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Abstract

A mathematical model is presented in which the long jump is treated as the motion of a
projectile under gravity with slight drag. The first two terms of a perturbation solution are
obtained and are shown to be more accurate than earlier approximate analytical solutions.
Results from the perturbation analysis are just as accurate as results from various
numerical schemes, and require far less computer time.

The model is modified to include the observation that a long-jumper’s centre of mass is
forward of his feet at take-off and behind his feet on landing.

The modified model is used to determine the take-off angle for the current world long
jump record, resulting in several interesting observations for athletic coaches.

1. Introduction

Every person interested in athletics in general, and field events in particular,
knows that the long jump record has stood since 1968. In the Mexico City
Olympics of that year Bob Beamon of the U.S.A. raised the record from 8.35
metres to 8.90 metres at his one and only attempt. This remarkable achievement
has been the subject of a number of mathematical analyses. Brearley [1] and
Frohlich [3] used a series of approximations to solve the governing equations.
Burghes, Huntley and McDonald [2] solved the original equations numerically
and also produced a slightly different approximate theoretical analaysis which
was later repeated by Ward-Smith [7]. They conclude that the difference between
the numerical and theoretical solutions cannot be detected when the correspond-
ing trajectories are drawn.

However when approximations are made to approximate equations there are
invariably some contributions from the omitted parts of the original equations
that should also have been included. This is the case in all the theoretical

'Mathematics Department, University College, Australian Defence Force Academy
© Copyright Australian Mathematical Society 1986, Serial-fee code 0334-2700/86

246

https://doi.org/10.1017/50334270000005348 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000005348

[2] The long jump record revisited 247

considerations mentioned above. It is my aim to produce a theoretical solution
which is correct to a specified order, and compare the values that can be
computed from it with those from the previous analyses.

2. Long jump model

The long jump athlete can be regarded as a point projectile travelling under the
influence of constant gravity and variable air drag. His initial velocity is assumed
to be known since it can usually be reasonably deduced from known characteris-
tics of his run-up and take-off. Therefore the essential equations governing the
athlete’s jump are

mr = mg — %pAEZCD\‘/ (1)

where m is his mass, F is his position vector at any time 7 after take-off, g is the
acceleration due to gravity, p is the density of the air at the athletics field, 4 is
the cross-sectional area of the athlete in a plane normal to his velocity, Cj, is the
drag coefficient, V(= ) is his velocity, ¥ denotes the unit vector in the direction of
v and a dot denotes differentiation with respect to 7.

The take-off conditions are ¥ = (Vcosa, Vsina) and ¥ = 0 when 7 = 0.

For an athlete the density and the combination 34C/, can be taken as constants
during the long jump.

Y /,Tangent

-
X

Figure 1. The forces on a long jumper.

When equation (1) is resolved into its tangential and normal components, the
governing equations for the athlete’s motion become

. . 1
mb = -mgsiny — EpACDE2 (2)
and

mby = —mgcosy (3)
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witho =V, y =a, x =0, y =0 when 7 = 0. Here ¢ is the angle made by the
tangent with the positive direction of the x-axis. The x-axis is horizontal and the
y-axis is vertical as shown in Figure 1. The position of the athlete at any time 7 is
(X, ) and can be obtained from the solution of equations (2) and (3) using X = &
cos ¢y and y = isiny.
Now equation (3) can be multiplied by cos ¢ and rewritten as
mb d(siny ) /di = mg(sin®y — 1). (4)
The equations (2) and (4) and the initial conditions are nondimensionalised by
writing
o=Vo,i=Vt/g,Xx=Vx/g, §=V?y/g.
With ¥ = siny, the non-dimensional equations for an athlete’s long jump be-

come
v =-¥ - &? (5)
oV =2 -1 (6)

where ¢ = CppAV?2/(2mg), a dash denotes differentiation with respect to ¢, and
v=1,¥ =sina, x=0, y=0whent=0. @)

Here ¢ measures the importance of the drag force contribution in comparison
with the gravity effect. For an athlete performing the long jump the value of ¢ is
small and certainly much less than unity.

