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ON THE CONVERGENCE RATE OF
POTENTIALS OF BRENIER MAPS*

FLORIAN F. GUNSILIUS
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The theory of optimal transportation has experienced a sharp increase in interest in
many areas of economic research such as optimal matching theory and econometric
identification. A particularly valuable tool, due to its convenient representation as
the gradient of a convex function, has been the Brenier map: the matching obtained
as the optimizer of the Monge–Kantorovich optimal transportation problem with
the euclidean distance as the cost function. Despite its popularity, the statistical
properties of the Brenier map have yet to be fully established, which impedes
its practical use for estimation and inference. This article takes a first step in
this direction by deriving a convergence rate for the simple plug-in estimator of
the potential of the Brenier map via the semi-dual Monge–Kantorovich problem.
Relying on classical results for the convergence of smoothed empirical processes, it
is shown that this plug-in estimator converges in standard deviation to its population
counterpart under the minimax rate of convergence of kernel density estimators if one
of the probability measures satisfies the Poincaré inequality. Under a normalization
of the potential, the result extends to convergence in the L2 norm, while the Poincaré
inequality is automatically satisfied. The main mathematical contribution of this
article is an analysis of the second variation of the semi-dual Monge–Kantorovich
problem, which is of independent interest.

1. INTRODUCTION

Optimal transport theory has been an active area of research in applied mathemat-
ics, machine learning, statistics, and economics. Its applications include optimal
matching and Hedonic models (e.g., Chiappori, McCann, and Nesheim (2010)
Chiappori et al. (2010); Chernozhukov et al. (2017) Chernozhukov et al. (2019);
Lindenlaub (2017) Lindenlaub (2017)), partial identification of economic models
(e.g., Ekeland, Galichon, and Henry (2010) Ekeland et al. (2010)), model-free
hedging (e.g., Henry-Labordère (2017) Henry-Labordère (2017)), the definition
of multivariate quantiles and quantile regression (Carlier, Chernozhukov, and
Galichon, 2016; Chernozhukov et al., 2017), and nonlinear principal component
analysis (Gunsilius and Schennach, 2019). For a recent overview of applications
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in the econometrics literature, see Galichon (2017) and Galichon (2016) for an
introduction to the subject from an economic perspective.

Despite its many uses and applications, the large sample properties of the
classical Monge–Kantorovich optimal transport problem have yet to be fully
established in the statistical literature. Recently, Sommerfeld and Munk (2018)
proved asymptotic normality of its value function in the case where the respective
probability measures have finite support; in a seminal contribution, del Barrio and
Loubes (2019) proved central limit theorems for the value function for general
probability measures under a weak moment condition using the Efron–Stein
inequality. These results are important, as the value functions of the Monge–
Kantorovich problem under Lp-cost functions are the Wasserstein distances on
the space of signed Borel measures, which metrize weak convergence plus con-
vergence in pth mean (Santambrogio, 2015, Thm. 5.11). However, especially in
economic applications, one is often rather interested in the optimizer of these
problems than the value function: the optimizer is the induced “optimal matching”
between the two probability measures for the respective cost function. This optimal
matching induces copulas which can potentially be useful in many multivariate
settings, for instance, in the characterization of higher-order Markov processes
(Ibragimov, 2009). In this respect, the Brenier map, the minimizer of the Monge–
Kantorovich problem under the euclidean distance as a cost function, has received
the most attention, because it possesses many interesting properties as an optimal
matching, like monotonicity. In fact, Galichon (2016, p. 64) states that establishing
the large sample properties of (the potential function of) the Brenier map is an
important open problem.

This paper takes a first step to analyze this problem: by deriving and analyzing
the second variation of the semi-dual Monge–Kantorovich problem, we derive
a convergence rate of the simple plug-in estimator of the potential function of
the Brenier map for smoothed empirical measures (i.e., integrated kernel density
estimators) in the sense of Yukich (1992) and van der Vaart (1994).1 Brenier (1991)
showed that the Brenier map in this setting takes the form of the gradient Dϕ of a
convex function ϕ. We consider the Kantorovich potential function ϕ of the Brenier
map an M-estimator and show that a natural sample counterpart ϕ̂n converges to ϕ

in standard deviation on every compact subset of the interior of its support under
appropriate smoothness assumptions on the densities. Without a normalization on
ϕ, at least one of the two probability measures between which the Brenier map
acts has to satisfy Poincaré’s inequality for this result to hold. However, under a
normalization of ϕ that fixes its average value to zero (Lee, 2018), the convergence
holds in the L2 norm without requiring Poincaré’s inequality. This complements
the consistency proof for (the potential function of) the Brenier map established in
Chernozhukov et al. (2017).

1The results we derive also hold for the standard empirical measure. In this case, the regularity of the potential
function in finite samples does not follow from the regularity of the smoothed empirical measures, and one needs to
make assumptions on the potential directly. See the discussion in Section 2.4.
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Since the initial submission of this article, Hütter and Rigollet (2019) have
derived the minimax rate of convergence for the Brenier map by constructing
a theoretical wavelet estimator. We find that the rate of convergence we obtain
for the potential function corresponds to the minimax rate of the kernel density
estimators for the respective measures. This rate is slightly suboptimal compared
to the minimax rate of the Brenier map derived in Hütter and Rigollet (2019).
The reason for this is not our derived results of the semi-dual Monge–Kantorovich
problem but is due to the fact that we rely on classical results for the rate of
convergence of smoothed empirical processes in Giné and Nickl (2008) and
Radulović and Wegkamp (2000). These results derive the stochastic equicontinuity
of the M-estimator in question via an approximation of the smoothed empirical
process by the standard empirical process. It turns out that this imposes too strong
restrictions on the bandwidth hn for our problem, and in fact ignores some of the
additional regularity of the Brenier map, which makes our rate of convergence
suboptimal.

Despite this, the current article shows that the simple plug-in estimator of the
semi-dual Monge–Kantorovich problem, which is easier to implement and con-
ceptually simpler than the theoretical wavelet estimator from Hütter and Rigollet
(2019), performs well, and possesses enough regularity to potentially reach the
minimax rate of convergence. In fact, as the main mathematical result of this
article, we show that the second variation of the semi-dual Monge–Kantorovich
problem takes the form of a Dirichlet energy functional weighted by the density
function of the source measure. This problem has the same regularity properties
in multiple dimensions as the infinitesimal generators of ergodic diffusions, which
has been shown to be higher than the regularity of classical smoothed empirical
processes by the seminal result Dalalyan and Reiß (2007, Prop. 1), see the
analysis in Rohde and Strauch (2010). This additional regularity also exactly
coincides with the additional regularity found in Hütter and Rigollet (2019). This
strongly suggests that an application of these results in place of the classical
results for smoothed empirical processes can lead to fewer restrictions on the
admissible bandwidth which would imply the minimax rate of convergence found
in Hütter and Rigollet (2019) for the simple plug-in estimator, without changing
the estimator or mathematical results of this paper.

Our focus is to examine the rate of convergence of the potential function in
general dimension d ≥ 2, i.e., when the probability measures between which the
Brenier map acts are supported in R

d. The one-dimensional case is simpler and has
already been solved, showing that the Brenier map converges at the parametric rate
in this case; in the econometrics literature, this has been done—without mentioning
the connection to optimal transport theory—in Athey and Imbens (2006) for
instance. The reason for why the one-dimensional case is easier to handle lies in
the fact that the Brenier map between the distributions FX and FY has a closed form
expression as the monotone rearrangement Dϕ(x) := F−1

Y (FX(x)); this is not true in
higher dimensions, which is why one has to resort to more general tools in order
to tackle this question. In particular, our main mathematical result is Lemma 1,
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which provides the regularity conditions of the first and second variation of the
semi-dual problem of the Monge–Kantorovich problem in our setting.

The structure of this article is as follows: Section 2 contains all theoretical results
of this article. We state the lemma about the analysis of the second variation of
the semi-dual Monge–Kantorovich problem in Section 2.1 and our assumptions in
Section 2.2. Section 2.3 introduces the results for the rate of convergence of the
kernel density estimator of the semi-dual of the optimal transport problem with and
without normalization. We also state a simple suboptimal rate of convergence for
the Brenier map based on the bandwidth used for the potential function. Section 2.4
contains a brief discussion about computational issues. We conclude in Section 3.
Appendixes A and B contain a brief review of the Monge–Kantorovich problem
and all proofs, including additional lemmas.

2. CONVERGENCE RATES

In this section, we state the rate of convergence of the natural plug-in estimators
of ϕ and Dϕ by considering the semi-dual problem to the Monge–Kantorovich
problem, which is the dual to the optimal transport problem with the cost function
c(x,y) := −〈x,y〉:
min
ϕ,ψ

∫
X

ϕ(x)dPX(x)+
∫
Y

ψ(y)dPY(y)

s.t. ϕ(x)+ψ(y) ≥ 〈x,y〉, ϕ ∈ C(X ),ψ ∈ C(Y),

(1)

where C(X ) is the space of all bounded continuous functions on the support X
of PX , endowed with the standard supremum norm ‖f ‖∞ := supx∈X |f (x)|, and
where 〈x,y〉 denotes the standard scalar product of vectors x,y ∈ R

d.2 Throughout,
we assume that PX and PY are absolutely continuous with respect to Lebesgue
measure with densities fX and fY , respectively. Theorem 1.3 in Villani (2003) shows
that there is no duality gap for the Monge–Kantorovich problem in this setting, so
that we can in fact use the dual problem to derive the rate of convergence of the
estimator of ϕ. Note that the optimal solution of (1) always consists of conjugate
duals, i.e., ψ = ϕ∗, where the convex conjugate ϕ∗ of ϕ is defined as

ϕ∗(y) = sup{〈y,x〉−ϕ(x) : x ∈ X },
see the first step in the proof of Proposition 3.1 in Brenier (1991). Therefore, the
problem reduces to simply estimating ϕ, and we can write (1) as

M(ϕ) = min
ϕ

∫
X

ϕ(x)dPX(x)+
∫
Y

ϕ∗(y)dPY(y), ϕ ∈ C(X ). (2)

2The Monge–Kantorovich problem with cost function c(x,y) := −〈x,y〉 is equivalent to the Monge–Kantorovich
problem with quadratic cost function c(x,y) = ‖x− y‖2

2/2, where ‖ · ‖2 denotes the euclidean norm, in the sense that
they generate the same solution. We focus on the former cost function, because it allows us to write its dual problem
in the above convenient manner. The dual to this problem is known as the semi-dual problem in the literature. For
further information, we refer to Appendix A.
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In practice, there are many ways to estimate the Brenier map, see, for instance,
Benamou and Brenier (2000), Benamou, Froese, and Oberman (2014), and Char-
trand et al. (2009) among others. The latter approach introduces an infinite
dimensional gradient descent method to calculate the Brenier map, using ideas
from the calculus of variations to derive this result. We go a very similar route in
this article. We use ideas from the calculus of variations in conjunction with the
fact that ϕ is an M-estimator to derive a rate of convergence for its natural plug-in
estimator, i.e., its smoothed sample analog ϕ̂n, which is the solution to

argmin
ϕ∈C(X )

∫
X

ϕ(x)dPX
n ∗Khn(x)+

∫
Y

ϕ∗(y)dPY
n ∗Kh′

n
(y), (3)

where we use the notation from Giné and Nickl (2008) and define the standard
kernel density estimator by

f̂ X
hn

(x) ≡ P
X
n ∗Khn(x) := 1

nhd
n

n∑
i=1

K

(
Xi − x

hn

)
.

Here, K
(

Xi−x
hn

)
:= K′

(
Xi1−x1

hn

)
· · ·K′

(
Xid−x1

hn

)
denotes a product smoothing kernel,

hn denotes the bandwidth, which for ease of notation we assume to be the same for
all dimensions, and f ∗ g denotes the convolution between two functions f and g.
The same notation holds for PY

n ∗Kh′
n
(y). n denotes the number of observations of

the sample throughout.3

For this rate of convergence result to be applicable in practice, we must assume
that computational implementation of (3) delivers a strictly convex solution ϕ̂n.
This can be achieved by introducing a strict convexity penalty term that enforces
convexity of ϕ̂n for all iterations of the algorithm. The penalty term can usually
be chosen such that it gradually disappears with the number of iterations, so that
it is not binding at the solution. We found that this type of regularization prevents
algorithms like the one in Chartrand et al. (2009) from overfitting and hence makes
the program more robust, which is another reason to use this in implementations,
see, for instance, Gunsilius and Schennach (2019).

