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Rationality and arithmetic of the moduli

of abelian varieties

Daniel Loughran and Gregory Sankaran

Abstract

We study the rationality properties of the moduli space Ag of principally polarised
abelian g-folds over Q and apply the results to arithmetic questions. In particular, we
show that any principally polarised abelian 3-fold over Fp may be lifted to an abelian
variety over Q. This is a phenomenon of low dimension: assuming the Bombieri–Lang
conjecture, we also show that this is not the case for abelian varieties of dimension
at least 7. Concerning moduli spaces, we show that Ag is unirational over Q for g≤ 5
and stably rational for g= 3. This also allows us to make unconditional one of the
results of Masser and Zannier about the existence of abelian varieties over Q that are
not isogenous to Jacobians.
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1. Introduction

Arithmetic properties of abelian varieties are strongly linked to the geometry of their moduli
spaces. Here we study both the birational geometry over Q of the coarse moduli space Ag of
principally polarised abelian varieties (ppavs), and lifting and other arithmetic properties of
ppavs themselves.

1.1 Lifting abelian varieties

For any prime p and any elliptic curve Ep over Fp, there exists an elliptic curve E over Q such
that Ep is the reduction modulo p of E (we say that E is a lift of Ep to Q). Indeed, one simply
takes a suitable lift of the coefficients of Ep.

For higher-dimensional abelian varieties the problem becomes more interesting. Firstly, we
at least need that the abelian variety Ap lifts from Fp to Qp; to guarantee this we assume that
Ap is equipped with a principal polarisation [Oor71, Corollary 2.4.2]. It is not too difficult to
see that principally polarised abelian surfaces always lift to Q as the generic such surface is the
Jacobian of a hyperelliptic curve (see Section 4.3). One of our first results is that lifting can be
achieved in dimension 3, and moreover for finitely many primes simultaneously.

For an abelian variety A over Q and a prime p, we denote by AFp
the reduction modulo p of

the Néron model of A.

Theorem 1.1. Let S be a finite set of rational primes, and for each p∈ S fix Ap, a principally
polarised abelian 3-fold over Fp. Then there exists a principally polarised abelian 3-fold A over
Q such that Ap

∼=AFp
for all p∈ S as ppavs.

This property should not hold in higher dimension.

Theorem 1.2. Let g≥ 7 and assume the Bombieri–Lang conjecture. Then, for all but finitely
many primes p, there exists a principally polarised abelian g-fold Ap over Fp such that Ap �∼=AFp

for any principally polarised abelian g-folds A over Q.

1.2 Rationality properties of moduli spaces

We achieve our arithmetic results through consideration of the birational geometry of the coarse
moduli space Ag of principally polarised abelian g-folds over Q. This has been much studied over
the complex numbers. It is known that Ag is unirational over C for g≤ 5, and rational over C

for g≤ 3. On the other hand, if g≥ 7 then Ag is of general type [Tai82], and A6 has non-negative
Kodaira dimension [DMS21]. Questions about the rationality of Ag over non-closed fields seem
by contrast to have had little attention, and we address some of them here, over Q.
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We first consider unirationality and, incorporating previous results, obtain the following
theorem.

Theorem 1.3. The coarse moduli space Ag of ppavs is unirational over Q if and only if
g≤ 5.

This result has motivation from the recent paper [MZ20], in which Masser and Zannier prove
various results on the existence of abelian varieties over Q that are not isogenous to Jacobians.
Some of their results also hold for abelian varieties over Q, but for g= 4 and g= 5 that refinement
is conditional on the unirationality of Ag over Q.

From this and [MZ20, Theorem 1.5, Corollary 1.6] we obtain the following immediate
application, which is new for g= 4, 5 (see [MZ20, Theorem 1.5] for a stronger statement).

Corollary 1.4. Let k be a number field. For g= 4, 5, there exists a principally polarised
abelian g-fold over k that is Hodge generic and not isogenous to any Jacobian.

We prove Theorem 1.3 by showing that the Prym moduli space Rg+1 is unirational for
g= 4, 5. This is sufficient to get unirationality of Ag, as the Prym map Rg+1 →Ag is dominant
for g≤ 5 over any field of characteristic not equal to 2 [Bea77, Theorem 6.5].