3. Solution of the long jump equations

Although the initial-value problem defined by equations (5)—(7) is well-posed
and has a unique solution, no technique is known which produces this solution
exactly. However a number of techniques can be employed to produce various
approximations to the exact solution.

Method 1: Since the system is non-linear the most direct method is to use a
fourth-order Runge-Kutta standard library package and solve this initial-value
problem numerically for v and ¥. Then x and y can be determined from the
numerical solution of the non-dimensional equations

x' =v(l = ¥2)?
y =¥,
with x =y = Owhen ¢ = 0.
It is just as easy numerically to solve equation (1) in its Cartesian components

=l

= —Kx(x2 + 52)"?
y= -5 - Kp(3*+3°)"”

(8)
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with ¥ =0, =0, x= Vcosa, y =V sina when /=0, and where K =
CpAp/(2m). With ¢ = X and n = y the IMSL package DVERK applied to the
two sets of ordinary differential equations for (§,%) and (X, y) will produce
values for these variables. When the j-value reaches zero again, the corresponding
x-value will give the range on the horizontal plane through the projection point.

Method 2: Although the equations (5) and (6) are non-linear, partial progress
can be made with an analytical solution for any values of the parameter e.
Equation (5) can be divided by equation (6) and the resulting Bernoulli-type
differential equation solved to yield

(V) = [(1 — ¥?)sec’a

—%ln

1+ sina
1 — sina

1+ ¥ R w12

1_\1,’)(1—\1’ )—\p}] .
(9)

Although x, y and ¢ can be written in closed form as integrals containing v and

V¥, they can only be evaluated numerically because of the complicated form of

equation (9). Also x or y cannot be calculated directly for a given ¢, as ¥ has to

be determined first of all by direct numerical integration.

The integrals for x, y and ¢ are

=/sma 1)(4)) dd), (10)

+ e{(sinasecza + % ln’

¥ 1 — ¢?
sina__ v2(9)
= ————d s 11
x /\y (- ¢2)1/2 ¢ (11)
sina ¢02(¢)
= d 12
L= 5 4% (12)

where v(¢) is given by equation (9). This method has not been previously applied
to the long jump although it is commonly used for mortar projectiles. The step
size for accurate numerical integration is not as fine as that required for the
Runge-Kutta approach in Method 1, and therefore there is a considerable saving
in computing time by using Method 2.

Method 3: This approximate method was applied to long jumpers by Burghes
et. al. [2] and Ward-Smith [7], but was originally developed by Lamb [6]. The
Cartesian form given by equations (8) is approximated by

,% = —Kx* (13)

= -g — KXy (14)
where it has been assumed that X2 is much greater than y2.
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The solution of equation (13) is
X= %ln(l + KVicosa).

When this is substituted into equation (14) the resulting differential equation can
be solved to yield

2 2 :
- _ gseca|{1l = KV-'sinla - _ KVicosa -
Y=o [(2 + 25 In(1 + KVicosa) 1 (2 + KVicosa) |,
and hence
2 2
—_gsectalll KV sin2a},_ 1. ks
¥ = Sy [(2 + g Kx 4(e 1)|. (15)

The range on the horizontal plane is given by the solution of equation (15) with
y = 0. Although this is a transcendental equation it can be solved to any order of
accuracy by the Newton-Raphson algorithm. However for KV'2 < g the result is

x = (V?%sin2a)/g — (2KV*sin? 2a) /3g>.

Method 4: Brearley [1] uses a similar approach but makes a further approxima-

tion by replacing equation (14) by
y= -z (16)

He therefore obtains the time of flight as 2V sina/g. He states that numerical
checks shows that there is very little difference in using equation (14) or equation
(16) for this problem.