2.1. Main Lemma

In order to derive the rate of convergence of ϕ̂n, we need to make regularity

assumptions on the densities fX and fY as well as the kernel K
(

Xi−x
hn

)
and the

bandwidth hn. In addition, we make use of Caffarelli’s regularity theory for optimal
transport maps, in particular the a priori interior estimates established in Caffarelli
(1990) for which we have to make further regularity assumptions. Throughout,
we will be working in Hölder spaces. Let k := (k1, . . . ,kd) be a multi-index of

3One can extend this result to the two-sample case straightforwardly.
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nonnegative integers k1, . . . ,kd. Set |k| =∑d
i=1 ki and write

Dk := ∂ |k|

(∂x1)k1 · · ·(∂xd)kd
.

We define the Hölder norm ‖fX‖Cs,α for s ∈ N0 and α ∈ (0,1] of the Hölder space
Cs,α(X ) as

‖f ‖Cs,α :=
∑

0≤|k|≤s

‖Dkf ‖∞ +
∑

k:|k|=s

sup
x1,x2∈X :x1 �=x2

‖Dkf (x1)−Dkf (x2)‖
|x1 − x2|α ,

where ‖ · ‖ stands again for the euclidean norm in R
d. In this sense, a function

fX ∈ Cs,α(X ) if there exists a constant c < +∞ such that ‖fX‖Cs,α ≤ c. Based on
this, we say that a function fX is locally Hölder continuous on X if it is Hölder
continuous on every compact subset of the interior of X , which we denote by
f ∈ Cs,α

loc (X ◦).4
The main mathematical result of this article upon which all statistical derivations

rely is the following lemma, which provides the regularity conditions of the first
and second variation of (2). It might be of independent interest.5

LEMMA 1. Let PX and PY be absolutely continuous measures with respect to
Lebesgue measure with densities fX and fY on convex and compact supports X
and Y . Then, the functional M is convex, Lipschitz-continuous, and Hadamard
differentiable on C(X ). The first variation δMϕ(v) of M(ϕ) on C(X ) is

δMϕ(v) =
∫
X

v(x)fX(x)dx+
∫
Y

v
(
Dϕ∗(y)

)
fY(y)dy.

Based on this, the Hadamard differential takes the form

〈M′(ϕ),v〉 ≡
∫
X

[
fX(x)− fY(Dϕ∗∗(x))det(D2ϕ∗∗(x))

]
v(x)dx.

The second variation δ2Mϕ(v,u) on C1(X ) is

δ2Mϕ(v,u) =
∫
Y
〈Dv(Dϕ∗(y)),Du

(
Dϕ∗(y)

)〉fY(y)dy

=
∫
X

〈Dv(x),Du(x)〉fY(Dϕ∗∗(x))det(D2ϕ∗∗(x))dx.

If we restrict M(·) to C2(X ◦), then there exists a neighborhood Nϕ0 ⊂ C2(K)

around the strictly convex ϕ0 such that M′(ϕ) coincides with the Fréchet derivative
on Nϕ0 , where K ⊂X ◦ is an arbitrary compact set. Moreover, the second variation
δ2Mϕ(v,u) is continuous in ϕ on Nϕ0 and a bounded bilinear functional in u,v ∈

4We denote the topological interior of a set A by A◦.
5The integral of some function g with respect to Lebesgue measure is denoted by

∫
g(x)dx.

https://doi.org/10.1017/S0266466621000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000037


ON THE CONVERGENCE RATE OF POTENTIALS OF BRENIER MAPS 387

C2(X ). In particular, for u ≡ v, it holds that

δ2Mϕ(v,v) =
∫
X

‖Dv(x)‖2fY(Dϕ∗∗(x))det(D2ϕ∗∗(x))dx

and, for every ε > 0 and convex compact K ⊂ X ◦, there exists an η(ε) > 0 such
that∣∣δ2Mϕ(v,v)− δ2Mϕ0(v,v)

∣∣≤ ε‖v‖2
C2(K),

for all v,ϕ ∈ C2(X ) with ‖ϕ −ϕ0‖C2(K) ≤ η(ε).

Lemma 1 is needed for a Taylor-expansion argument. The apparently novel
result is the derivation of the formula for the second variation in all directions
C1(X ), along with its properties.6

2.2. Assumptions

We can now state the required assumptions for the statistical result.

Assumption 1 (Regularity of the densities) The densities fX and fY have the
following properties:

(i) The supports X ,Y ⊂ R
d of fX and fY are compact and convex.

(ii) fX and fY are bounded above and below, i.e., there exists 0 < γ < +∞ such
that γ −1 ≤ fY(y) ≤ γ and γ −1 ≤ fX(x) ≤ γ , for all y ∈ Y and x ∈ X .

(iii) fX ∈ Cs,α
loc (X ◦) and fY ∈ Cs,α

loc (Y◦), with degree s ≥ 0, for some α ∈ (0,1), which
is fixed throughout.

The assumptions on the support of the densities are required for Caffarelli’s
interior regularity theory (Caffarelli, 1990), see Lemma 2 in Appendix B.2. The
boundedness assumption of the density will make the Monge–Ampère opera-
tor associated with the Monge–Kantorovich problem (2) an elliptic operator.
Ellipticity is important, as it allows us to prove convergence of ϕ̂n to ϕ0 in
Hölder norm using standard Schauder estimates of elliptic second-order partial
differential equations (PDEs; Gilbarg and Trudinger, 1998, Chap. 6). See Lemma 3
in Appendix B.2.

Assumption 2 (Order of kernels and bandwidths) The kernel K is nonnegative
and of second order. The bandwidths hn,h′

n > 0 satisfy h2
nn1/2 → 0 and (h′

n)
2n1/2 →

0 as n → +∞.

Assumption 2 is a standard assumption on the bandwidths and the kernel, taken
directly from Theorem 6 in Giné and Nickl (2008), which provides the asymptotic

6By a simple formal differentiability argument (e.g., Rubinstein (2008)), one can derive the formula of the second
variation in convex directions. The contribution here is the rigorous derivation in all directions C1(X ) and the analysis
of the regularity properties.
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distribution result for smoothed empirical processes indexed by univariate Hölder
functions. In particular, the upper bound on the bandwidth makes the bias of the
smoothed empirical process asymptotically negligible as proved in Theorem 6
of Giné and Nickl (2008). We adapt their result to the multivariate setting in a
straightforward way Giné and Nickl (2008, p. 369). We are more restrictive than
this result by requiring nonnegative kernels, as they allow us to relate bracketing
numbers of the empirical processes to their smoothed empirical counterparts. It is
possible to allow for higher-order kernels like the ones in Giné and Nickl (2008)
if one replaces our bracketing entropy approach by uniform entropy under some
formal complications. Note also that we do not require a lower bound on the
amount of smoothing needed. This is because the potential ϕ will always be in
a Donsker class, so that the empirical process will converge for this class even
without smoothing (Giné and Nickl, 2008, p. 344).

Without a normalization on the potential ϕ, we need to uphold another assump-
tion on PX . This assumption will make the objective function of the dual of the
Kantorovich problem well-separated at the optimal ϕ0 in an appropriately chosen
semi-metric. In fact, we require that PX satisfy the Poincaré inequality, for any
v : Rd → R, which reads

∫
X

‖Dv(x)‖2dPX(x) ≥ cVarPX (v), (4)

where

VarPX (v) : =
∫
X

|v(x)|2dPX(x)−
(∫

X
v(x)dPX(x)

)2

= ‖v‖2
L2(PX)

−
(∫

X
v(x)dPX(x)

)2

(5)

is the variance of v with respect to the measure PX , ‖Dv(x)‖2 is the squared
euclidean norm of the gradient of v(x), and c > 0 is some constant.

Assumption 3 The probability measure PX satisfies the Poincaré inequality (4).

2.3. Convergence Rates for the Potential

The following is our main result.

THEOREM 1 (Rate of convergence of ϕ). Under Assumptions 1–3, it holds that

rn

√
VarPX (ϕ̂n −ϕ0) = OP∗(1), (6)
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for

rn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n
s+α

2(s+α)+d for s+α >
d

2
n1/4

(log(n))1/2
for s+α = d

2

n
1

(s+α)(2(s+α)+d) for s+α <
d

2

.

Here, ϕ0 is the minimizer of (2) and ϕ̂n is the minimizer of (3).7

Theorem 1 implies a curse of dimensionality of the same form as the one for
the square root of the asymptotic integrated mean-square error for kernel density
estimators. This is not surprising due to the fact that kernel density estimators are
used to estimate the probability measures. Note that, for s +α > d/2, this is the
standard minimax rate of estimation of kernel density estimators (Tsybakov, 2008,
Thm. 1.1).

As mentioned in the Introduction, the rate for the case s+α > d
2 is slightly worse

than the minimax rate for estimators of the Brenier map in Hütter and Rigollet

(2019); indeed, a rate of the potential of n
s+α

2(s+α)+d would in the best possible case

correspond to a rate of convergence of n
s+α

2(s+α)+2+d , because one would sacrifice
“one degree of smoothness” when estimating the Brenier map directly, i.e., the
gradient of the potential function. Hütter and Rigollet (2019) derive a minimax

rate of n
s+α

2(s+α)−2+d for the Brenier map, which is slightly faster than the potential
rate achievable by the standard plug-in estimator for our bandwidth hn. The reason
is that we rely on classical asymptotic results for smoothed empirical processes
which do not take into account the additional regularity of the Brenier map and
hence impose the strong upper bound on the bandwidth h4

nn → 0.
As for Assumption 3, the requirement that a probability measure satisfies

Poincaré’s inequality is a high-level requirement, and it is an active area of
research linked to the concentration of measure phenomenon to establish when
this requirement is satisfied. In particular, if PX satisfies the Poincaré inequality,
then it satisfies an exponential concentration inequality (Ledoux, 2001, Cor. 3.2).
One result establishes the reverse connection between the Poincaré inequality and
a dimension-free concentration inequality (Gozlan, Roberto, and Samson, 2015,
Thm. 1.2). Many important probability measures satisfy Poincaré’s inequality,
such as the exponential and uniform distribution, most notably the set of log-
concave probability measures, which are measures possessing density functions
e−V(x) for some convex and twice continuously differentiable V(x), but there are
many more classes (e.g., Bakry et al. (2008)).

Intuitively, Poincaré’s inequality allows us to work with the standard deviation
as a semi-norm on the Hölder space defined above. This semi-norm creates an

7P∗ denotes outer probability, which we use to circumvent measurability issues in the nonseparable space

∞(Cs,α

loc (X ◦)) of all bounded functionals on the Hölder space Cs,α
loc (X ◦).
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equivalence class of functions of the form u ∼ v if and only if u = v + c, where c
is a constant function on X . Under this equivalence class, the solution to the dual
problem of the Monge–Kantorovich problem is unique and well-separated, which
is one of two main requirements for our derivation of the rate of convergence of
the plug-in estimator.8 In general, the potential function of the Brenier map is only
identified up to an additive constant, which would make the optimum not well-
separated under a different (semi-) metric.

Since the main quantity of interest in general is the Brenier map, a usual
approach in the literature on optimal transport theory is to fix the potential function
by fixing the coordinate system. The standard normalization for this is ϕ(0) = 0.9

However, Lee (2018), who relies on some of the results in the present article to
derive a sieve estimation procedure for optimal transport maps, introduces the
following helpful and natural normalization for the potential function:∫
X

ϕ(x)dx = 0, (7)

i.e., fixing the mean to be zero. This normalization is rather helpful, because it
makes the standard deviation coincide with the L2 norm, so that all convergence
arguments in the proof go through in the L2 norm. Furthermore, under this nor-
malization, we can replace the generalized Poincaré inequality with respect to the
general probability measure PX by the classical Poincaré inequality with respect to
Lebesgue measure. In other words, if the potential function ϕ is normalized to have
zero mean and is defined on a compact support, then it automatically satisfies the
Poincaré inequality with respect to PX . The classical Poincaré inequality satisfies∫
X

‖Dv(x)‖2dx ≥ cVar(v) = c‖v‖2
L2(X )

− c

(∫
X

v(x)dx

)2

= c‖v‖2
L2(X )

(8)

for some constant c < +∞ and where the last inequality follows from the
normalization (7).10 Now, by Hölder’s inequality and the fact that fX is bounded
above by γ < +∞, it follows that

‖v‖2
L2(PX)

=
∫
X

v(x)2fX(x)dx ≤ γ

∫
X

v(x)2dx = γ ‖v‖2
L2(X )

. (9)

Since fX is bounded above and below by γ and γ −1 and X is compact by
Assumption 1, it follows that∫
X

‖Dv(x)‖2dx ≤ 1

infx∈X fX(x)

∫
X

‖Dv(x)‖2fX(x)dx

≤ γ

∫
X

‖Dv(x)‖2fX(x)dx < +∞. (10)

8Also note that working with the standard-deviation semi-metric on Cs,α(X ) does not pose problems, as Cs,α(X )

embeds compactly into L2(PX) by Hölder’s inequality and the Arzelà–Ascoli theorem.
9An example for this normalization is Chernozhukov et al. (2017).
10We denote by ‖ · ‖L2(X ) the L2 norm with respect to Lebesgue measure on X .
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Putting equations 8–10 together implies∫
X

‖Dv(x)‖2fX(x)dx ≥ c

γ
‖v‖2

L2(PX)
.