For deeper rationality properties, it is known that A2 is rational over any field, by work
of Igusa [Igu60]. The rationality of A3 over C was first proven by Katsylo [Kat96] (see also
Böhning’s exposition [Böh10]). It seems possible that this result could also hold over Q; however,
Katsylo’s proof is notoriously delicate and technical. We content ourselves with the following
weaker statement, which has a much simpler proof and is sufficient for arithmetic applications.

Theorem 1.5. The coarse moduli space A3 is stably rational over Q.

1.3 Weak approximation for algebraic stacks

Theorem 1.5 is the key geometric input for the proof of Theorem 1.1. Namely, one can interpret
Theorem 1.1 as a version of weak approximation for the moduli stack A3 of principally polarised
abelian 3-folds. Recall that a smooth variety X over a number field k is said to satisfy weak
approximation if X(k) is dense in

∏
v X(kv), where the product is over all places v of k. We

prove a version of this for the stack A3 (see Section 4 for definitions for stacks).

Theorem 1.6. The stack A3 satisfies weak approximation over any number field k.

The classical weak approximation theorem implies that rational varieties satisfy weak approx-
imation, and a fibration argument extends this to stably rational varieties. However, Theorem 1.5
does not immediately imply Theorem 1.6; indeed, there are algebraic stacks that fail weak
approximation but whose coarse moduli space satisfies weak approximation (see Example 4.8).
To exclude this possibility for A3 one needs to be careful with twists. Theorem 1.1 is then an
application of this weak approximation result.

1.4 Questions

Our results raise the following question, to which we do not know the answer.

Question 1.7. Do A4 and A5 satisfy weak weak approximation (i.e., weak approximation away
from a finite set of places)?
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Standard conjectures in arithmetic geometry, together with the unirationality from
Theorem 1.3, would imply a positive answer to Question 1.7. This in turn would give a ver-
sion of Theorem 1.6 for A5, and a version of Theorem 1.1 for g= 5 away from finitely many
primes. The case of A4 is less clear as here the generic gerbe is non-neutral (see Lemma 4.11).

Question 1.8. Can one prove an unconditional version of Theorem 1.2?

1.5 Conventions

We denote by Ag the moduli stack of principally polarised abelian g-folds over Z and by Ag

its coarse moduli space. The stack Ag is smooth over Z [Oor71, Theorem 2.4.1]. We sometimes
abuse notation and also denote by Ag the base change of the stack to some field, which will be
clear from the context.

For a group scheme G we denote by BG the associated classifying stack. Regarding gerbes,
we use the conventions of [Ols16, Chapter 12]. If G is an abelian group scheme, we say that a
G-gerbe is neutral if it has a section; this is equivalent to being isomorphic to BG.

For an algebraic stack X and a scheme S, we abuse notation and denote by X(S) the set of
isomorphism classes of S-points of X (rather than the groupoid).

2. Background on moduli

In this section we outline the known results over the complex numbers and make some remarks
about certain moduli spaces associated with curves, which we shall use as auxiliaries.

Let k be a field. Recall that a variety X over k is said to be rational (respectively, unirational)
if it admits a birational (respectively, dominant rational) map from a projective space. It is said
to be stably rational if X × Pn is rational for some n.

2.1 Known rationality results

The coarse moduli spacesAg have been much studied over the complex numbers from a birational
point of view. With the exception of the case (g= 6), the broad picture remains as described in
[HS02], to which we refer for more details.

2.1.1 (g= 2) Igusa [Igu60, Theorem 5] showed that A2 =M2 is rational over any field,
and there are numerous results on the moduli space for abelian surfaces with non-principal
polarisations or level structures.

2.1.2 (g= 3) It is easy to see that A3 is unirational over C. Katsylo [Kat96] showed that
M3 (and hence A3, by Torelli) is rational over C; we discuss this in Section 2.2 below.

