𝑀 =
⋃

𝜉<𝑜 (𝑀 ) 𝑀𝜉 , where 〈𝑀𝜉 〉𝜉<𝑜 (𝑀 ) is an increasing sequence of transitive sets in M that contain
𝑉𝑀
𝜅 .

Then every ordinal 𝛿 > 𝛼 that is regular in M satisfies cf (𝛿) = cf (𝑜(𝑀)).
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Proof. For 𝜉 < 𝑜(𝑀), let M𝜉 = (𝑀𝜉 , �𝑈, 𝑈 ∩ 𝑀𝜉 , 𝑊 ∩ 𝑀𝜉 ) and let 𝐻𝜉 = HullM𝜉

Σ1
(𝛼 ∪ {𝑝}). Note

that for all 𝜉 < 𝑜(𝑀), 𝐻𝜉 ∈ 𝑀 and 𝑀 � |𝐻𝜉 | ≤ 𝛼; also for 𝜉 ≤ 𝜉 ′ < 𝑜(𝑀), 𝐻𝜉 ⊆ 𝐻𝜉 ′ . Moreover, for
any Σ1-formula 𝜑(𝑥) and any 𝑎 ∈ 𝑀 , M � 𝜑(𝑎) if and only if M𝜉 � 𝜑(𝑎) for all sufficiently large 𝜉 if
and only if M𝜉 � 𝜑(𝑎) for some 𝜉. It follows that

𝑀 = HullMΣ1
(𝛼 ∪ {𝑝}) =

⋃

𝜉<𝑜 (𝑀 )

𝐻𝜉 .

Now suppose 𝛿 > 𝛼 is regular in M. For 𝜉 < 𝑜(𝑀), let 𝛽𝜉 = sup(𝛿 ∩ 𝐻𝜉 ). Then 𝛽𝜉 < 𝛿 since 𝛿 is
regular in M and 𝑀 � |𝐻𝜉 | ≤ 𝛼 < 𝛿. Since 〈𝛽𝜉 〉𝜉<𝑜 (𝑀 ) is weakly increasing and cofinal in 𝛿, it follows
that cf(𝛿) = cf(𝑜(𝑀)). �

Lemma 3.14. Assume that for all sets X, X-sword exists. Then for any cardinal 𝜆 and any set 𝐴 ⊆ 𝜆,
𝐿 [𝐴, �𝒞] does not correctly compute 𝜆+.

Proof. Fix a set 𝐴 ⊆ 𝜆. Using a pairing function on 𝜆, it is not hard to construct a family X of subsets
of 𝜆 such that for any class E, 𝐿 [𝑋, 𝐸] = 𝐿 [𝐴,𝒞 � (𝜆 + 1), 𝐸]. In particular,

𝐿 [𝑋, �𝒞 � (𝜆,∞)] = 𝐿 [𝐴, �𝒞],

where (𝜆,∞) = {𝜉 ∈ Ord : 𝜉 > 𝜆}.
Let M = (𝑀, �𝑈, 𝑈, 𝑊) be a coarse X-sword mouse such that 𝑜(𝑀) is as small as possible. Note that

letting �̄� = 𝐿𝑜 (𝑀 ) [𝑋, �𝑈, 𝑈, 𝑊], the structure M̄ = (�̄�, �𝑈∩ �̄�, 𝑈∩ �̄�, 𝑊∩ �̄�) is also a coarse X-sword
mouse, and so we may assume M = M̄. This guarantees that 𝑀 =

⋃
𝜉<𝑜 (𝑀 ) 𝑀𝜉 , where 〈𝑀𝜉 〉𝜉<𝑜 (𝑀 )

is an increasing sequence of transitive sets in M that contain 𝑉𝑀
𝜅 : take 𝑀𝜉 = 𝐿𝛾+𝜉 [𝑋, �𝑈, 𝑈, 𝑊] where

𝛾 < 𝑜(𝑀) is least such that 𝑉𝑀
𝜅 ⊆ 𝐿𝛾 [𝑋, �𝑈, 𝑈, 𝑊]. Similarly, we may assume that

M = HullMΣ1
(𝜆 ∪ {𝑋 ∩ 𝑀})

since the transitive collapse of HullMΣ1
(𝜆 ∪ {𝑋 ∩ 𝑀}) is again a coarse X-sword mouse. Thus, we may

ensure that M satisfies the hypotheses of Lemmas 3.12 and 3.13. In particular, every M-regular cardinal
𝛿 > 𝜆 has countable cofinality in 𝑉.