This implies that the optimal ϕ0 is well-separated with respect to ‖ · ‖L2(PX), and
we immediately obtain the following.

COROLLARY 1 (Rate of convergence under normalization). Under Assump-
tions 1 and 2, it holds that

rn

∥∥ϕ̂n −ϕ0

∥∥
L2(PX)

= OP∗(1), (11)

for

rn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n
s+α

2(s+α)+d for s+α >
d

2
n1/4

(log(n))1/2
for s+α = d

2

n
1

(s+α)(2(s+α)+d) for s+α <
d

2

.

Here, ϕ0 is the minimizer of (2), ϕ̂n is the minimizer of (3), and where we uphold
the normalization (7).

Based on the results established in the previous section, we can derive a rate of
convergence for the Brenier map Dϕ by subtracting one degree of smoothness in
our rate of convergence for the potential function in the case where s+α > d

2 . This
is a classical result in the setting where Dϕ has enough smoothness, but requires
that we change the bandwidth hn from the estimation of the potential function.
Moreover, in the other two regimes, it is less clear how the rate of convergence
behaves. The following proposition therefore provides a crude upper bound for
the rate of convergence of the Brenier map based on the convergence rate of
its potential by bounding the squared euclidean distance of gradients of convex
functions by the distance of their potential functions as in the proof of Theorem
2.33 in Attouch and Wets (1986). It provides the rate of convergence of the Brenier
map for the bandwidth used to estimate the potential function and is therefore by
definition suboptimal compared to the rate of convergence where we are allowed
to change hn. However, this result is applicable in all three different cases for
the smoothness by relying on the bandwidth used for the potential function and
even holds for functions ϕ that are not twice continuously differentiable, but only
possess a Lipschitz-continuous first derivative.

PROPOSITION 1 (Rate of convergence of Dϕ for the bandwidth of the poten-
tial). Under Assumptions 1 and 2 and by using the optimal bandwidth hn for
obtaining the rate of convergence of the potential function ϕ, it holds that

rn

∥∥Dϕ̂n −Dϕ0

∥∥
L2(PX)

= OP∗(1), (12)
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for

rn =

⎧⎪⎪⎨
⎪⎪⎩

n
s+α

4(s+α)+2d for s+α > d
2

n1/8

(log(n))1/4 for s+α = d
2

n
1

(s+α)(4(s+α)+2d) for s+α < d
2

,

where ϕ0 is the minimizer of (2), ϕ̂n is the minimizer of (3), and where we uphold
the normalization (7).

Note that this rate is rather slow and far from optimal. In particular, it is the
square root of the rate of the potential. This makes it much slower than the minimax
rate obtained in Hütter and Rigollet (2019). This suboptimality should not be
surprising, as this rate of convergence is based on the optimal bandwidth used for
the potential function and not optimized for estimating the Brenier map directly,
as mentioned. The novelty of Proposition 1 is that it provides a direct connection
between the Brenier map and its potential function for a fixed bandwidth.

2.4. Practical Considerations

The rate obtained holds for the optimization problem (3). The first Hadamard
derivative in Lemma 1 suggests the following simple functional gradient descent
approach which was suggested in Chartrand et al. (2009):

ϕk+1 = ϕk −αkM′(ϕk),

where k = 1, . . . denotes the iterations, αn is a step size, and M′ is the Hadamard
derivative derived in Lemma 1. In practice, this approach can be implemented by
a grid approach (Gunsilius and Schennach, 2019): place a grid on your data and
estimate both densities via a kernel density estimator on the grid. Then, compute
the optimal transport map by computing the gradient descent step at each point of
the grid.

This approach clearly suffers from a computational curse of dimensionality, not
least since it relies on kernel density estimation. The number of grid points grows
exponentially with the dimension, so that this approach is only applicable in lower
dimensions. Also, in all of our analysis, we do not account for the computational
approximation error induced via the specific optimization procedure induced by
the gradient descent algorithm, and we exclusively focus on the statistical rate of
convergence. Let us also address the implementation of the normalization (7). In
a practical grid-approach, it is not clear a priori how to include this normalization,
as it requires knowledge of the potential function, which is the object we want
to estimate. In contrast, in sieve estimation procedures like Lee (2018), one can
include the normalization straightforwardly, by only focusing on sets of potentials
that are normalized in this way.

Lastly, note that all results presented in this article work for the standard
empirical measure, without smoothing; this also manifests itself in the fact that
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we do not require a lower bound on the bandwidth in Assumption 2. The simple
model for this would be

argmin
ϕ∈Cs,α

loc (X ◦)

n∑
i=1

ϕ(Xi)+
n∑

i=1

ϕ∗(Yi).

In this case, one needs to make the smoothness assumptions on ϕ̂n directly, as they
do not follow from the kernel density estimates in finite samples. In practice, this
optimization is still hard to solve, even though it is not based on a kernel density
estimation. This is not just a problem in our setting, but for the computational
theory of optimal transport more generally (see, for instance, the discussions in
other implementations such as Benamou et al. (2014) and Seguy et al. (2017)).
One way to circumvent this curse is to use the Sinkhorn divergence introduced
in Cuturi (2013), which penalizes the optimal transport problem with an entropy
term and can be solved efficiently via Sinkhorn iterations (Sinkhorn, 1967). The
optimizer does not coincide with the optimal transport map in this case, however.
Computing the optimal transport map efficiently in practice in high dimensions is
therefore still an open problem.

3. CONCLUSION

We have derived a convergence rate for the simple plug-in estimator of the semi-
dual Monge–Kantorovich problem for the potential function of the Brenier map.
It coincides with the minimax rate of convergence of the kernel density estimator
of Hölder classes if the respective probability densities are smooth enough. The
idea is to use the semi-dual problem of the Monge–Kantorovich problem and
analyze the second variation of this problem for a Taylor-expansion argument.
Without a normalization on the potential, this rate will be achieved for the standard
deviation and requires that at least one of the measures satisfies the Poincaré
inequality. Under the normalization that the first moment of the potential is zero,
this convergence takes place in L2-norm and does not require the measure to satisfy
the Poincaré inequality anymore.

The obtained rate of convergence is suboptimal compared to the minimax rate of
convergence recently derived via a wavelet estimator in Hütter and Rigollet (2019).
This suboptimality follows from the fact that we rely on classical asymptotic
results for empirical processes as derived in Giné and Nickl (2008), which requires
the strict bound h4n → 0 on the bandwidth. The main mathematical result in
this article shows, however, that the second variation of the semi-dual Monge–
Kantorovich problem takes the form of a classical Dirichlet energy functional
weighted by the source measure. This problem has the same regularity properties
in multiple dimensions as the infinitesimal generators of ergodic diffusions, which
has been shown to be higher than the regularity of classical smoothed empirical
processes by the seminal result Dalalyan and Reiß (2007, Prop. 1), see the analysis
in Rohde and Strauch (2010). This additional regularity also exactly coincides with
the additional regularity found in Hütter and Rigollet (2019) and implies that an
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application of these results in place of the classical results for smoothed empirical
processes can lead to fewer restrictions on the admissible bandwidth which would
imply the minimax rate of convergence found in Hütter and Rigollet (2019).

The results derived in this article can potentially be used to derive the asymptotic
distribution of the potential function of the Brenier map by making use of
the second variation of the semi-dual Monge–Kantorovich problem derived in
Lemma 1.

APPENDIX

A. THE MONGE–KANTOROVICH PROBLEM AND THE BRENIER MAP

This section is designed to give the reader a very brief overview of the Monge–Kantorovich
problem and the Brenier map. For more information, we refer to the introductory text Villani
(2003).

The goal of the theory of optimal transport is to analyze maps T which transport one
probability measure PX onto another probability measure PY in a “cost-efficient way.” The
setup for this is the Monge–Kantorovich problem. To be precise, the Monge and Kantorovich
problems are actually two different problems, the latter being the convex relaxation of the
former. Monge’s problem asks for an optimal transport map between two (probability)
measures, PX and PY defined on their supports X and Y , where optimality is measured
with respect to some cost function c : X ×Y → R. This problem can be stated as

minimize
∫
X

c(x,T(x))dPX(x) T : X → Y measurable. (A.1)

In words, the Monge problem asks for an explicit measurable map T :X →Y which turns
out to take any Borel set Ex ⊂X and maps it to some Borel set TEx ⊂Y “of the same size.”.
The formal property is that T preserves measure in the sense that PX(T−1Ey) = PY (Ey),
i.e., it needs to “match” every Borel set Ey of size PY (Ey) to a corresponding Borel set
Ex = T−1Ey of the same size PX(T−1Ex) = PY (Ey).

The Kantorovich problem between (probability) measures PX and PY under some cost
function c : X ×Y → R is the convex relaxation of the Monge problem; it only asks for
an optimal transport plan in the sense that the transport does not have to be accomplished
through a function as in the Monge problem, but is concentrated on the support � of a joint
probability distribution γ which has PX and PY as its marginals

min
π∈(PX,PY )

∫
X×Y

c(x,y)dπ(x,y), (A.2)

where y ∈ Y , x ∈ X , and (PX,PX) is the set of all probability measures on X ×Y such
that the marginal distributions of some π ∈ (PX,PY ) are precisely PX and PY .

For many cost functions c, the solution to the Monge and Kantorovich problems actually
coincides under the assumption that PX is absolutely continuous with respect to Lebesgue
measure, so that it is legitimate to speak of the Monge–Kantorovich problem in these cases.
Moreover, this solution is unique for many important cost functions. All of these statements
can be found in Chapters 1 and 2 of Villani (2003). Different cost functions c lead to
different transport maps or transport plans, many of which occur naturally in economics
and econometrics. The Brenier map results from solving the Monge–Kantorovich problem
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under the standard squared euclidean distance as a cost function, i.e.,

c(x− y) = ‖x− y‖2 =
d∑

i=1

|xi − yi|2.

In fact, an equivalent formulation of the Monge–Kantorovich problem under quadratic cost
in the sense that they generate is

sup
π∈(PX,PY )

∫
〈x,y〉dπ(x,y), (A.3)

whose dual problem we consider in this article. The importance lies in the fact that the dual
to the Monge–Kantorovich under the quadratic cost does not admit a solution of the form
(ϕ,ϕ∗), whereas the latter does.11

Brenier (1991) first proved that if PX and PY possess finite second-order moments and
if PX is absolutely continuous with respect to Lebesgue measure, then the Monge and
Kantorovich problems coincide, and the unique solution to

argmin
T

∫
X

‖x−T(x)‖2dPX(x), T measurable (A.4)

takes the form of the gradient of a convex function, i.e., T0(x) = Dϕ(x), for some convex
ϕ. Moreover, one can choose ϕ as the optimal Kantorovich potential, which is the solution
of (2).

B. PROOFS

B.1. Proof of Lemma 1.

Proof The result for convexity and Lipschitz continuity follow straightforwardly from
the properties of the Legendre–Fenchel transform, see Theorem 3.1 in Chartrand et al.
(2009). So let us turn to deriving the variations and showing Hadamard differentiability
in all directions v ∈ C(X ).

We do this by a simple argument using subgradients which has already been derived in
Gangbo (1994) and used in Chartrand et al. (2009) and Villani (2003, p. 74).12 The idea is
to use the limit definition of the directional derivative, which is

δMϕ(v) = lim
t→0

M(ϕ + tv)−M(ϕ)

t

=
∫
X

v(x)fX(x)dx+ lim
t→0

∫
Y

(ϕ + tv)∗(y)−ϕ∗(y)

t
fY (y)dy.