2.1.3 (g= 4) The first proof that A4 is unirational over C was given by Clemens [Cle83],
using intermediate Jacobians. Other proofs were subsequently given by Verra [Ver08] and by
Izadi, Lo Giudice and the second author [ILS09]. Of these, the proof in [ILS09], which uses the
moduli space of Prym curves (see Section 2.3 below), seems the easiest to adapt to non-closed
fields.
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2.1.4 (g= 5) The first proofs that A5 is unirational over C were given by Donagi [Don84]
and by Mori and Mukai [MM83]. There is a different proof in [Ver84] and a more recent one by
Farkas and Verra [FV16]. All of these use Prym curves. We found the argument in [FV16] the
easiest to adapt for our purposes.

2.1.5 (g≥ 6) The spaces Ag are non-rational for g > 5, at least in characteristic 0. Tai
[Tai82], building on earlier work of Mumford and of Freitag, showed that Ag is of general type
for g≥ 7. The case of A6 remained completely mysterious until 2020, when Dittman, Salvati
Manni, and Scheithauer [DMS21] showed that the second plurigenus is positive: thus the Kodaira
dimension is non-negative.

2.2 Moduli of curves

In view of Katsylo’s result, it is natural to ask whether A3 is rational over Q. What Katsylo
proves directly, however, is that M3 is rational (over C), and the wider context into which the
proof naturally fits is the moduli of curves rather than of abelian varieties. Katsylo’s proof is
one of many rationality proofs for moduli spaces of curves: for some examples, see [Ver13]. The
main tool for many of these is classical invariant theory. Few of them are written with much
attention to fields of definition. Shepherd-Barron’s proof [S-B89] that M6 is rational over Q is
an exception. In fact, Katsylo’s proof for M3 is among the most complicated of these arguments.

2.3 Prym curves

A Prym curve (of genus g) over a scheme S is a pair (D, C) where C is a smooth proper scheme
over S whose fibres are smooth projective geometrically integral curves of genus g, and D→C
is a finite étale morphism of degree 2 whose fibres over S are geometrically integral. We denote
by Rg the moduli stack of Prym curves of genus g and by Rg its coarse moduli space.

An explicit construction of this stack over Z[1/2] can be found in the proof of [Bea77,
Theorem 6.5], which also constructs a morphism (the Prym map) Rg →Ag−1 of stacks over
Z[1/2]. Moreover, Rg →Ag−1 is dominant for g≤ 6, by [Bea77, Lemma 6.5.2].

3. Rationality results

3.1 Stable rationality of moduli of hypersurfaces

We will prove that A3 is stably rational by showing that the moduli space of plane quartic
curves is stably rational. Our argument is sufficiently robust that it also works for other moduli
of hypersurfaces. Our result is as follows.

Theorem 3.1. Let d, n≥ 2 with (d, n) �= (3, 2). Let k be a field and Hd,n denote the Hilbert
scheme of hypersurfaces of degree d in Pn. The group PGLn+1 acts on Hd,n in a natural way via
linear change of variables. Assume that char(k) does not divide n+ 1 and that gcd(d, n+ 1) = 1.
Then Hd,n/PGLn+1 is stably rational.

Proof. The case d= 2 is classical so we assume d> 2. Let Vd,n =H0(Pn,OPn(d)) be the vector
space of forms of degree d in (n+ 1) variables. The group SLn+1 acts on Vd,n in a natural
way via linear change of variables. The coprimality conditions ensure that the central copy of
μn+1 ⊂ SLn+1 acts faithfully on Vd,n. Moreover, the induced action of SLn+1 on Hd,n factors
through the SLn+1/μn+1 =PGLn+1-action. We obtain the following commutative diagram.
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Vd,n \ {0} ��

��

Hd,n

��
Vd,n \ {0})/ SLn+1

�� Hd,n/ PGLn+1 .

The action of SLn+1 on Vd,n is generically free: indeed, μn+1 acts faithfully and the action
of PGLn+1 on Hd,n is generically free as there exist hypersurfaces of degree d with trivial linear
automorphism group [Poo05]. We conclude that the generic fibre of the left-hand map is an
SLn+1-torsor. But such a torsor is necessary trivial as H1(k, SLn+1) = 0 for any field k [PR94,
Lemma 2.3]. We conclude that Vd,n is birational to SLn+1 × (Vd,n/SLn+1).