We claim that 𝐿 [𝐴, �𝒞] is contained in a proper initial segment N of a proper class iterate of M.
Granting this, we have 𝜆+𝐿 [𝐴, �𝒞] ≤ 𝜆+𝑁 = 𝜆+𝑀 < 𝜆+. (The final inequality comes from the fact that
𝜆+𝑀 has countable cofinality in V.) Thus, our claim suffices to finish the proof.

The idea is to iterateM to a model N with the following property. For each ordinal 𝛿 > 𝜆, 𝑜N (𝛿) > 0
if and only if 𝛿 is regular in N and has uncountable cofinality in V; moreover, in this case, the unique
measure on 𝛿 on the sequence of N is equal to 𝒞𝛿 ∩N .

The iteration is defined by selecting at each stage the first total measure on the sequence of the current
iterate that lies on an ordinal of countable cofinality. More formally, we define an iterated ultrapower

〈(M𝛼, 𝑈𝛼) | 𝛼 ∈ Ord〉

of M by setting 𝑈𝛼 equal to the first measure on the sequence �𝑈M𝛼⌢𝑈M𝛼 that lies on an ordinal 𝜅𝛼
of countable cofinality in V; if there is no such measure, set 𝑈𝛼 equal to the top measure 𝑊M𝛼 . For
𝛼 ≤ 𝛽 ∈ Ord, let

𝑗𝛼𝛽 : M𝛼 → M𝛽

denote the iterated ultrapower embedding.
For any ordinal 𝜉, the structure 𝑀𝛼 ∩𝑉𝜉 is eventually constant, and therefore, we can define an inner

model N of ZFC such that for all ordinals 𝜉, 𝑁 ∩𝑉𝜉 is equal to the eventual value of 𝑀𝛼∩𝑉𝜉 . Similarly,
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we can define a sequence of N-ultrafilters �𝑈N : Ord → 𝑁 by setting �𝑈N (𝛿) equal to the eventual value
of 𝑈M𝛼 (𝛿). We let N = (𝑁, �𝑈N ).

By the definition of the iteration, it is clear that if for some ordinal 𝛿, 𝑜N (𝛿) > 0, then 𝛿 has
uncountable cofinality.

We claim that conversely, if 𝛿 > 𝜆 is a regular cardinal of N that has uncountable cofinality in V,
then 𝑜N (𝛿) = 1 and �𝑈N (𝛿) = 𝒞𝛿 ∩ 𝑁 . Since the models M𝛼 converge to N , to prove the claim, it
suffices to show, by induction on 𝛼 ∈ Ord, that if 𝛿 > 𝜆 is a regular cardinal of 𝑀𝛼 that has uncountable
cofinality in V, then either 𝑜

�𝑈M𝛼
(𝛿) = 1 and �𝑈M𝛼 (𝛿) = 𝒞𝛿 ∩ 𝑀𝛼 or 𝛿 is the largest cardinal of M𝛼

and 𝑈M𝛼 = 𝒞𝛿 ∩ 𝑀𝛼.
For the case that 𝛼 = 0, note that our choice of M0 = M, we have M = HullMΣ1

(𝜆 ∪ {𝑋 ∩ 𝑀}),
and so by the referee’s Lemmas 3.12 and 3.13, if 𝛿 > 𝜆 is a regular cardinal of M, then 𝛿 has countable
cofinality in V. Thus, the base case holds vacuously.

Now assume the induction hypothesis holds for M𝛼, and we claim it is true for M𝛼+1. Suppose
therefore that 𝛿 > 𝜆 is a regular cardinal of 𝑀𝛼+1. Note that M𝛼 |𝜅𝛼 = M𝛼+1 |𝜅𝛼, so for ordinals 𝛿 in
the open interval (𝜆, 𝜅𝛼), the induction hypothesis for M𝛼 easily implies the induction hypothesis for
M𝛼+1. A slightly more complicated variation of this argument establishes the induction hypothesis for
M𝛼+1 in the case that 𝛿 = 𝜅𝛼: by the definition of the iteration, either 𝜅𝛼 has countable cofinality, in
which case we have nothing to show, or else 𝑈𝛼 = 𝑊M𝛼 , in which case the fact that 𝑈M𝛼 = �𝑈M𝛼+1 (𝜅𝛼)
implies the induction hypothesis holds for M𝛼+1 with respect to 𝛿 = 𝜅𝛼.