Then, since ϕ is convex and hence differentiable almost everywhere, we can fix a y0 ∈
Y such that Dϕ∗(y0) = x0, for some x0. Note on the other hand that ϕ + tv need not be
convex; we therefore fix some xt ∈ ∂(ϕ + tv)∗(y0) = argminx∈X {〈x,y0〉−ϕ(x)− tv(x)},
where ∂(ϕ+ tv)∗ denotes the subdifferential of (ϕ+ tv)∗. This xt is finite sinceX is compact.

11I thank a referee for pointing this out.
12A simple differentiability argument only calculates the variation in strictly convex directions v, which is not enough
for our purposes. I thank a referee for pointing this out.
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Then, we can write

(ϕ + tv)∗(y)−ϕ∗(y) = 〈xt,y0〉−ϕ(xt)− tv(xt)−〈x0,y0〉+ϕ(x0).

Now, the reasoning is exactly analogous to the reasoning in both Chartrand et al. (2009)
and Villani (2003, p. 74). In fact, replacing xt by x0 in the right-hand side of the last equation
gives a smaller quantity, whereas replacing x0 by xt gives a larger quantity, so that we can
bound

− tv(x0) ≤ (ϕ + tv)∗(y)−ϕ∗(y) ≤ −tv(xt) ⇔
0 ≤ (ϕ + tv)∗(y)−ϕ∗(y)

t
+ v(x0) ≤ v(x0)− v(xt).

Since v is bounded and continuous, we can pass the limit into the integral by the Dominated
Convergence Theorem, so that

δMϕ(v) =
∫
X

v(x)fX(x)dx+
∫
Y

lim
t→0

(ϕ + tv)∗(y)−ϕ∗(y)

t
fY (y)dy.

The fact that v is uniformly continuous on X implies that the sequence tv converges
uniformly to 0. Therefore any convergent subsequence will converge to a maximizer of
〈x,y0〉−ϕ(x); since x0 is the unique minimizer (the gradient exists), it follows that xt → x0
and hence v(x0)− v(xt) → 0. This in turn implies that

δMϕ(v) =
∫
X

v(x)fX(x)dx+
∫
Y

v
(
Dϕ∗(y)

)
fY (y)dy

and proves the form of the first variation in all directions v ∈ C(X ) at a convex ϕ.
Finally, note that Hadamard differentiability of M at ϕ is equivalent to the existence of

a measure μ ∈ C∗(X ) such that δMϕ(v) = ∫
X v(x)μ(dx), since M is Lipschitz continuous

and hence automatically Hadamard differentiable if the directional derivative is linear (also
see Chartrand et al. (2009)). We can derive this form of the first variation by the change of
variables y = Dϕ∗∗(x), in which case we get

δMϕ(v) =
∫
X

v(x)fX(x)dx+
∫
Y

lim
t→0

(ϕ + tv)∗(y)−ϕ∗(y)

t
fY (y)dy

=
∫
X

v(x)fX(x)dx−
∫
X

v(Dϕ∗(Dϕ∗∗(x)))fY (Dϕ∗∗(x))det(D2ϕ∗∗(x))dx

=
∫
X

[
fX(x)− fY (Dϕ∗∗(x))det(D2ϕ∗∗(x))

]
v(x)dx,

where the last line follows from the fact that x = Dϕ∗(Dϕ∗∗(x)), so that we can define
μ(dx) := [fX(x)− fY (Dϕ∗∗(x))det(D2ϕ∗∗(x))]dx which establishes the Hadamard deriva-
tive.

Let us now turn to the second variation and compute it in all possible directions v,u ∈
C1(X ). In general, we can find the second variation by taking the variation of the first
variation. We denote the first variation of the Legendre–Fenchel transform in direction v at
point y ∈ Y by

δ(ϕ;v)∗(y) = lim
t→0

(ϕ + tv)∗(y)−ϕ∗(y)

t
.
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Therefore, we can calculate the second variation as

lim
s↓0

δMϕ+su(v)− δMϕ(v)

s
= lim

s↓0

∫
Y

δ(ϕ + su;v)∗(y)− δ(ϕ;v)∗(y)

s
fY (y)dy, (B.1)

where s ↓ 0 means s → 0 and s > 0.
To do so, we need to consider the map

lim
s↓0

δ(ϕ + su;v)∗(y0)− δ(ϕ;v)∗(y0)

s
.

Recall that δ(ϕ;v)∗(y0) = v(Dϕ∗(y0)), so that δ(ϕ + su;v)∗(y0) = v(xs,u), for some xs,u ∈
∂(ϕ + su)∗(y0). Now, let us work from the inside out. Let us first show that

lim
s↓0

∂(ϕ + su)∗(y0)−Dϕ∗(y0)

s
= Du(Dϕ∗(y0)). (B.2)

Note that since u need not be convex, we can only work with the subgradient ∂(ϕ + su)∗
even though u ∈ C1(X ), since the gradient D(ϕ + su)(x) is not invertible in general. In
this respect, it is important to note, however, that (ϕ + su)∗ is subdifferentiable, for all s,
since su is differentiable everywhere and ϕ, being strictly convex, is differentiable almost
everywhere and subdifferentiable everywhere. Therefore, the inverse of the subgradient,
which coincides with the subgradient of the convex conjugate, is always nonempty.

Now, to show (B.2), note that

lim
s↓0

∂(ϕ + su)∗(y0)−Dϕ∗(y0)

s
= lim

s↓0
∂

1

s
(ϕ + su)∗(y0)−D

1

s
ϕ∗(y0)

= lim
s↓0

∂C

(
1

s

[
(ϕ + su)∗ −ϕ∗])(y0), (B.3)

where ∂Cf (x) is the generalized gradient for locally Lipschitz continuous functions in the
sense of Clarke (Clarke, 1975), which is the convex hull of the set of limits of the form
limi→∞ Df (x+hi), where hi → 0 as i → ∞. Note that we can use this simple form of the
definition of the generalized gradient since the functions

fs := 1

s

[
(ϕ + su)∗ −ϕ∗]

are all locally Lipschitz continuous, because (ϕ+su)∗ and ϕ∗ are convex and hence locally
Lipschitz continuous. In particular, the functions fs possess a gradient almost everywhere,
i.e., Dfs(y) is defined for almost every y ∈ Y and every s (Clarke, 1975; Hiriart-Urruty,
1985). The first equality in (B.3) follows by the positive homogeneity of the subdifferential
and the fact that s > 0. The second equality—which is in terms of sets—follows from
the property of the Clarke subdifferential of difference convex functions which states that
∂f1(x) − ∂f2(x) = ∂C(f1 − f2)(x) for convex functions f1,f2 (Bačák and Borwein, 2011;
Hiriart-Urruty, 1985). In order to show (B.2), we therefore need to show that we can
interchange the limit and the Clarke subdifferential in (B.3). Recall from our proof of the
first variation that

lim
s↓0

fs(y0) ≡ lim
s↓0

(ϕ + su)∗(y0)−ϕ∗(y0)

s
= u(Dϕ∗(y0)).

Note that the sequence {fs}s↓0 is an equi-Lipschitzian sequence on the compact Y . This
follows from the fact that fs is locally Lipschitz for all s, so that fs is Lipschitz continuous on
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all of the compactY for every s; furthermore, fs converges to u◦Dϕ∗, which is a composition
of two (almost everywhere) differentiable and hence Lipschitz continuous functions, so that
there must exist a Lipschitz constant which holds uniformly for all fs. In particular, the
functions fs converge uniformly to u ◦ Dϕ for almost every y ∈ Y by Lipschitz continuity
and compactness of Y .

The generalized directional derivative in the sense of Clarke (Clarke, 1975)
u◦(Dϕ∗(y0),Dϕ∗(y′)) of u at Dϕ∗(y0) in direction Dϕ∗(y′) takes the form

u◦(Dϕ∗(y0),Dϕ∗(y′)) := limsup
λ↓0
h→0

u(Dϕ∗(y0)+h+λDϕ∗(y′))−u(Dϕ∗(y0)+h)

λ
,

for some h, in the same space as Dϕ∗(y0). In particular, note that this generalized directional
derivative coincides with the standard directional derivative

u′(Dϕ∗(y0),Dϕ∗(y′)) = lim
λ↓0

u(Dϕ∗(y0)+λDϕ∗(y′))−u(Dϕ∗(y0))

λ

= 〈Du(Dϕ∗(y0)),Dϕ∗(y′)〉
at almost every y0 ∈ Y since u ∈ C1(X ) and Dϕ∗(y) is differentiable at almost every y ∈ Y
by a result from Aleksandrov (1939). Furthermore, by Proposition 1.11 in Clarke (1975),
the generalized directional derivative defined on Y \N for some set N ⊂ Y of measure zero
coincides with the generalized directional derivative on all of Y , so that we can assume that
y0 and y′ are points where Dϕ∗ exists and is a single element.

Now, given any m > u◦(Dϕ∗(y0),Dϕ∗(y′)), there exists a λ > 0 and a small enough h
such that Dϕ∗(y0)+h+λDϕ∗(y′) ∈ Y by convexity of Y and

[u(Dϕ∗(y0)+h+λDϕ∗(y′))−u(Dϕ∗(y0)+h)]
1

λ
< m.

By the uniform convergence of fs to u, which is a result of the Arzelà–Ascoli theorem and
the compact support, it holds that

[fs(ys +h+λy′
s)− fs(ys +h)]

1

λ
< m,

for Y � (ys,y′
s) → (y0,y

′) and sufficiently small s. By the definition of f ◦
s (ys;y′

s), it therefore
holds that there exists a small enough s such that

f ◦
s (ys;y′

s) < m.

Taking the limit supremum with respect to this expression implies that

limsup
s↓0

f ◦
s (ys;y′

s) < m.

We may, by putting y′
s ≡ y′ for all s, conclude from this (Rockafellar, 1997, p. 234) that

limsup
s↓0

f ◦
s (ys;y′) ≤ u◦(Dϕ∗(y0),Dϕ∗(y′)) ∀y′ ∈ Y,

which follows from the definition of u◦. Note that the generalized directional derivative
f ◦
s (ys;y′

s) is the support function of the generalized gradient ∂Cfs(ys) in the sense that

f ◦
s (ys;y′

s) = max{〈ξ,y′
s〉 : ξ ∈ ∂Cfs(ys)}, (B.4)
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see Clarke (1975, Prop. 1.4), analogously for u◦(Dϕ∗(y0);Dϕ∗(y′)) and ∂Cu(Dϕ∗(y0)).
Therefore, and by uniform convergence of fs to u, it follows directly by (B.4) that, for every
ε > 0, there exists a small enough s such that

fs(y0) ≤ u(Dϕ∗(y0))+ ε|y0|
by positive homogeneity of fs and u and since Y is compact. But since the generalized
derivative is the support function of the generalized gradient, it follows that

∂Cfs(y0) ⊂ ∂Cu(Dϕ∗(y0))+ εB,

where B denotes the unit ball of the same dimension as Y , see Rockafellar (1997, Thm.
24.5); this holds for every direction y′

s → y′ ∈Y by letting ε → 0.13 But this implies that we
can interchange the limit and the generalized gradient in (B.3) to obtain (B.2). Furthermore,
since u is differentiable at x0 = Dϕ∗(y0), the generalized gradient becomes a gradient by
Proposition 1.13 in Clarke (1975).

We can therefore write

∂(ϕ + su)∗(y0) = Dϕ∗(y0)+Du(Dϕ∗(y0))s+o(s). (B.5)

Now, define

x0 + k := ∂(ϕ + su)∗(y0) = Dϕ∗(y0)+Du(Dϕ∗(y0))s+o(s),

so that k := Du(Dϕ∗(y0))s+o(s) since x0 = Dϕ∗(y0). Recall that v ∈ C1(X ) by assumption
so that

v(x0 + k) = v(x0)+〈Dv(x0),k〉+o(‖k‖),
and replacing x0 + k = ∂(ϕ + su)∗(y) and k by the above gives

v(xs,u) = v(x0)+〈Dv(x0),Du(Dϕ∗(y0))s+o(s)〉+o(s),

since the inner product is continuous. In other words,

lim
s↓0

δ(ϕ + su;v)∗(y)− δ(ϕ;v)∗(y)

s
= 〈Dv(Dϕ∗(y0)),Du(Dϕ∗(y0))〉,

which is what we wanted to show. Now, since v ∈ C1(X ) and is hence uniformly bounded
on X , we can apply the Dominated Convergence Theorem to conclude that

lim
s↓0

δMϕ+su(v)− δMϕ(v)

s
= lim

s↓0

∫
Y

δ(ϕ + su;v)∗(y)− δ(ϕ;v)∗(y)

s
fY (y)dy

=
∫
Y

lim
s↓0

δ(ϕ + su;v)∗(y)− δ(ϕ;v)∗(y)

s
fY (y)dy

=
∫
Y

〈Dv(Dϕ∗(y)),Du(Dϕ∗(y))〉fY (y)dy

=
∫
X

〈Dv(x),Du(x)〉fY (Dϕ∗∗(x))det(D2ϕ∗∗(x))dx,

13This part of the argument is analogous to the argument in the proof of Theorem 24.5 in Rockafellar (1997), only
for generalized gradients and not the convex case.
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where the last line follows from the change of variables y = Dϕ∗∗(x). This shows the
formula for the second variation in directions u,v ∈ C(X ).