However, SLn+1 is rational over k. This can be seen by noting that the determinant is linear
in the coordinate x1,1, and thus one can solve for x1,1. Thus Vd,n/SLn+1 is stably rational.

Next, the top arrow in the diagram is a Gm-torsor. The bottom arrow is thus a Gm/μn+1 =
Gm-torsor (here the map μn+1 →Gm is the one induced by the SLn+1-action and not necessarily
the standard embedding). By Hilbert’s Theorem 90 the generic fibre is the trivial torsor: thus
we see that Hd,n/PGLn+1 is stably birational to Vd,n/SLn+1, which we already proved is stably
rational. �

3.2 Abelian 3-folds

Let k be a field of characteristic not equal to 3.
The rational maps H4,2/PGL3 ���M3 ���A3 over k are birational over k (this follows from

Torelli and a dimension count) and hence birational over k. Therefore, A3 is stably rational over
k by Theorem 3.1. This is sufficient for Theorem 1.5.

3.3 Abelian 4-folds

Let k be a field of characteristic 0. We prove the g= 4 case of Theorem 1.3.
For the following result we closely follow [ILS09], which proves the analogous result over C,

but a few modifications are required. The main difference is that in [ILS09], the authors work
with certain quartic surfaces, and then pass to the double covers of P3 ramified along the quartic
surface. Some care is needed over non-algebraically closed fields where there may be many such
covers given by quadratic twists.

Theorem 3.2. The coarse moduli space R5 of étale double covers of a genus 5 curve is
unirational over k. Hence, A4 is unirational over k.

In the rest of this section, we prove the first part of this: the second part follows since the
Pyrm map R5 →A4 is dominant and defined over k.

Fix five points P1, . . . , P5 ∈ P3(k) in linear general position. Without loss of generality, P1 =
(0 : 0 : 0 : 1). We consider the space Q′ ⊂H0(OP3(4)) of quartic forms F in four variables such that
the associated quartic surface X := {x∈ P3 | F (x) = 0} has exactly six ordinary double points
over the algebraic closure, at least five of which are P1, . . . , P5. This is a quasi-affine variety
defined over k. Moreover, if F is defined over k then necessarily the sixth double point is also
defined over k. The key result is as follows.

Lemma 3.3. The space Q′ is geometrically irreducible and unirational.
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Proof. We follow [ILS09, Proposition 2.1], which proves unirationality over the algebraic closure
(our Q′ is the affine cone over the Q appearing in [ILS]). The space of quartic polynomials F
whose associated quartic surface has at least five double points at P1, . . . , P5 is a vector space
which we denote by V . For the sixth double point, consider the scheme

B0 := {(F, P0)∈ V × P3 | F (P0) = ∂F/∂x0(P0) = · · ·= ∂F/∂x3(P0) = 0}.
The projection onto P3 is surjective and the fibres are vector spaces (not just affine spaces: there
is a section, the zero section). It follows that there is a dense open U ⊂ P3 over which B0 becomes
isomorphic to U ×An for some n, and therefore B0 is rational.

The other projection is a map B0 → V whose image contains Q′ as a dense open subset. As
B0 is rational, we see that Q′ is unirational. �

There is a natural map � : Q′ −→R5 defined in the following way [ILS, Section 1]. For F ∈Q′,
let X be the associated quartic surface and

ΛX := {y2 = F (x)} ⊂ P(1, 1, 1, 1, 2),

the associated quartic double solid. Let WX be the blow-up of ΛX at (0 : 0 : 0 : 1 : 0). Then
composing the blow-up map with the natural projection to P2 yields a morphism f : WX → P2.
This is a conic bundle morphism whose non-smooth locus CX ⊂ P2 is a plane sextic curve whose
singular points are exactly the images of the singular points of X (see [ILS, Propositions 1.5
and 1.6]). Thus if F is general, CX has five ordinary double points, so its normalisation C̃X has
genus 5.