The range on the horizontal plane is therefore given by
( KV?sin2a )

1+ —.

f=%ln

He makes a further approximation by expanding the logarithmic function in
terms of its Maclaurin Series, since KV'? < g, and considers only the first two
terms. His final approximate expression for the range is

x = (V%sin2a)/g —(KV*sin*2a)/2g?,
which differs from the result in Method 3 only in the numerical coefficient of the
second term.

Method 5: Since ¢ < 1 for the long jump trajectory a perturbation procedure
can be used. With
v(t; &) = vy (1) + evy(2) + 0(e?)
and (17)
V(t; e) = V(1) + e¥,(¢) + 0(e?)
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substituted into equations (5), (6) and (7), the equating of terms of like powers of

¢ yields
vy = -¥,, (18)
vo¥y = ¥5 — 1, (19)
vy =¥, — v}, (20)
vo¥y + v ¥ = 2¥¥,, (21)
with initial conditions
vy =1, ¥, = sina, v; =0, ¥, = 0 when 7 = 0. (22)

When ¥, is eliminated from equations (18) and (19) the differential equation
for v, becomes

17 ’ 2
This has a solution
2
vy = {(t — sina)’ + cosza}l/ (23)
since vy > 0 and v, (0) = 1. Therefore from equation (18)

—(t — sina)

¥, = (24)

{(t- sina)’® + coszm}l/2
When ¥, is eliminated from equations (20) and (21) the differential equation is
vevy + 2040y + vy = -4odv},
which has the solution

_ 3(1 = sina) — Jcos?asina

v, = — Lcos?a(t — sina)

{(e - sina)’ + COSZa}l ’

. 1,2
1cosa | (t—sina)+{(t—sma)2+cosza}
_ n :
{(t - sinoz)2 + coszot}l/2 (1 - sina)
_%(t— sina){(t—sina)2+cosza}. (25)
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Therefore equation (20) yields

1 2 1 2 : : 1 4
—1cos?a - icos?asina(z — sina lcosta 1
¥, = 2 ( ) + - —cos’a

{(t- sina)® + coszot}s/2 {(r- sina)” + cos’a} 6

1cos*a(t — sina)

1,2
(t — sina) + {(t —sina)’ + cosza} / '

3/2 Epr
{(t — sina)® + cosza} / (1 - sina)
(26)
Now in terms of non-dimensional variables
y =v¥
= vo¥, + e(vy¥, + v1¥,) + O(€?)
3,2
= _(t — sina) + s[—-;- + %{(t — sina)’ + cosza} ] + 0(e?),
and so
SR L B
y=-3 sina
. . 32 . 1 .
+e ilf(t — sina){(z - sina)’ + cosza} - %t + 11—2 sina + §c0s2a3ma
1,2
+ %cosza(t — sina) {(r - sina)’ + cos’a}
. . 2 2 V2
t—sma) +i{f —sina) + cos‘“a
+ lcos“ozln ( ) +{( ) ) + 0(e?). (27)

8 (1 - sina)
For impact on the horizontal plane through the projection point the time of flight
correct to O(¢) is obtained by writing
t=ty+ et; + O(e?)

and substituting into equation (27) with y = 0. One solution is t; = ¢, = 0 as
expected, while the other is

t, = 2sina,

(28)

po L1 ol 1cos‘a. |1+ sina
1 2 4 8 sina |1 -— sina
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To find the range the time of flight is substituted into the appropriate
expression for x. Now

x' =v(l — ‘1'2)1/2

A

=p,(1 - ‘1'02)1/2 +e|v,(1- ‘1'02)1/2 - ——EQ—OIT/z + 0(€?)
(1- %)

1,2
=cosa + & —%cosasina - %cosa(t - sina){(t — sina)® + cosza}
. o 2, 12
1, (t—sma)+{(t—- sina)” + cos a} 5
—5cos’aln (1 = sma) +0(e?).