Let us now turn to the statements about the Fréchet derivative and the continuity of
the second variation in ϕ on some neighborhood Nϕ0 . For this, we need to assume that
ϕ,v,u ∈ C2(X ). We can deal with both the first and second variation simultaneously.
Now, in order for the Fréchet derivative to exist, δMϕ(v) must exist, for all ϕ ∈ C2(K),
in a neighborhood around the minimal ϕ0 ∈ C2(K), for any compact K ⊂ X ◦, and must
be continuous in ϕ (Zeidler, 1985, p. 192). The same holds for continuity of the second
variation. Note that neither the first nor second variation is continuous in any ϕ everywhere
on C2(X ) in general, since the double convex conjugate ϕ∗∗ of some function ϕ ∈ C2(X )

lies in C1,1(X ), but does not possess higher regularity properties in general (Griewank and
Rabier, 1990; Kirchheim and Kristensen, 2001). In particular, we do need to exploit the
(strict) convexity of ϕ0.

The key to proving continuity of δMϕ0(v) and δ2Mϕ0(u,v) in a neighborhood around ϕ0
is therefore to work with the Hessian or Monge–Ampère measure (Trudinger and Wang,
2008, Sect. 2.2). In fact, recall that for any differentiable convex function f at a point x, its
gradient Df coincides with the Normal map at this point. Therefore, we can, for general and
not necessarily differentiable convex functions f, define a measure via the Normal mapping
Nf (x)

Nf (x) := {y ∈ Y : y is the gradient of a local supporting function of f at x}.
For any subset S ⊂ X , we then define Nf (S) =⋃

x∈S Nf (x). The Monge–Ampère measure
μf is then defined on the Borel σ -algebra on X as

μf (S) := Leb(Nf (S)) for all Borel sets S ⊂ X ,

where Leb(S) denotes Lebesgue measure of the Borel set S. It is a standard result that the
Monge–Ampère measure is an actual measure (Trudinger and Wang, 2008, Sect. 2.2). If the
function f ∈ C2(X ), then

μf (S) = Leb(Df (S)) =
∫

S
det(D2f (x))dx.

Applying this to our setting, we set f ≡ ϕ∗∗. Now, fix some compact K ⊂ X ◦ and pick a
sequence {ϕn}n∈N ∈ C2(X ) which converges to ϕ0 in the topology induced by the Hölder
norm ‖ · ‖C2(K). From this, it follows directly that ϕ∗∗

n ∈ C1,1(K), for every n (Kirchheim
and Kristensen, 2001). Now, we want to prove that this implies that ϕ∗∗

n → ϕ0 uniformly
on K. For this, notice that since ϕ∗∗

n are convex functions, they converge uniformly on K to
some convex function f on K if they converge pointwise (Rockafellar, 1997, Thm. 10.8).
We therefore need to show that this f must coincide with ϕ0. For this, note that since ‖ϕn −
ϕ0‖C2(K) → 0, it holds that, for every point x ∈ K, there exists a large enough nx such that
the functions ϕn for n ≥ nx satisfy

ϕn(x′) > ϕn(x)+〈Dϕn(x),x′ − x〉
by strict convexity of ϕ0. Now, by definition of the closed convex envelope of a function,
i.e., the double convex conjugate, it holds that

ϕ∗∗
n (x) = sup{〈s,x〉−b : 〈s,x′〉−b ≤ ϕn(x′) for all x′ ∈ X ,withb ∈ R,s ∈ Y},
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which directly implies that ϕ∗∗
n (x) must coincide with ϕn(x) for those points x, where ϕn is

strictly convex. As n → ∞, ϕ∗∗ must therefore converge pointwise and by convexity also
uniformly to the strictly convex ϕ0.

Now, note that ϕ∗∗
n → ϕ0 uniformly on K ⊂ X ◦ implies that μϕ∗∗

n
→ μϕ0 weakly

(Trudinger and Wang, 2008, Lem. 2.2). Therefore, since v,u ∈ C2(X ) and fY and fX
are at least in C2(Y) and C2(X ) by Assumption 1, it follows by the definition of weak
convergence that both

∫
K

v(x)fY (Dϕ∗∗
n (x))det(D2ϕ∗∗

n (x))dx →
∫

K
v(x)fY (Dϕ0(x))det(D2ϕ0(x))dx and∫

K
〈Dv(x),Du(x)〉fY (Dϕ∗∗

n (x))det(D2ϕ∗∗
n (x))dx

→
∫

K
〈Dv(x),Du(x)〉fY (Dϕ0(x))det(D2ϕ0(x))dx,

which implies that the second variation is continuous in ϕ in a neighborhood around ϕ0, so
that the Hadamard derivative M′(ϕ0) coincides with the Fréchet derivative (Zeidler, 1985,
p. 192). In particular, setting v ≡ u, it follows from this that, for every ε > 0, there exists
some η(ε) > 0 such that

∣∣∣δ2Mϕ(v,v)− δ2Mϕ0(v,v)
∣∣∣

≤
∫

K

∣∣∣‖Dv(x)‖2
[
fY (Dϕ∗∗(x))det(D2ϕ∗∗(x))− fY (Dϕ0(x))det(D2ϕ0(x))

]∣∣∣dx

≤
∫

K

∣∣∣fY (Dϕ∗∗(x))det(D2ϕ∗∗(x))− fY (Dϕ0(x))det(D2ϕ0(x))
∣∣∣dx‖Dv(x)‖2∞,K

≤ ε‖v‖2
C2(K)

for ‖ϕ −ϕ0‖C2(K) ≤ η(ε),

where ‖ · ‖∞,K denotes the supremum norm on K. The third line follows from Hölder’s

inequality and the fact that supx f 2(x) = (supx f (x)
)2 for a nonnegative function f. The fourth

line follows from the definition of the Hölder norm and from the sequence definition of the
continuity of the second variation in ϕ we have shown above.

Finally, we can show that the second variation is a bounded bilinear functional. Since X
is compact and PX a probability measure, it follows that v ∈ L2(PX) by Hölder’s inequality,
as v ∈ C2(X ) and hence ‖v‖∞ < +∞. Linearity of the second variation in both arguments
v follows from the fact that the derivative D is a linear operator and that the inner product is
linear in both arguments. To see continuity of the second variation, note that we can write
δ2Mϕ0(v,v) = ‖Dv‖2

L2(fY (Dϕ0(x))det(D2ϕ0(x))dx)
.

Now, since the measure fY (Dϕ0(x))det(D2ϕ0(x))dx is a probability measure, it holds that
‖Dv‖L2(fY (Dϕ0(x))det(D2ϕ0(x))dx) ≤ ‖Dv‖∞. Moreover, note that D : C2(K) → C1(K) is a

bounded linear operator by the definition of the space C2(X ), so that ‖Dv‖∞ ≤ c‖v‖∞, for
all v ∈ C2(K) and some 0 < c < +∞. This implies that ‖Dv‖L2(fY (Dϕ0(x))det(D2ϕ0(x))dx) ≤
c‖v‖∞, which shows that δ2Mϕ0(v,v) is a continuous linear operator on C2(X ◦). The result
for the boundedness of the bilinear operator δ2Mϕ0(v,u) follows from an analogous argu-
ment, only using the operator norm ‖δ2Mϕ0‖B = inf{c > 0 : |δ2Mϕ0(u,v)| ≤ c‖u‖∞‖v‖∞}
for this bilinear functional. �
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B.2. Proof of Theorem 1.

We split its proof into several lemmas to make it easier to follow. The structure of the proof
is as follows. Lemma 1 is the core of the proof, as it provides the regularity properties of the
Monge–Kantorovich problem. Lemma 2 below uses Caffarelli’s regularity theory to connect
the smoothness of the potential function ϕ to the smoothness of the respective density
functions. Lemma 3 below provides a connection between the convergence properties of
the density functions and the potential function of the Brenier map, proving convergence
in Hölder norm of ϕ̂n to ϕ0. Lemma 4 below lets us bound the L2 norm of the difference
of the convex conjugates of the potential function of the Brenier map and another strictly
convex function by the difference of these functions themselves. We need this to bound the
L2 bracketing numbers of ϕ∗ −ϕ∗

1 by the L2 bracketing numbers of ϕ0 −ϕ1.
Finally, the main proof of the theorem consists of checking the stochastic equicontinuity

condition and the local identification condition that the optimum is well-separated required
in Theorem 3.2.5 of van der Vaart and Wellner (2013). The local identification condition
follows from the Poincaré inequality and the properties of the Monge–Kantorovich problem
proved in Lemma 1. The equicontinuity follows from the lemmas and the same proof as
Theorem 3.2.5 in van der Vaart and Wellner (2013).

Let us also introduce some notation. The symbol�means “less than or equal to a constant
multiple of.” We mostly work in subspaces of Lp(P) or C, which are AL or AM spaces,
respectively, with partial orders g ≤ f if g(x) ≤ f (x), for P-almost every x, and g ≤ f if
g(x) ≤ f (x), for every x, respectively. Based on this, we can define brackets [fL;fU] in the
sense that f ∈ [fL;fU] if fL ≤ f ≤ fU in the respective partial order. An ε-bracket is a bracket
[fL;fU] with ‖fL − fU‖ < ε. The bracketing number N[](ε,F,‖·‖) is the minimal number of
brackets of size ε > 0 which cover F . The letters c,c′ denote general constants, which can
represent different values in different inequalities, �a� denotes the largest integer smaller or
equal to a, and �a� denotes the smallest integer larger or equal to a.

As discussed in the main text, the optimal solution (ϕ0,ψ0) to the semi-dual problem

min
ϕ,ψ

∫
X

ϕ(x)fX(x)dx+
∫
Y

ψ(y)fY (y)dy

s.t. ϕ(x)+ψ(y) ≤ ‖x− y‖2, ϕ ∈ C(X ),ψ ∈ C(Y)

can be shown to always be convex conjugates, i.e., the optimal solution can be written as
(ϕ0,ϕ

∗
0 ), see the first step in the proof of Proposition 3.1 in Brenier (1991); we can therefore

write the objective function as

M(ϕ) =
∫
X

ϕ(x)fX(x)dx+
∫
Y

ϕ∗(y)fY (y)dy. (B.6)

One key step in the proof is to connect the regularity of the densities fX and fY to the
regularity of the potential function ϕ. We do this by using the interior Schauder estimates
proved in the seminal article Caffarelli (1990), which we state in the following.

LEMMA 2 (Regularity of ϕ). Under Assumption 1, the potential function of the Brenier

map, ϕ, between PX and PY lies in Cs+2,α
loc (X ◦). Moreover,

Dϕ∗ = (Dϕ)−1

and ϕ∗ as a mapping between PY and PX lies in Cs+2
loc (Y◦).
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Proof. Assumption 1 guarantees that fX ∈ Cs,α
loc (X ◦) and fY ∈ Cs,α

loc (Y◦), for every
α ∈ (0,1). Based on this, it follows directly from Theorem 2 in Caffarelli (1990) that
ϕ ∈ Cs+2,α

loc (X ◦). Moreover, since both PX and PY are absolutely continuous, it holds that

Dϕ∗ ◦Dϕ(x) = x and Dϕ ◦Dϕ∗(y) = y,

i.e., both ϕ and ϕ∗ are strictly convex functions, see Villani (2003, Thm. 2.12(iv)). From
this and the fact that ϕ lies in Cs+2

loc (X ◦), it follows from the inverse function theorem that

ϕ∗ is at least in Cs+2
loc (Y◦) (Rockafellar, 1977). �

Another crucial step in the proof of Theorem 1 will be to show that the potentials of the
empirical Brenier map, ϕ̂n, converge to their population counterpart ϕ0 in Hölder norm.
For this, we exploit recent ideas from the regularity theory of the Monge–Ampère equation,
especially from de Philippis and Figalli (2013), as well as standard Schauder estimates. We
do this in the next lemma.