Next let S =WX ×P2 C̃X and let S̃ be the normalisation of S. We then apply Stein fac-
torisation to the induced map S̃ → C̃X to obtain a finite morphism ΓF → C̃X , which by [ILS,
Proposition 1.8] is a geometrically connected finite étale cover of degree 2. Thus the pair (C̃X , ΓF )
gives a well-defined element of R5. All these constructions are natural, so we define the morphism
� by �(F ) = (C̃X , ΓF ).

To show that R5 is unirational, we note from [ILS, Corollary 3.3] that Q′ →R5 is dominant
over k, hence it is dominant over k, whence R5 is unirational by Lemma 3.3. As R5 →A4 is
dominant, A4 is also unirational.

3.4 Abelian 5-folds

Let k be a field of characteristic 0. We prove the g= 5 case of Theorem 1.3.
We proceed as in Section 3.3, this time following [FV16, Section 1], which proves the analogous

result over C. This time the method extends to k with little difficulty.

Theorem 3.4. The coarse moduli space R6 of étale double covers of a genus 6 curve is
unirational over k. Hence, A5 is unirational over k.

Pick four points O1, . . . , O4 ∈ P2(k) in linear general position and let Pi = (Oi, Oi)∈ P2 × P2.
Consider the linear system P15 of hypersurfaces of bidegree (2, 2) in P2 × P2 that have ordinary
double points at P1, P2, P3, P4. For such a 3-fold X, projecting onto the first factor P2 induces
a conic bundle morphism X → P2. The discriminant is a sextic curve CX whose singularities are
generically the image of the singularities of X [FV16, Proposition 1.2]. Thus for general X there
are four nodes, so the normalisation C̃X has genus 6. Moreover, applying Stein factorisation
to the singular locus as in Section 3.3, we obtain a geometrically connected étale double cover
ΓX → C̃X . This constructs a rational map P15 ���R6 over k. By [FV16, Theorem 1.4] this map
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is dominant, and hence R6 is unirational. Again R6 →A5 is dominant, and thus A5 is also
unirational.

Combining the results of this section with the results from Section 2.1 completes the proof
of Theorem 1.3.

4. Weak approximation

4.1 kv-points of a stack

Let k be a number field and v a place of k. For finitely presented algebraic stacks X over kv,
Christensen [Chr05, Section 5] gave a topology on X(kv), extending the v-adic topology on the
usual kv-points of schemes. It has the following properties.

(i) Any morphism of stacks over kv induces a continuous map on kv-points [Chr05, Theorem
9.0.3].

(ii) Any smooth morphism of stacks over kv induces an open map on kv-points [Chr, Theorem
11.0.4].

The topology is unique because Christensen proves in [Chr, Theorem 7.0.7] that any kv-point of
an algebraic stack is the image of a kv-point under a smooth morphism from some scheme.

The following corresponds to the well-known fact that a non-empty v-adic open subset of
a smooth irreducible scheme is Zariski dense, which is an application of the implicit function
theorem.

Lemma 4.1. Let X be a smooth finitely presented irreducible algebraic stack over kv and let
W ⊆X(kv) be non-empty and open in the v-adic sense above. Then W is dense in X.

Proof. Let f : Z →X be a smooth morphism from a finitely presented irreducible scheme such
that f(Z(kv))∩W �=∅; this exists by [Chr, Theorem 7.0.7]. Then f−1(W ) is a non-empty v-adic
open set, so it is dense in Z as Z is a scheme. However, both Z →X and Z(kv)→X(kv) are
open and continuous. Thus f(Z) is dense in X and f(f−1(W )) is dense in f(Z), and the result
easily follows. �

We require the following version of Hensel’s lemma for algebraic stacks.

Lemma 4.2. Let R be a complete noetherian local ring, or an excellent Henselian discrete
valuation ring, with maximal ideal m. Let X be a smooth algebraic stack over R. Then for all
n∈N the natural map

X(R)−→X(R/mn),

is surjective.