Integration yields

t . 1 .2 3
X =1tcosa + ¢ ——2-cosasma - gcosa{(t — sina)” + cosza}

1 3 0 )2 22,1 I
+ 5 cos a{(t— sina)” + cos a} + geosa — 5cos’a
. . 2 2 /2
1 . t—Ssmma) +4{(f —sina) + cos“a
—Ecos3a(t — sina)ln ( ) {((1 — sina)) } + 0(&?).
(29)

Substitution of equation (28) into equation (29) produces finally

) 1 5 . cos’a . |1+ sina
x =sin2a + €|-—cosa — —cosasin“a + - n -
4 4 8sina |1 — sina

] +0(e2). (30

When the ranges predicted by Methods 3 and 4 are rewritten in non-dimensional
variables the expressions are respectively

1+ sina
1 — sina

1 4 .
—Ecos asinaln

x = sin2a + e[—%sinZZa]

and

1.
x = sin2a + e[—551n22a].
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Table 1 shows the values of the coefficients of ¢ for different values of a using the
x-components given by Methods 3, 4 and 5. The value a = 45" is included
because it gives the maximum range when e = 0. This value of a also gives the
maximum range for the analyses of Methods 3 and 4 for any small value of .
This points to an inherent weakness in Methods 3 and 4 since the addition of
drag should upset the symmetry of the trajectory, not preserve it. On the other
hand the rigorous perturbation analysis of Method 5 leads to a maximum range
occurring at values of a which are just less than 45°.

TaBLE 1. Comparison of O (&) coefficients from Methods 3, 4 and 5.

. 2 .
a(degrees) (- 3 sin” 2) (= §sin’ 20) (Coefficient of ¢
from equation (30))
0 0 0 0
10 —-0.06 -0.08 -0.08
20 -0.21 -0.28 -0.28
30 -037 -0.50 -0.53
40 —-048 —-0.65 -0.73
45 —0.50 -0.67 -0.78
50 —0.48 -0.65 -0.80
60 -0.38 -0.50 -0.72
70 -021 -0.28 -0.53
80 —-0.06 -0.08 -0.27

4. Applications to Beamon’s record jump

The model developed of a long jumper as a point projectile has to be
considered in association with the following aspects:

(i) The jumper’s centre of mass at the instant of landing is usually about 0.5 to
0.6 metres lower than the centre of mass at take-off.

(i1) The centre of mass at take-off will be forward of the take-off toe.

(ii1) The centre of mass at landing will be behind the landing heel.

(iv) The take-off toe will be an unspecified distance behind the zero measuring
position at the take-off board.

Not one of these four aspects was recorded for Beamon’s world record jump.
Nevertheless suitable estimates can be made from available data for other
top-class long jumpers.

With regard to aspect (i), values measured at the Australian Institute of Sport
Biomechanics Laboratory indicate that for tall long jumpers like Beamon (height
1.90 metres) the difference in height of his centre of mass between the take-off
and landing phase should be taken as 0.6 metres.
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For the 12 finalists at the 1983 U. S. National Championships in the men’s long
jump, Hay and Miller [5] report an average value of 0.41 metres for the take-off
distance corresponding to aspect (ii).

Landing data seems to have only been measured by Benno M. Nigg on 25
Swiss and West German jumpers. Hay [4] records an average value of 0.53 metres
from Nigg’s measurements of aspect (iii).

Finally, since Beamon’s jump was a record, his take-off toe would have been
very close to the front edge of the take-off board. As his jump was not a foul a
reasonable estimate of aspect (iv) would be 0.02 metres.

When the estimates from aspects (ii), (iii) and (iv) are combined it appears that
the non-projectile part of Beamon’s jump contributed at least 0.92 metres to the
measured jump-distance. In the first edition of his book, Hay [4] estimated this
value at 0.80 metres, but its deletion from later editions suggests that Hay had
doubts about its validity. In the absence of a measured value I shall take 0.92
metres as being more realistic for these aspects of Beamon’s record jump.

Therefore for his record jump of 8.90 metres the x-component of Beamon’s
projectile motion is 7.98 metres while the j-component is —0.60 metres. Before
these can be converted to non-dimensional values an estimate of Beamon’s
take-off speed is required. The importance of estimating V correctly is emphasised
by its role in calculating the downrange distance and its appearance in the
parameter e.