LEMMA 3. If ‖f̂ X
hn

− fX‖Cs,α
loc (X ◦) → 0 and ‖f̂ Y

h′
n
− fY‖Cs,α

loc (Y◦) → 0 and the respective

supports of f̂ X
n and f̂ Y

n converge in the Hausdorff metric to X and Y as n → ∞, then

‖ϕ̂n −ϕ0‖
Cs+2,α

loc (X ◦) → 0 as n → ∞.

Proof. We prove the result for s = 0, as higher orders follow straightforwardly from
the “bootstrapping” procedure for uniformly elliptic second-order PDEs (Gilbarg and
Trudinger, 1998, p. 4 and Chap. 8). We first want to show that∥∥∥∥∥∥

f̂ X
hn

f̂ Y
h′

n
◦Dϕ̂n

− fX
fY ◦Dϕ0

∥∥∥∥∥∥
Cα

loc(X ◦)

→ 0 as n → ∞,

which will turn out to be the right-hand side of the Monge–Ampère equation for the optimal
transport problem. To see this, define

g(x) := fX(x)

fY (Dϕ0(x))
and ĝn(x) := f̂ X

hn
(x)

f̂ Y
h′

n
(Dϕ̂n(x))

,

and both ĝn and g are in Cα
loc(X

◦), since all densities are bounded below and above on their
support. From standard stability theorems on the Brenier map Dϕ (Proposition 50 in Lindsey
and Rubinstein (2017) Lindsey and Rubinstein (2017) and Corollary 5.23 in Villani (2003)
Villani (2008)), it follows that Dϕ̂n converges to Dϕ0 in measure inside X . In particular,
by Cafarelli’s regularity theory (Lemma 2), Dϕ̂n are locally uniformly Hölder continuous
maps, so they converge locally uniformly to Dϕ0 (de Philippis and Figalli, 2013, p. 999).
This implies that f̂ Y

h′
n
◦ Dϕ̂n → fY ◦ Dϕ0 in Cα

loc(X
◦). Also, ‖f̂ X

hn
− fX‖Cα

loc(X ◦) → 0. This

implies ‖ĝn −g‖Cα
loc(X ◦), as required.

Recall that ϕ̂n and ϕ0 are all strictly convex since the densities are all absolutely
continuous with respect to Lebesgue measure. Therefore, we can use the exact same
reasoning as in the proof of Theorem 1.2 in de Philippis and Figalli (2013) to write the
Monge–Ampère equation for this optimal transport problem. To do so, we first fix some
x0 ∈ X ◦ and some radius r > 0 such that the ball Br(x0) of radius r around x0 lies in X ◦.
By the strict convexity of ϕ0, we can find a linear function l(z) := a ·z+b such that the open
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set Z := {z : ϕ0(z) < ϕ0(x0)+ l(z)} is nonempty and compactly supported inside Br/2(x0).
Therefore, by the uniform convergence of ϕ̂n to ϕ0 (which follows from a normalization
ϕ̂n(x0) = ϕ0(x0) and the fact that Dϕ̂n converges to Dϕ0 locally uniformly in conjunction
with the convexity of ϕ0 and ϕ̂n) and the fact that the gradient Dϕ0 is normal to l on ∂Z,
it holds that Zn := {z : ϕ0(z) < ϕ0(x0)+ l(z)} are nonempty convex sets which converge in
the Hausdorff distance to Z. Moreover, the maps wn := ϕ̂n − l solve the following Dirichlet
problem in the Aleksandrov sense:{

det(D2wn) = ĝn in Zn

wn = 0 on ∂Zn.

Analogously, the map w := ϕ0 − l solves the Dirichlet problem{
det(D2w) = g in Z

w = 0 on ∂Z.

Importantly, since l is linear, the Monge–Ampère measures14 of ϕ and w coincide.
We can therefore subtract a scaled version, by some fixed ε ∈ (0,1), of the first equation

from the second equation and define vn := w − εwn. This is not a convex function in
general. We therefore work with the convex envelope of w − (1 − ε)wn, which we denote
by �w−(1−ε)wn .15 Since wn converges to the strictly convex w locally uniformly by the fact
that Dϕ̂n converges to Dϕ0 locally uniformly, it holds that �w−(1−ε)wn converges uniformly
to �εw inside a compact K ⊂ X ◦. Furthermore, for large enough n, the convex envelope
�w−(1−ε)wn almost coincides with εw, since the latter is strictly convex. Therefore, the
Monge–Ampère measure of vn = w − (1 − ε)wn is uniformly elliptic away from the
boundary of its support and vn ∈ Cs,α

loc (X ) by an application of Caffarelli’s regularity theory
using Lemma 2. We can hence apply standard Schauder estimates for uniformly elliptic
PDEs.

In particular, by Theorem 6.2 in Gilbarg and Trudinger (1998), the following estimate
holds:

‖vn‖C2,α(Br/2(x0))
≤ c(‖g− εĝn‖Cα(Br(x0)) +‖vn‖L∞(Br(x0))),

for some constant 0 < c < +∞. Now, the first term on the right-hand side converges to zero
on X ◦ if we let ε → 0 from what we have shown above. The second term also converges
to zero if we let ε → 0 by the fact that Dϕ̂n converges uniformly to Dϕ0. Since x0 was
arbitrary, this shows that

‖ϕ̂n −ϕ0‖
C2,α

loc (X ◦) → 0.
�

In addition, when deriving the degree of continuity of the objective function, we
frequently need to relate the distances ‖ψ∗ −ϕ∗‖Lp(PY ) to ‖ψ −ϕ‖Lp(PX), where ψ is some
strictly convex function and ϕ is the potential function of the Brenier map transporting PX
onto PY . For this, we need the following lemma which lets us bound differences of convex
conjugates above by their double convex conjugates in the Lp norm, 1 ≤ p ≤ +∞.

14For a definition of Monge–Ampère measures, see the proof of Lemma 1.
15We defined the convex envelope in the proof of Lemma 1 as the double convex conjugate of a function.
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LEMMA 4. Let ψ : Rd → R be a proper strictly convex function. If ϕ is the potential
function of the Brenier map transporting PX onto PY , where both PX and PY are absolutely
continuous with respect to Lebesgue measure, then it holds that

‖ψ∗ −ϕ∗‖Lp(PY ) ≤ C‖ψ −ϕ‖Lp(PX), (B.7)

for p ∈ [1,∞] and a constant C < +∞. In the cases p = 1 and p = +∞, C = 1.

For the supremum norm, C = 1 readily follows from the definition of convex conjugates
for general proper convex functions. We prove a similar result for the Lp norm, 1 ≤ p < ∞,
in order to work with ϕ and not its convex conjugate ϕ∗ which is more difficult to handle
in our setting. Stern (2010) provides an expression for C in the case p ∈ (1,∞) in terms of
the Jacobian.

Proof. We define the set H := {
x ∈ X : ψ∗(Dϕ(x)) > ϕ∗(Dϕ(x))

}
and write

‖ψ∗ −ϕ∗‖p
Lp(PY )

=
∫

|ψ∗(y)−ϕ∗(y)|pdPY (y)

=
∫

|ψ∗(Dϕ(x))−ϕ∗(Dϕ(x))|pdPX(x)

= −
∫

H

[
ϕ∗(Dϕ(x))−ψ∗(Dϕ(x))

]p dPX(x)

−
∫
X \H

[
ψ∗(Dϕ(x))−ϕ∗(Dϕ(x))

]p dPX(x),

where the first line follows from the fact that the Brenier map Dϕ transports PX onto PY .
For the following, it is important to note that both integrals are nonpositive. Now, work with
each term separately. We have

0 ≤−
∫

H

[
ϕ∗(Dϕ(x))−ψ∗(Dϕ(x))

]p dPX(x)

=−
∫

H

[
〈x,Dϕ(x)〉−ϕ(x)−〈(Dψ)−1(Dϕ(x)),Dϕ(x)〉+ψ

(
Dψ−1(Dϕ(x))

)]p
dPX(x)

=−
∫

H

[
〈x− (Dψ)−1(Dϕ(x)),Dϕ(x)〉−ϕ(x)+ψ

(
Dψ−1(Dϕ(x))

)]p
dPX(x)

=
∫

H

[
〈(Dψ)−1(Dϕ(x))− x,Dϕ(x)〉+ϕ(x)−ψ

(
Dψ−1(Dϕ(x))

)]p
dPX(x),

where the second line follows from the representation of the convex conjugate f ∗ of a
differentiable function f, which reads

f ∗(y) = 〈(Df )−1 (y),y〉− f
(
(Df )−1 (y)

)
,

see Rockafellar (1997, p. 256). Replacing f by ϕ and writing y = Dϕ(x), we obtain

ϕ∗(Dϕ(x)) = 〈x,Dϕ(x)〉−ϕ(x);
analogously, replacing f by ψ , we obtain

ψ∗(Dϕ(x)) = 〈(Dψ)−1 (Dϕ(x)),Dϕ(x)〉−ψ
(
(Dψ)−1(Dϕ(x))

)
.
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Now, we make use of the cyclic monotonicity of the (sub)gradient of a convex function;
in fact, if f is a proper convex function, then its gradient is cyclically monotone in the sense
that for every set of points {xi}i=1,...,n it holds that

〈xi − xi−1,Df (xi−1)〉 ≤ f (xi)− f (xi−1),

see Rockafellar (1997, p. 238). Therefore,∫
H

[
〈(Dψ)−1(Dϕ(x))− x,Dϕ(x)〉+ϕ(x)−ψ

(
Dψ−1(Dϕ(x))

)]p
dPX(x)

≤
∫

H

[
ϕ
(

Dψ−1(Dϕ(x))
)

−ψ
(

Dψ−1(Dϕ(x))
)]p

dPX(x),

since the integral is nonnegative. Analogously, we can write for the second term

0 ≤ −
∫
X \H

[
ψ∗(Dϕ(x))−ϕ∗(Dϕ(x))

]p dPX(x)

−
∫
X \H

[
〈(Dψ)−1(Dϕ(x)),Dϕ(x)〉−ψ

(
Dψ−1(Dϕ(x))

)
−〈x,Dϕ(x)〉+ϕ(x)

]p

dPX(x)

= −
∫
X \H

[
〈(Dψ)−1(Dϕ(x))− x,Dϕ(x)〉+ϕ(x)−ψ

(
Dψ−1(Dϕ(x))

)]p
dPX(x)

=
∫
X \H

[
ψ
(

Dψ−1(Dϕ(x))
)

−〈(Dψ)−1(Dϕ(x))− x,Dϕ(x)〉−ϕ(x)
]p

dPX(x),

where the second line again follows from the representation of the convex conjugate of a
differentiable function if we replace f by ψ and write y = Dϕ(x) in the above formula. Now,
by cyclic monotonicity just as above, we can write∫
X \H

[
ψ
(

Dψ−1(Dϕ(x))
)

−〈(Dψ)−1(Dϕ(x))− x,Dϕ(x)〉−ϕ(x)
]p

dPX(x)

≤
∫
X \H

[
ψ
(

Dψ−1(Dϕ(x))
)

−ϕ
(

Dψ−1(Dϕ(x))
)]p

dPX(x),

since the integral is nonnegative.
Putting both terms together again, we therefore have∫
|ψ∗(Dϕ(x))−ϕ∗(Dϕ(x))|pdPX(x)

≤
∫ ∣∣∣ϕ(Dψ−1(Dϕ(x))

)
−ψ

(
Dψ−1(Dϕ(x))

)∣∣∣p dPX(x).