Proof. Recall that smooth means formally smooth and locally of finite presentation. Formal
smoothness (see [SP23, Tag 0DNV]) implies that for any n∈N and any 1-commutative diagram

Spec R/mn ��

��

X

��
Spec R/mn+1 �� Spec R,
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there exists a diagonal arrow making the diagram 2-commutative. It follows that X(R/mn+1)→
X(R/mn) is surjective for all n∈N, and it follows that limi X(R/mn+i)→X(R/mn) is surjective.
By effectivity of formal objects [SP23, Lemma 98.9.5, Tag 07X3] we have limi X(R/mn+i) =
X(R̂), where R̂ denotes the completion of R. Thus if R is complete we are done. Otherwise,
Artin approximation [Art69, Theorem 1.12], applied to the functor given by the isomorphism
classes of objects of X, shows that the composition X(R)→X(R̂)→X(R/mn) is surjective for
any n, as required. �

4.2 Weak approximation

Definition 4.3. We say that a finitely presented algebraic stack X over k satisfies weak approx-
imation if the natural map Xsm(k)→∏

v Xsm(kv) has dense image. (Here Xsm denotes the
smooth locus of X.)

Note that, unlike the case of varieties, the map X(k)→∏
v X(kv) need not be injective

(its injectivity is related to triviality of various Tate–Shafarevich sets). Nevertheless we will
sometimes abuse notation and use X(k) also to denote the image of this map, for instance in
Lemma 4.10.

Lemma 4.4. X satisfies weak approximation if and only if either
∏

v Xsm(kv) is empty or, for
any finite set S of places of k and for any non-empty open subset W ⊆∏

v∈S Xsm(kv), there
exists an element of X(k) whose images lies in W .

Proof. Follows immediately from the definition. �

A rational map f : X1 ���X2 of finitely presented algebraic stacks is said to be birational
if there exist dense open substacks Ui ⊂Xi such that f is defined on U1, f(U1)⊆U2, and
f |U1

: U1 →U2 is an isomorphism. If such a rational map exists, we say that X1 and X2 are
birationally equivalent .

Weak approximation for smooth stacks is a birationally invariant property.

Lemma 4.5. Let X and Y be birationally equivalent smooth irreducible algebraic stacks over
k. Then X satisfies weak approximation if and only if Y does.

Proof. It suffices to prove the result in the case where X→Y is an open immersion. Weak
approximation for Y implies weak approximation for X as a special case of Lemma 4.6 below.
On the other hand, assume that X satisfies weak approximation. If

∏
v Y(kv) =∅, there is

nothing to prove. Otherwise, let W ⊆∏
v∈S Y(kv) as in Lemma 4.4. It suffices to show that

W ∩X �=∅. However, this is Lemma 4.1 applied to Y. �

In particular, if X admits an open dense substack U that is isomorphic to a scheme, then weak
approximation for X is equivalent to weak approximation for the scheme U , and the definition
does not offer anything new. Therefore, to get interesting new problems in general one should
consider stacks with non-trivial generic stabilisers; such stacks typically admit open substacks
that are gerbes over a scheme. In such cases one may hope to prove weak approximation using
the following fibration result, which is a stacky version of [C-TG04, Proposition 1.1].

Lemma 4.6. Let f : X→Y be a smooth morphism of smooth irreducible algebraic stacks over
k. Assume that Y satisfies weak approximation and that the fibre over every rational point

9

https://doi.org/10.1112/mod.2024.10 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2024.10


Daniel Loughran and Gregory Sankaran

of Y is everywhere locally soluble and satisfies weak approximation. Then X satisfies weak
approximation.

Proof. If
∏

v X(kv) =∅, there is nothing to prove. Otherwise let W ⊆∏
v∈S X(kv) as in

Lemma 4.4. As f is smooth the image f(W )⊆∏
v∈S Y(kv) is open. So let y ∈Y(k) with image

in f(W ). Then f−1(y)∩W �=∅ and f−1(y) is everywhere locally soluble and satisfies weak
approximation, and thus f−1(y)∩W contains a rational point, as required. �

For neutral affine gerbes, weak approximation is equivalent to a statement in Galois
cohomology.

Lemma 4.7. Let G be a finite type affine group scheme over k. Then BG satisfies weak
approximation if and only if the natural map

H1(k, G)−→
∏
v∈S

H1(kv, G),

is surjective for all finite sets of places S of k.