To finish the successor case, we show that if 𝛿 > 𝜅𝛼 is regular in 𝑀𝛼+1, then cf (𝛿) = 𝜔, so the
induction hypothesis holds vacuously in the interval (𝜅𝛼, 𝑜(𝑀𝛼+1)). Since 𝑀𝛼+1 is generated by the
critical points of the iteration along with the range of 𝑗0𝛼+1, M𝛼+1 = HullM𝛼+1

Σ1
((𝜅𝛼 + 1) ∪ {𝑋 ∩ 𝑀}).

Since there is a cofinal embedding from M to 𝑀𝛼+1, Lemma 3.12 implies that cf (𝑜(𝑀𝛼+1)) = 𝜔.
Therefore, we can apply Lemma 3.13 to obtain that cf (𝛿) = 𝜔, as desired.

Finally, we consider the limit case. Suppose 𝛼 is a limit ordinal and 𝛿 > 𝜆 is a regular cardinal of
𝑀𝛼. Let 𝛾 = sup𝛽<𝛼 𝜅𝛽 . As in the previous case, if 𝛿 < 𝛾, the desired conclusion is immediate from the
induction hypothesis. Moreover, since M𝛼 = HullM𝛼

Σ1
(𝛾 ∪ {𝑋 ∩ 𝑀}), if 𝛿 > 𝛾, then by Lemma 3.13,

cf (𝛿) = 𝜔, and there is nothing to prove.
It therefore suffices to consider the case that 𝛿 = 𝛾.
For each 𝛽 < 𝛼, let 𝛿𝛽 = 𝑗−1

𝛽𝛼 [𝛿]. Note that 𝛿𝛽 ≥ 𝜅𝛽 for all 𝛽 < 𝛼. Moreover, for sufficiently large
𝛽 < 𝛼, 𝑗𝛽𝛼 (𝛿𝛽) = 𝛿, and therefore for any 𝛽′ ≥ 𝛽 with 𝛽′ < 𝛼, 𝑗𝛽𝛽′ (𝛿𝛽) = 𝛿𝛽′ .

Assume first that for sufficiently large 𝛽 < 𝛼, 𝛿𝛽 ≠ 𝜅𝛽 . Then in fact 𝛿𝛽 > 𝜅𝛽 , and so by Lemma
3.13, cf (𝛿𝛽) = 𝜔. Moreover, it follows that for sufficiently large 𝛽 < 𝛼, 𝑗𝛽𝛼 is continuous at 𝛿𝛽 and
𝑗𝛽𝛼 (𝛿𝛽) = 𝛿, so 𝛿 has countable cofinality as well, and we are done.

To finish the induction, assume instead that 𝜅𝛽 = 𝛿𝛽 for cofinally many 𝛽 < 𝛼. In this case, the
set 𝐶 = {𝜅𝛽 : 𝛽 < 𝛼 and 𝑗𝛽𝛼 (𝜅𝛽) = 𝛿} is unbounded in 𝛿. Moreover, it is 𝜔-closed in 𝛿, since if
〈𝛽𝑛〉𝑛<𝜔 is an increasing sequence of ordinals with 𝜅𝛽𝑛 ∈ 𝐶 and 𝛽 is their supremum, then we claim
𝜅𝛽 = sup𝑛<𝜔 𝜅𝛽𝑛 . Clearly, 𝜅𝛽 ≥ sup𝑛<𝜔 𝜅𝛽𝑛 , and the reverse inequality follows from the choice of 𝜅𝛽 in
our construction of the iterated ultrapower, noting that sup𝑛<𝜔 𝜅𝛽𝑛 has countable cofinality and carries
a measure on the M𝛽-sequence. The latter fact uses that sup𝑛<𝜔 𝜅𝛽𝑛 = 𝑗𝛽0𝛽 (𝜅𝛽0 ).