Now, note that we can write the last line as∫ ∣∣∣ϕ((Dψ)−1(Dϕ(x))
)

−ψ
(
(Dψ)−1(Dϕ(x))

)∣∣∣p dPX(x)

=
∫

|ϕ (x)−ψ (x) |pdPX�(Dψ)−1(Dϕ)(x) = ‖ϕ −ψ‖p
Lp(PX�(Dψ)−1(Dϕ))

,
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where PX�(Dψ)−1(Dϕ) is the pushforward measure of PX via (Dψ)−1(Dϕ). But note that
we then have

‖ϕ −ψ‖p
Lp(PX�(Dψ)−1(Dϕ))

≤ C‖ϕ −ψ‖p
Lp(PX)

,

which follows from Corollary 2 in Stern (2010), which also provides the expression for C
in terms of the Jacobian. The fact that a change of variables is a lattice isometry between
L1 spaces (Aliprantis and Border, 2006, Cor. 13.47) implies that, for p = 1, we have C = 1.
Putting everything together, we have

‖ψ∗ −ϕ∗‖p
Lp(PY )

≤ C‖ϕ −ψ‖p
Lp(PX)

and taking the pth root on both sides gives the claim. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. In order to obtain the rate of convergence of the estimator, we
want to apply Theorem 3.2.5 in van der Vaart and Wellner (2013). For this, we have to show
that the minimum of M(ϕ) is well-separated and to obtain the degree of smoothness of the
objective function M(·). In the following, we denote by the argument that minimizes M(ϕ)

by ϕ0. We split the proof into three parts: in the first part, we show that the minimum of M
is well-separated. In the second part, we derive the degree of continuity of M. In the third
part, we put everything together and derive the rate of convergence. We divide the second
part, deriving the degree of continuity of M, into two further steps.

First part: The minimum is well-separated.
A sufficient condition for the minimum of the Kantorovich problem to be well-separated

is that the second variation is linear in both arguments and continuous in v, as well as strongly
positive in the sense that there exists a constant c > 0 such that

δ2Mϕ0(v,v) ≥ cG(v)

for some nonnegative function G which satisfies G(0) = 0, see Theorem 3.2.5 in van der
Vaart and Wellner (2013). Recall from Lemma 1 that the second variation δ2Mϕ0(v,v) in
directions v ∈ C2(X ) takes the form

δ2Mϕ(v,v) =
∫
X

‖Dv(x)‖2fY (Dϕ∗∗(x))det(D2ϕ∗∗(x))dx.

Now, note that strong positivity of the second variation of M(·) holds by Assumption 3 if
we define

G(v) := VarPX (v) =
∫

|v(x)|2dPX(x)−
(∫

v(x)dPX

)2
,

because then the inequality just reads

δ2Mϕ0(v,v) =
∫
X

‖Dv(x)‖2fX(x)dx ≥ cVarPX (v), (B.8)

as ϕ0 satisfies the Monge–Ampère equation by Lemma 1. The optimum is hence well-
separated. We can therefore turn to the longer part of the proof, which deals with deriving
the correct modulus of continuity of the objective function M(ϕ).

Second part: Finding the correct degree of continuity of M(ϕ). In this part, we need to
find the proper degree of continuity of the empirical process of the objective function, i.e.,
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we need to find the correct function φn such that

E∗ sup√
VarPX (ϕ−ϕ0)<δ

√
n
∣∣∣(M̂n −M

)
(ϕ)−

(
M̂n −M

)
(ϕ0)

∣∣∣� φn(δ), (B.9)

where

M̂n(ϕ) :=
∫
X

ϕ(x)d
(
P

X
n ∗Khn

)
(x)+

∫
Y

ϕ∗(y)d
(
P

Y
n ∗Khn

)
(y)

is the smoothed empirical process and E∗ is the outer expectation with respect to X and
Y. From now on, we restrict the setting to compact subsets of X ◦ and Y◦. To obtain the
correct degree of smoothness φ, we use the multivariate generalization of Theorem 6 in Giné
and Nickl (2008), which provides the optimal rate of convergence in terms of bandwidths
for kernel density estimators. In order to do this, we need to show that ϕ and its convex
conjugate ϕ∗ lie in Donsker classes and that the kernel density estimators converge in the
correct Hölder spaces. We start with the convergence of the kernel density estimators.

Step 1: Here, we construct appropriate function classes for ϕ̂n −ϕ0 and their convolved
analogs. To do so, recall that by assumption fX ∈ Cs,α

loc (X ◦) and fY ∈ Cs,α
loc (Y◦). Therefore,

by Lemma 2, it follows that ϕ ∈ Cs+2,α
loc (X ◦) and ϕ∗ ∈ Cs+2

loc (Y◦). Furthermore, Lemma 3

implies that ϕn converges in Cs+2,α
loc (X ◦) if fn converges in Cs,α

loc (X ◦), so that we can focus
on the classes of functions

F := {ϕ −ϕ0 : ϕ,ϕ0 ∈ Cs+2,α
loc (X ◦) and strictly convex} and

F∗ := {ϕ∗ −ϕ∗
0 : ϕ,ϕ0 ∈ Cs+2,α

loc (X ◦) and strictly convex.}
Based on this, the fact that PX and PY are probability measures immediately implies by
Hölder’s inequality that all functions in F and F∗ are square integrable.

It is hence natural to consider the classes of functions

Fδ := {‖ϕ −ψ‖L2(PX) < δ : ϕ,ψ ∈ F} and F∗
δ := {‖ϕ∗ −ψ∗‖L2(PY ) < δ : ϕ∗,ψ∗ ∈ F},

which form a δ-covering of F and F∗. The corresponding envelope functions are

FFδ
(x) := sup

ϕ,ψ∈Fδ

|ϕ(x)−ψ(x)| and

FF∗
δ
(y) := sup

ϕ,ψ∈F∗
δ

|ϕ∗(y)−ψ∗(y)|

and are also square integrable. Note that since the variance is bounded above by the L2 norm,
it holds that the brackets measured in the variance are smaller than the brackets measured
in L2 norm, so that a δ-covering of F in L2 norm is a δ-covering of F in variance.

Step 2: Here, we put everything together, showing that φn(δ) = δ
1− d−4

2s+2α based on the
previous step. To do so, we first write

√
n
∣∣∣(M̂n −M

)
(ϕ)−

(
M̂n −M

)
(ϕ0)

∣∣∣
= √

n

∣∣∣∣
∫

(ϕ −ϕ0)d
(
P

X
n ∗Khn −PX

)
+
∫

(ϕ∗ −ϕ∗
0 )d

(
P

Y
n ∗Khn −PY

)∣∣∣∣
≤ √

n

∣∣∣∣
∫

(ϕ −ϕ0)d
(
P

X
n ∗Khn −PX

)∣∣∣∣+√
n

∣∣∣∣
∫

(ϕ∗ −ϕ∗
0 )d

(
P

Y
n ∗Khn −PY

)∣∣∣∣
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and consider each term separately. In fact, we focus on the first term, as the second term is
completely analogous.

We use a similar idea to Radulović and Wegkamp (2000) in the following. For this, we
write∫

(ϕ −ϕ0)d(PX
n ∗Khn −PX)

=
∫

(ϕ −ϕ0)d(PX
n ∗Khn −EPX

n ∗Khn)+
∫

(ϕ −ϕ0)d(EPX
n ∗Khn −PX).

The second term, the bias, goes to zero under Assumptions 1 and 2, which follows from a
generalization of the proof of Theorem 6 in Giné and Nickl (2008) to the multivariate case,
whose assumptions are implied by ours; the proof for this is the same as the proof of the
univariate case in their paper up to some minor notational changes and is therefore omitted.
We can therefore focus on the first term and establish its degree of continuity. To do so, note
that we can write∫
X ◦

(ϕ(x)−ϕ0(x))d(PX
n ∗Khn −EPX

n ∗Khn)(x)

=
∫
X ◦

(ϕ(x)−ϕ0(x))dPX
n ∗Khn(x)−

∫
X ◦

(ϕ(x)−ϕ0(x))d(EPX
n ∗Khn)(x)

=
∫
X ◦

∫
(ϕ(x+ x′)−ϕ0(x+ x′))Khn(x

′)dx′dPX
n (x)

−
∫
X ◦

∫
(ϕ(x+ x′)−ϕ0(x+ x′))Khn(x

′)dx′d(EPX
n )(x)

=
∫
X ◦

(ϕ̄(x)− ϕ̄0(x))dPX
n (x)−

∫
X ◦

(ϕ̄(x)− ϕ̄0(x))dPX(x)

=
∫
X ◦

(ϕ̄(x)− ϕ̄0(x))d(PX
n −PX)(x),

where the third line follows from the definition of convolution of measures (Folland, 2013,
p. 270) and the fourth line follows from the fact that the empirical measure PX

n is an unbiased
estimator of PX . Here, we have defined

ϕ̄(x)− ϕ̄0(x) :=
∫

(ϕ(x+ x′)−ϕ0(x+ x′))Khn(x
′)dx′.

We therefore define the classes of functions

Fn := {ϕ̄ − ϕ̄0 : ϕ −ϕ0 ∈ F},
which change with n; based on these, we consider the classes

Fn
δ := {ϕ̄ − ψ̄ ∈ Fn : ‖ϕ −ψ‖L2(PX) < δ}

with corresponding envelope functions

FFn
δ
(x) := sup

ϕ̄,ψ̄∈Fn
δ

|ϕ̄(x)− ψ̄(x)|.

By Proposition 8.10 in Folland (2013) and the fact that K is integrable and ϕ,ϕ0 ∈ Cs+2,α ,
it follows that ϕ̄,ϕ̄0 ∈ Cs+2,α .
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Now we want to relate the bracketing entropies logN[]

(
εX,Fn

δ,‖ · ‖L2(PX)

)
to the

bracketing entropy logN[]
(
εX,Fδ,‖ · ‖L∞(PX)

)
. This works, because we assume the kernel

K to be nonnegative on X . In fact, a bracket [ϕL;ϕU] stays a bracket (of possibly different
size) [ϕ̄L;ϕ̄U] if we replace ϕL by ϕ̄L and ϕU by ϕ̄U . Indeed, by assumption, it holds that
ϕL(x) ≤ ϕ(x) ≤ ϕU(x), for all x ∈ X ◦ and every ϕ ∈ [ϕL;ϕU], which is the standard partial
order on C(X ◦). Now, for any ϕ ∈ [ϕL;ϕU], we have

ϕ̄L(x)− ϕ̄(x) =
∫
X ◦

(ϕL(x+ x′)−ϕ(x))Khn(x
′)dx′ ≤ 0,

since Khn(x
′) is nonnegative on X ◦; the analog reasoning holds for the upper bound, which

shows that [ϕ̄L;ϕ̄U] is a bracket when [ϕL;ϕU] is. This is the reasoning used in Radulović
and Wegkamp (2000) for instance.

We also need to find an appropriate bound for the brackets. To do so, first calculate16

[∫
|ϕ̄(x)− ϕ̄0(x)|2 dPX(x)

]1/2

≤
[∫ (∫ ∣∣ϕ(x+ x′)−ϕ0(x+ x′)

∣∣Khn(x
′)dx′

)2
dPX(x)

]1/2

≤
∫ (∫ ∣∣ϕ(x+ x′)−ϕ0(x+ x′)

∣∣2 dPX(x)

)1/2
Khn(x

′)dx′,

where the third line follows from Minkowski’s inequality for integrals (Folland, 2013, Thm.
6.19). Therefore,∫

(ϕ̄(x)− ϕ̄0(x))2 dPX(x)

≤
[∫ (∫ (

ϕ(x+ x′)−ϕ0(x+ x′)
)2 dPX(x)

)1/2
Khn(x

′)dx′
]2

≤
∫ ∫ (

ϕ(x+ x′)−ϕ0(x+ x′)
)2 dPX(x)Khn(x

′)dx′,

where the third line follows from Jensen’s inequality and the fact that the kernel integrates
to one. Now, by a change of variables and a Taylor expansion, we have

=
∫ ∫ (

ϕ(x+ x′)−ϕ0(x+ x′)
)2 dPX(x)Khn(x

′)dx′

=
∫ ∫

(ϕ(x)−ϕ0(x))2 fX(x− x′)dxKhn(x
′)dx′

=
∫ ∫

(ϕ(x)−ϕ0(x))2

⎡
⎣fX(x)− x′ ∑

|k|=1

DkfX(x)

+1

2
(x′)2

∑
|k|=2

DkfX((1− t)x+ tx′)

⎤
⎦dxKhn(x

′)dx′

16We drop the region of integration, X ◦ in this derivation in order to save on notation.
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=
∫

(ϕ(x)−ϕ0(x))2 dPX(x)

+
∫ ∫

(ϕ(x)−ϕ0(x))2 1

2

∑
|k|=2

DkfX((1− t)x+ tx′)(x′)2Khn(x
′)dxdx′,

where the third line follows from the fact that PX(dx) = fX(x)dx and a change of variables
and the last line follows from the fact that

∫
K(x′)dx′ = 1 and

∫
x′K(x′)dx′ = 0. Now, since

fX ∈ Cs+1
loc and is bounded below on its support by γ , it therefore holds that∫