Beamon was a fast sprinter so it is reasonable to assume that his approach
speed was probably greater than 10ms™! just before take-off. Both Brearley [1]
and Burghes et. al. [2] assumed a lesser value of 9.45ms~! which was criticised by
Ward-Smith (7] who opted for 10.1ms!. Moreover the former authors transposed
the approach speed to the horizontal component of Beamon’s take-off velocity.
But evidence by Hay and Miller [5] for world class men and women long-jumpers
clearly indicates that in most jumps the take-off speed is slightly less than the
approach speed, and therefore the horizontal component of the take-off velocity
is significantly less than the approach speed. They give the maximum take-off
speed for all the male long-jumpers in their study as 10ms™!, and this was also
used by Frohlich [3]. This indicates that for Beamon’s record jump a more
realistic estimate of his take-off speed should be 10ms !, which I shall use in all
further calculations.

At the Mexico City altitude of 2256 metres the values of the other relevant
physical properties for Beamon’s jump are

p=0984kgm3,

m = 75kg,
%CDA = 0.18,
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the last two being given by Ward-Smith [7]. Therefore & = 0.024 and &’ is
certainly negligible.

Consequently Method 5 can be used to produce an accurate estimate of
Beamon’s angle of take-off (a) when drag has been included. To calculate a it is
necessary to slightly extend the results of Method 5. With y = h in equation (27)
the time of flight of the projectile is seen to be

, . 1 1
t, = sina +(sin’a — 24)"* + E[Tli(l ~2h)" + §cosza(1 - 20)"* - 3
(sinPa = 20)"2 +(1 - 21)"”

1 {lcos"aln -
1 - sina

(sina — 2h)/* | 8

- -llisina + %cosza sina}] + 0(e?).

Note that when & = 0 the results (28) are recovered. With this ¢, the dimension-
less projectile downrange distance is obtained from equation (29) as

x, = cosa{sina + (sin?a — 2h)1/2}

+s[—11—2(1 - 2h)3/2cosa + %(1 - 2h)1/2cos3a - %cosa

V2 (cos’asina — 2sinacos a)

- lcosozsinoz(sinzoz —2h) )
8(sina — 2h)"

2

5
+ cos a — = %cosﬂx(sinza - 2h)1/2)
8(sin*a — 2h)"

(sina — 20)"2 +(1 — 2n)"?
1 - sina

X In + 0(&?). (31)

The analogous result corresponding to Brearley’s approximation [1] is

x, = cosa {sina + (sin’a — 2h)1/2} - ecosza[sina + (sina — 2h)1/2] 2/2
and to Burghes’ approximation [2] is
ecosza[sina +(sin*a — 2h)1/2] ?

3(sin’a — 2h)'?

X, = cosa{sina + (sina — 2")1/2} -

Using V' = 10 the non-dimensional values for (x,,, k) = (0.782, -0.059) correct
to three decimal places. When these are substituted into equation (31) the a-value
for Beamon’s jump is 20° 39"
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With this value of @ and V' = 10 the jump distances predicted by the various
methods are given below.

Method 1: (Runge-Kutta numerical, IMSL package DVERK , 8.90m,
step-length 0.001 seconds)

Method 2: (Semi-analytical, Simpson’s rule, 8.90m,
step-length 0.01 radians)

Method 3: (Burghes’ approximate analysis) 8.90m,

Method 4: (Brearley’s approximate analysis) 8.91m,

Method §: (Perturbation analysis) 8.90m,

Method 6: (Classical no-drag analysis) 8.99m.

For this value of a the jump-distances predicted by Methods 3 and 5 differ only
in the third decimal place. However as the angle increases the difference moves to
the second decimal place which is a measurable quantity for the long jump.