Proof. Recall that for any field extension k⊂L we have BG(L) =H1(L, G), since both sets
classify GL torsors over L. The set H1(kv, G) is finite [PR94, Theorem 6.14] and the induced
topology is simply the discrete topology. Therefore, it suffices to note that a subset of a product
of discrete sets is dense if and only if it surjects onto any finite collection of factors. �

We emphasise that for a general algebraic stack X over Q it can happen that its coarse
moduli space X satisfies weak approximation but X itself does not.

Example 4.8. Take X=BZ/8Z. Then the associated coarse moduli space is just SpecQ, which
trivially satisfies weak approximation. But BZ/8Z fails weak approximation (the famous example
of Wang [Wan48]): there is no Z/8Z-extension of Q that realises the unique unramified Z/8Z-
extension of Q2.

For G= μ2, however, which is the case relevant to us, there is no such problem.

Lemma 4.9. If μn ⊂ k, then Bμn satisfies weak approximation.

Proof. By Kummer theory we have H1(k, μn) = k×/k×n, and similarly for kv. It thus suffices to
apply Lemma 4.7 and note that weak approximation for k implies that k×/k×n →∏

v∈S k×v /k×n
v

is surjective. �

From Hensel’s lemma we obtain the following application of weak approximation.

Lemma 4.10. Let X be a smooth irreducible finitely presented algebraic stack over k with∏
v X(kv) �=∅ that satisfies weak approximation, and S a finite collection of non-zero prime

ideals of k. Let XOk
be a model of X over Ok that is smooth over all elements of S. Then the

map

X(k)∩
∏
p∈S

XOk
(Op)−→

∏
p∈S

XOk
(Fp),

is surjective.

Proof. We first note that the map
∏

p∈S XOk
(Op)→

∏
p∈S XOk

(Fp) is surjective for all p∈ S:
this follows from Hensel’s lemma for stacks, Lemma 4.2. Moreover, the map XOk

(Op)→XOk
(Fp)

is continuous as Op → Fp is continuous [Chr, Proposition 9.0.4]. As XOk
(Fp) is discrete, we find
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that the fibre of a point is an open subset of X(kp). Lemma 4.4 thus implies that it contains a
rational point, as required. �

4.3 Weak approximation for A2

Before turning to A3, we briefly consider the simpler case of A2, where weak approximation
holds. To see this, we first note that the natural map M2 →A2 is birational. Indeed, the induced
map on coarse moduli spaces is birational, and furthermore the map on generic stabilisers is an
isomorphism: this is the strong Torelli theorem given (by Serre) in [Lau01, Théorème 3].

Therefore, by Lemma 4.5 it suffices to prove that M2 satisfies weak approximation. However,
an element of M2(kv) is represented by a hyperelliptic curve over kv, and one can approximate
this to an arbitrary precision by a hyperelliptic curve over k by simply approximating the
coefficients (similarly for any finite collection of places).

A similar proof also shows that A1 satisfies weak approximation.

4.4 Weak approximation for A3

By Theorem 1.5 we know that A3 is stably rational over Q, and hence satisfies weak
approximation [C-TG04, Proposition 1.2].

Let us briefly consider how one would try to use this to prove that A3 satisfies weak approx-
imation, and some of the subtleties that arise. Let h : A3 →A3 be the coarse moduli map. Let k
be a number field and S a finite set of places of k. For v ∈ S let Av ∈A3(kv). Then there exists
a k-rational point a∈A3(k) arbitrarily close to av := h(Av). The first issue that arises is that
there is no guarantee that the fibre h−1(a) contains a rational point; in classical parlance k is
a field of moduli for a, but there is no guarantee that k is a field of definition for a. Assuming
that we overcome this issue and find A∈A3(k) with h(A) = a, the second issue is as follows: we
have that h(A) is close to each h(Av), but this does not guarantee that A is close to the Av; in
classical parlance this means that we can only guarantee that A is close to some Galois twist of
the Av, and not our original Av.

To overcome these issues we need to understand both the generic field of definition and the
generic Galois twist. This is achieved by the following result of Shimura [Shi72] reformulated in
stacky language. (See [BV24] for further applications of stacks to field of moduli questions.)