Similarly, 𝑜M𝛼 (𝛿) ≥ 1. Let 𝑍 = �𝑈M𝛼 (𝛿) if 𝛿 is less than the largest cardinal of M𝛼, and let
𝑍 = 𝑈M𝛼 otherwise. The standard argument (going back to Kunen) shows that for any 𝐴 ∈ 𝑃(𝛿) ∩ 𝑀𝛼,
𝐴 ∈ 𝑍 if and only if 𝐶 \ 𝜂 ⊆ 𝐴 for some 𝜂 < 𝛿. Therefore, if 𝛿 has uncountable cofinality, then
𝑍 = 𝒞𝛿 ∩M𝛼.

This completes our transfinite induction and establishes that if 𝛿 > 𝜆 is a regular cardinal of N that
has uncountable cofinality in V, then 𝑜N (𝛿) = 1 and �𝑈N (𝛿) = 𝒞𝛿 ∩ 𝑁 .

From this, it follows that 𝐿 [𝐴, �𝒞] is a definable inner model of N , since in fact 𝐿 [𝐴, �𝒞] = 𝐿 [𝑋, �𝒞 �
(𝜆,∞)] is definable over N using the parameter 𝑋 ∩ 𝑁 and the sequence �𝑈N . As explained above, it
follows that 𝜆+𝐿 [𝐴, �𝒞] < 𝜆+, which completes the proof. �

Putting everything together, we arrive at the following corollary:
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Corollary 3.15. Suppose that for every set X, X-sword exists. Then for every cardinal 𝜆, there is an
𝜔-club amenable inner model M that is correct about cardinals and cofinalities ≤ 𝜆 while (𝜆+)𝑀 < 𝜆+.

Proof. Fix a sequence 〈𝑎𝛼〉𝛼≤𝜆 such that for every limit ordinal 𝛼 ≤ 𝜆, 𝑎𝛼 is a cofinal subset of 𝛼
ordertype cf (𝛼). This sequence can be coded by a set 𝐴 ⊆ 𝜆, and by Lemma 3.14, the inner model
𝑀 = 𝐿 [𝐴, �𝒞] is an 𝜔-club amenable model such that 𝜆+𝑀 < 𝜆+. �

4. Open questions and remarks

The following is a configuration not handled by our arguments:

Question 1. Suppose that 𝜅 is a strong limit singular cardinal of uncountable cofinality and that
{𝛿 < 𝜅 | (𝛿++)HOD ≥ 𝛿+} is stationary. Is it true that (𝜅++)HOD ≥ 𝜅+?

We do not know either if other HOD-related properties behave in a compact-like way. For instance,
the following is open.

Question 2. Suppose that 𝜅 is a singular strong limit cardinal with uncountable cofinality and that
{𝛿 < 𝜅 | 𝛿+ is not 𝜔-strongly measurable in HOD} is stationary. Is it true that 𝜅+ is not 𝜔-strongly
measurable in HOD?

There is another intriguing question connecting Woodin’s HOD Conjecture with Theorem 3.4.
Assuming the existence of strong enough large cardinals, in [Pov23, Theorem 3.1] it was proved that a
cardinal 𝜅 can be <𝜆-extendible for a singular a strong limit cardinal 𝜆 with cf (𝜆) = 𝜔 and (𝜆+)HOD𝑥 < 𝜆+

for all subsets 𝑥 ⊆ 𝜆. In simple terms, the HOD Conjecture can fail locally.9
A natural speculation is whether this failure can take place at a strong limit singular of uncountable

cofinality.

Question 3. Is the following configuration consistent with ZFC?

1. 𝜅 is <𝜆-extendible.
2. 𝜆 strong limit with cf (𝜆) ≥ 𝜔1.
3. (𝜆+)HOD < 𝜆+

Granting the HOD Conjecture, Theorem 3.4 suggests that the answer to Question 3 is negative. For
suppose Clause (3) above holds. Then, by Theorem 3.4, the set {𝛿 < 𝜆 | (𝛿+)HOD < 𝛿+} contains
a club. In particular, the degree of extendibility of 𝜅 overlaps a singular cardinal 𝛿 < 𝜆 witnessing
(𝛿+)HOD < 𝛿+. This is on the verge of refuting the HOD Conjecture. Note, however, that it does not
outright preclude it, the reason being that 𝑉𝜆 may not satisfy ZF. A negative answer would point out yet
another difference between singular cardinals of countable and uncountable cofinality.
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