It would appear that a theoretical analysis which includes drag is valid and
comparably accurate for Methods 3, 4 or 5. Method 4 is essentially based on the
approximation y = 0, but at the end of Beamon’s long jump this value is nearly
5. Method 3 is based on the assumption that X? is much greater than 2, but
again at the end of the jump the ratio of these two quantities is less than 4. Both
Method 3 and Method 4 are saved—when applied to Beamon’s long-jump—by
the exceedingly small value of ¢ = 0.024. For problems where the value of ¢ is
larger (for example in free fall from an aeroplane) or where the trajectory has
values of ¥ that are not small the errors in using Methods 3 or 4 become
substantial.

For all € values less than 0.1, the perturbation result (31) is a very accurate and
efficient result for calculating long jump characteristics when drag is to be
included. The error in using either Method 3 or Method 4 for Beamon’s jump is
very small, while the error in disregarding air resistance is 1%.

For a jump at sea-level with the same initial conditions and a change in air
density the parameters are

p=1225kgm3, & = 0.030,

and therefore from Method 5 the predicted jump distance is 8.88 metres. Thus the
increase in range at Mexico City due solely to the difference in air density is 2cm,
as discovered by most of the earlier investigators. Frohlich [3] also includes the
variation in take-off velocity (2%) due to the differences in air density between
Mexico City and sea-level. When this is included through Method 5 the equiva-
lent jump distance at sea-level is now only 8.57 metres.

What may be of interest to long-jumpers is the fact that Method 5 predicts a
projection angle of 43°13’ for a maximum range of 11.51 metres when V = 10.
Therefore although Beamon’s record has stood for 17 years, and was a mighty
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jump, it could easily be eclipsed by a long-jumper with a take-off speed of 10ms !

and a take-off angle between 21° and 64°. The strengthening of leg muscles and
the development of techniques to achieve such a take-off angle is therefore worthy
of further investigation by athletic coaches. Table 2 shows the gains that could
have been achieved by Beamon if he could have increased his take-off angle. As
the angle gets close to 43°13’ the change in jump length is not as pronounced as
for the same increment in angle near 21°.

TABLE 2. Jump length for various take-off angles for Beamon with ¥ = 10ms™!.

Take-off angle («) Jump length

(X) in metres
20°39’ 8.90
25° 9.75
30° 10.55
35° 11.13
40° 11.45
45° 11.49
50° 11.25
55 10.71
60° 9.91
65° 8.85

This table gives a clue as to why Beamon out-jumped the others by so much.
The record of 8.10 metres which he broke could have been achieved exactly by
him at Mexico City with a take-off angle of 16°59". Therefore with an increase of
3°40’ in take-off angle Beamon was able to achieve an immense change in the
jump distance.

The analysis in general confirms that the most important characteristics for a
successful long jump are still the take-off speed and take-off angle, or equiva-
lently the horizontal and vertical take-off velocity components. Although the
current philosophy in modelling long jumps is to disregard drag (Hay [4}), it has
been shown that it has a small but significant effect on the jump distance.

It is interesting to seek the take-off speed at an angle near 45° which would still
produce a jump of 8.90 metres. This is easily calculated as approximately 8.72
ms~!, and illustrates the importance of maintaining speed as the jumping-pit is
approached. Recent studies by Ward-Smith [8] show that during a 100-metre
sprint at maximum available power a sprinter does not reach his maximum speed
until about 60 metres have been run. Long jumpers of course still need some
power in reserve to launch themselves with a reasonable take-off angle. It is this
trade-off of launching speed versus launching angle which makes the long jump
event fascinating from an optimisation point of view also.
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5. Conclusion

When drag is small compared with gravity the perturbation analysis given in
Method 5 produces expressions that are more accurate for the downrange than
those produced by other approximate analytical approaches (Methods 3 and 4).
On the other hand the jump distances predicted by this perturbation analysis are
just as accurate as standard numerical techniques (Methods 1 and 2) which are
less computer efficient.

The results indicate that it is theoretically possible to greatly increase the long
jump world record by developing athletes who can take-off at a larger angle than
is currently achieved. The possibility of reducing speed to obtain a larger angle
and still increase the jump distance will be the subject of a future report.
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