Lemma 4.11. Let g ∈N and h : Ag →Ag be the coarse moduli map. There exists a dense open
subset V ⊂Ag such that U := h−1(V )→ V is a μ2-gerbe. This gerbe is neutral if and only if g
is odd.

Proof. It is well known that the generic ppav has automorphism group μ2; this implies that the
generic fibre is a μ2-gerbe and one finds V by spreading out, cf. [Poo17, Section 3.2].

It remains to show that the generic gerbe is neutral if and only if g is odd. Let K be the
function field of Ag. Then the generic gerbe is neutral if and only if the generic fibre has a
K-point, which means exactly that the generic ppav has a model over K. The main result of
[Shi72] says that this happens if and only if g is odd, as required. �

Proof of Theorem 1.6

By Lemma 4.11 we know that A3 is birational to a neutral μ2-gerbe over A3. The latter satisfies
weak approximation, and the fibres have rational points and satisfy weak approximation by
Lemma 4.9. Thus the result follows from Lemmas 4.5 and 4.6.
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Remark 4.12. Our proof makes essential use of the fact that g= 3 is odd. In fact, the proof as
written does not apply in the apparently easier case of g= 2 from Section 4.3, where Shimura
showed that the generic hyperelliptic curve of even genus does not descend to its field of moduli
[Shi72, Theorem 3]. Then one might wonder whether, on the contrary, the simple proof for g= 2
can be adapted to the case of g= 3. This does not seem possible either since a key difference is
that the map M3 →A3 is no longer birational, despite inducing a birational map on the coarse
moduli spaces, because the generic stabilisers no longer agree. The following lemma gives an
arithmetic manifestation of this phenomenon.

Lemma 4.13. Let k be a field and C a smooth quartic curve over k. Then for each separable
quadratic extension k⊂L there exists a principally polarised abelian 3-fold A over k such that
AL

∼= J(C)L but A is not in the image of map M3(k)→A3(k).

Proof. The strong Torelli theorem [Lau01, Théorème 3] mentioned in Section 4.3 shows that
Aut J(C) =AutC ⊕Z/2Z. As H1(k,Z/2Z) parametrises separable quadratic extensions of k,
we see that for each such extension k⊂L there is a quadratic twist A of J(C) by L. Such a
twist cannot arise from any twist of C, and thus A is not the Jacobian of any curve of genus 3
over k. �

Proof of Theorem 1.1

This is immediate from Theorem 1.6 and Lemma 4.10.

Proof of Theorem 1.2

As g≥ 7 the coarse moduli space has general type. Let p be a prime. To prove the result we will
compare the cardinalities of the two sets

I1 = Im(Ag(Fp)−→Ag(Fp)), I2 = Im(Ag(Q)∩Ag(Zp)−→Ag(Fp)).

The set I1 is simply the collection of elements of Ag(Fp) that arise from some ppav over Fp. The
set I2 is the collection of elements of Ag(Fp) that arise as the reduction modulo p of a ppav over
Q with good reduction at p (note that I2 ⊆ I1). We will show that I1 has more elements than I2
for all sufficiently large p.

Firstly, the Lang–Weil estimates [LW54] imply that |Ag(Fp)| ∼ pm as p→∞, where m=
g(g+ 1)/2 = dimAg. By Lemma 4.11, spreading out, and the Lang–Weil estimates, we have

#{a∈Ag(Fp) | h−1(a) is not a μ2-gerbe}=O(pm−1).

However, a μ2-gerbe over Fp is necessarily neutral: indeed, μ2-gerbes are classified by
H2

fppf (Fp, μ2) [Ols16, Theorem 12.2.8]. But Kummer theory implies that H2
fppf (Fp, μ2) =

(Br Fp)[2], which is trivial as Br Fp = 0. We therefore deduce that |I1| ∼ pm as p→∞
For I2, as Ag has general type, the Bombieri–Lang conjecture [Poo17, Conjecture 9.5.11] pre-

dicts that Ag(Q) is not Zariski dense. Thus the Lang–Weil estimates imply that |I2|=O(pm−1).
Altogether we deduce that for all sufficiently large primes p we have |I1|> |I2|, which concludes
the proof.
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