(ϕ̄(x)− ϕ̄0(x))2 dPX(x)

≤
∫ ∫ (

ϕ(x+ x′)−ϕ0(x+ x′)
)2 Khn(x

′)dx′dPX(x)

≤
∫

(ϕ(x)−ϕ0(x))2 dPX(x)+ 1

2
γ ‖f‖Cs+1 h2d

∫
(ϕ(x)−ϕ0(x))2 dPX(x)

∫
(z)2K(z)dz

= (1+o(1))

∫
(ϕ(x)−ϕ0(x))2 dPX(x), (B.10)

where the last part of the third line follows from a change of variables zi = h−1x′
i, i =

1, . . . ,d, and the fact that
∫
(g(x))2dx ≤ γ

∫
(g(x))2f (x)dx for any square integrable g. The

exact same reasoning as above works to show that∫ (
ϕ̄∗(y)− ϕ̄∗

0 (y)
)2 dPY (y) ≤ (1+o(1))

∫ (
ϕ∗(y)−ϕ∗

0 (y)
)2 dPY (y)

≤ C(1+o(1))

∫
(ϕ(x)−ϕ0(x))2 dPX(x), (B.11)

for some constant C < +∞, where the second inequality follows from Lemma 4. Since PX
is a probability measure, it follows from Hölder’s inequality that ‖ϕ −ϕ0‖2 ≤ ‖ϕ −ϕ0‖∞.
This, in combination with (B.10) and (B.11), implies that

N[]

(
δ,Fn,‖ · ‖L2(PX)

)
� N[]

(
δ,F,‖ · ‖L2(PX)

)
and

N[]

(
δ,F∗

n,‖ · ‖L2(PY )

)
� N[]

(
δ,F,‖ · ‖L2(PX)

)
(B.12)

by the definition of bracketing numbers.
We can therefore apply Lemma 3.4.2 in van der Vaart and Wellner (2013) which uses

bracketing entropy for the respective empirical processes. The bracketing integrals we
consider are

J̃[](δ,F,L2(PX)) :=
∫ δ

0

√
1+ logN[]

(
εX,F,‖ · ‖L2(PX)

)
dεX .

Since ϕ is Hölder continuous, we can bound, using Corollary 2.7.2 in van der Vaart and
Wellner (2013), for any ε > 0,

logN[]

(
ε,F,‖ · ‖L2(PX)

)
≤ C

(
1

ε

)d/(s+α)

(B.13)

for a universal constant 0 < C < +∞.
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We can now use Lemma 3.4.2 in van der Vaart and Wellner (2013) to bound

E∗ sup
ϕ̄,ϕ̄0∈Fn

√
n

∣∣∣∣
∫

(ϕ̄ − ϕ̄0)d
(
P

X
n −dPX

)∣∣∣∣
� J̃[](δ,F

n
,L2(PX))

(
1+ J̃[](δ,F

n
,L2(PX))

δ2√
n

c

)

� J̃[](δ,F,L2(PX))

(
1+ J̃[](δ,F,L2(PX))

δ2√
n

c

)
and

E∗ sup
ϕ̄∗,ϕ̄∗

0∈F∗,n
√

n

∣∣∣∣
∫

(ϕ̄∗ − ϕ̄∗
0 )d

(
P

Y
n −dPY

)∣∣∣∣
� J̃[](δ,F

∗,n
,L2(PY ))

(
1+ J̃[](δ,F

∗,n
,L2(PY ))

δ2√
n

c′
)

� J̃[](δ,F,L2(PX))

(
1+ J̃[](δ,F,L2(PX))

δ2√
n

c′
)

,

where the first inequalities follow directly from Lemma 3.4.3 in van der Vaart and Wellner
(2013), the constants c and c′ are the constants which uniformly bound the class of Hölder
continuous functions we derived in step 2, and the second inequalities follow from (B.10),
(B.11), and (B.12). In particular, by the fact that the L2 norm dominates the variance, this
implies that we also have a δ-covering of F by the sets Fδ when measured in the variance.

It is here where we need to distinguish between three cases, depending on the smoothness
s and the dimension d. Recalling the bound (B.13), the bracketing integrals converge for
s+α > d

2 , i.e.,

J̃[](δ,F,L2(PX)) :=
∫ δ

0

√
1+ logN[]

(
εX,F,‖ · ‖L2(PX)

)
dεX

�
∫ δ

0

(
1+C

(
1

εX

)d/(s+α)
)1/2

dεX .

We can bound the last line by

∫ δ

0

(
1+C

(
1

εX

)d/(s+α)
)1/2

dεX � δ
1− d

2(s+α) ,

since we can integrate

∫ δ

0

√(
1

ε

)(d/(s+α))

dε = 1

1− d
2s+2α

δ
1− d

2s+2α

and the fact that
√

1+a ≤ 1+√
a, for a ≥ 0.

This shows the first case. For the other two cases, i.e., s + α = d
2 and s + α < d

2 , the
entropy integral as stated does not converge. We therefore have to adjust the bracketing
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integral slightly, which is possible since we can allow for the limit stochastic process to
have a quadratic drift as long as that drift is strictly smaller than the centering function.
This implies that the lower value of the entropy integral needs not to be zero but can be
replaced by min{cδ2, δ

3 } for some small constant c (van der Vaart and Wellner, 2013, p.
326). With this choice, both integrals converge (van der Vaart and Wellner, 2013, p. 330):

∫ δ

min{cδ2, δ
3 }

√(
1

ε

)(d/(s+α))

dε �

⎧⎪⎨
⎪⎩

log
(

1
δ

)
for s+α = d

2(
1
δ

) d−2(s+α)
2(s+α) for s+α < d

2

.

Part 3: Putting everything together. With these bounds and the consistency proved in
Lemma 3, we can now apply Theorem 3.2.5 in van der Vaart and Wellner (2013) in all
three cases to conclude. In fact, the rate of convergence rn is obtained by the requirement

r2
nφn

(
1
rn

)
� √

n, where φn(δ) = J̃[](δ,F,L2(PX))

(
1+ J̃[](δ,F,L2(PX))

δ2√n
c

)
. This gives the

following lower bounds on the rates:

rn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
s+α

2(s+α)+d for s+α > d
2

n1/4

(log(n))1/2 for s+α = d
2

n
1

(s+α)(2(s+α)+d) for s+α < d
2

and concludes the proof. �

B.3. Proof of Proposition 1.

The key for the proof is the following lemma, which is adapted from the proof of Theorem
2.33 in Attouch and Wets (1986).

LEMMA 5. Let ϕ1,ϕ2 be proper strictly convex and bounded potential functions on
every compact subset of X ◦ with Lipschitz-continuous gradients Dϕ1 and Dϕ2 satisfying
Dϕ1(X ◦) = Y◦ = Dϕ2(X ◦). Then, it holds, for all x ∈ X ◦,

‖Dϕ1(x)−Dϕ2(x)‖2 ≤ c(1+max{L1,L2})2 |ϕ1(x)−ϕ2(x)|, (B.14)

where 0 ≤ L1,L2 < +∞ are the Lipschitz constants of Dϕ1 and Dϕ2, respectively, c̄ < +∞
is a constant, and ‖ · ‖ is the euclidean norm.

Proof. Since ϕ1 and ϕ2 are convex, finite everywhere, and differentiable, it follows that,
for any x1 and x2 in X ◦,

ϕ1(x2)−ϕ1(x1) ≥〈Dϕ1(x1),x2 − x1〉,
ϕ2(x1)−ϕ2(x2) ≥〈Dϕ2(x2),x1 − x2〉.
Adding these up while noting that 〈Dϕ2(x2),x1 − x2〉 = −〈Dϕ2(x2),x2 − x1〉, we have, for
all x1,x2 ∈ X ◦,

(ϕ1(x2)−ϕ2(x2))− (ϕ1(x1)−ϕ2(x1)) ≥ 〈Dϕ1(x1)−Dϕ2(x2),x2 − x1〉.
Now, fix x1 and choose a corresponding x2 ∈ (I +Dϕ2)−1 [(I +Dϕ1)(x1)], where I(x) =

x is the identity. To see that this is always possible in our setting, recall that both Dϕ1 and
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Dϕ2 map X ◦ to Y◦. Therefore, the Minkowski sum17 X ◦ +Y◦ ⊂ R
d is such that

(I +Dϕ1)(X ◦) = X ◦ +Y◦ = (I +Dϕ2)(X ◦).
But since ϕ1 and ϕ2 are strictly convex, it follows that Dϕ1 and Dϕ2 are invertible (Villani,
2003, Thm. 2.12(iv)), which means that, for every p ∈ X ◦ +Y◦, there must exist xp ∈ X ◦
such that (I +Dϕ2)(xp) = p. Now, set x2 = xp.

Thus, for all x1 ∈ X ◦ and corresponding x2, we have

‖Dϕ1(x1)−Dϕ2(x2)‖ ≤ |(ϕ1(x2)−ϕ2(x2))− (ϕ1(x1)−ϕ2(x1))|1/2

by definition of the inner product. We now obtain a lower bound for the left-hand side of
the last equation by

‖Dϕ1(x1)−Dϕ2(x1)‖ ≤ ‖Dϕ1(x1)−Dϕ2(x2)‖+‖Dϕ2(x2)−Dϕ2(x1)‖
≤ ‖Dϕ1(x1)−Dϕ2(x2)‖+L2‖x1 − x2‖
= (1+L2)‖Dϕ1(x1)−Dϕ2(x2)‖,

where the first line follows from the triangle inequality, the second line follows from
Lipschitz continuity of Dϕ2, and the third line follows from our choice of x2: note that
x2 ∈ (I +Dϕ2)−1 [(I +Dϕ1)(x1)] implies that x1 − x2 = Dϕ2(x2)−Dϕ1(x1).

Therefore,

‖Dϕ1(x1)−Dϕ2(x1)‖ ≤ (1+L2) |(ϕ1(x2)−ϕ2(x2))− (ϕ1(x1)−ϕ2(x1))|1/2 ,

so that

‖Dϕ1(x1)−Dϕ2(x1)‖2 ≤ (1+L2)2 |(ϕ1(x2)−ϕ2(x2))− (ϕ1(x1)−ϕ2(x1))|
≤ (1+L2)2 |ϕ1(x2)−ϕ2(x2)|+ |ϕ1(x1)−ϕ2(x1)|
≤ (1+L2)2c |ϕ1(x1)−ϕ2(x1)|,

where the last line follows from the fact that ‖ϕ2‖Cs+2,α ≤ c < +∞. Since we can switch
the roles of ϕ1 and ϕ2, it holds

‖Dϕ1(x1)−Dϕ2(x1)‖2 ≤ c(1+max{L1,L2})2 |ϕ1(x1)−ϕ2(x1)|,
which concludes the proof. �

With this lemma, the proof of the proposition is now straightforward.

Proof of Proposition 1. First, the optimum ϕ0 is well-separated with respect to the L2

norm under the normalization (7) as argued in the main text. Second, under Assumptions 1
and 2, we can apply Lemma 5, which gives

‖Dϕ̂n(x)−Dϕ0(x)‖2 ≤ c(1+max{L1,L2})2 ∣∣ϕ̂n(x)−ϕ0(x)
∣∣ .

Integrating both sides with respect to PX , we obtain

‖Dϕ̂n −Dϕ0‖2
L2(PX)

=
∫
X

‖Dϕ̂n(x)−Dϕ0(x)‖2dPX(x)

≤ c(1+max{L1,L2})2
∫
X

∣∣ϕ̂n(x)−ϕ0(x)
∣∣dPX(x).

17The Minkowski sum is defined as X +Y := {x+ y : x ∈ X ,y ∈ Y}.
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We can bound the right-hand side by the fact that PX is a probability measure using Hölder’s
inequality, so that

‖Dϕ̂n −Dϕ0‖2
L2(PX)

≤ c(1+max{L1,L2})2
∫
X

∣∣ϕ̂n(x)−ϕ0(x)
∣∣dPX(x)

≤ c(1+max{L1,L2})2
(∫

X

∣∣ϕ̂n(x)−ϕ0(x)
∣∣2 dPX(x)

)1/2

= c(1+max{L1,L2})2‖ϕ̂n −ϕ0‖L2(PX) = OP∗(
1

rn
).

Taking square roots, this implies that

‖Dϕ̂n −Dϕ0‖L2(PX) = OP∗ (r−1/2
n )

and concludes the proof. �
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