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Abstract

The growth sequence of a finite semigroup S is the sequence {d(S")}, where S" is the nth direct
power of S and d stands for minimum generating number. When 5 has an identity, d(S") —
d(T") + kn for all n, where T is the group of units and k is the minimum number of generators
of SmodT. Thus d(S") is essentially known since d(T") is (see reference 4), and indeed d(S") is
then eventually piecewise linear. On the other hand, if S has no identity, there exists a real number
c > 1 such that d(S") > c" for all n > 2.

1980 Mathematics subject classification (Amer. Math. Soc): 20 M 99.

1. Introduction

For a finitely generated semigroup S, the growth sequence is the sequence
{d(S")}, where d(S") means the minimum number of generators of the nth
direct power S" of S. In the spirit of [1], [2], [3], [4], [5], [6], where the growth
sequences of finitely generated groups are discussed in detail, we ask: what is the
growth sequence of a semigroup like?

Firstly, since S" is always a homomorphic image of S"+1, the sequence is
monotonic increasing. However, that is about the only really simple observation
to be made; for example, it is not true that d(S"+m) < d(S") + d(Sm) in
general. In fact, S can be finitely generated without S2 being finitely generated:
the additive semigroup of positive integers is like this. To avoid such problems, we
shall consider here only finite semigroups.

In the case of finite groups, there is a dichotomy between the imperfect and
perfect cases (op. cit.). Roughly speaking, imperfect groups have eventually linear
growth sequences, while those of perfect groups are essentially logarithmic, in that
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12] Growth sequences of finite semigroups 17

they are majorised and minorised by logarithmic sequences. For finite semi-
groups, there is also a dichotomy, but based this time on the existence or
otherwise of an identity element.

Note that for finite groups, group generating sets and semigroup generating
sets are the same, so there is no ambiguity in the notation in the following
theorem.

THEOREM 1. Let S be a finite semigroup with identity, T the subgroup of units,
and k the minimum number of elements of S needed to generate S modulo T. Then
for all n > 1,

d(S") = d(T") + kn.

Since the asymptotic behaviour of { d(T")} is known with great accuracy given
certain structural ingredients [3], we can consider the case of semigroups with 1 to
be solved. The results of [3] mean that d(S") = (k + d(T/T'))n for large enough
n if T is imperfect. If T is nontrivial and perfect, then {d(T")} is essentially
logarithmic, and so {d(S")} is "piecewise-linear" with infinitely many discon-
tinuities, and each linear section having gradient k.

Far less information is available for semigroups without identity. Indeed it is
probably a very hard problem to decide this case. Some examples in §3 indicate
possibilities. However, one has the broad picture:

THEOREM 2. Let S be a finite semigroup of order t, without identity. Then for all
n>2,

(2t/2t- 1 ) " < < / ( S " ) < t".

Thus one can say that semigroup growth sequences are much faster than group
growth sequences. Leaving out perfect groups, which have logarithmic-type
sequences, the dichotomy is between linear-type sequences as in Theorem 1 (with
k ^ 0), and exponential-type sequences as in Theorem 2. To be more precise,
there are four types of behaviour, as indicated in the following table.

Type of semigroup Type of growth sequence

1. Perfect group Essentially logarithmic
Semigroup with 1, imperfect _ „ ,.

2. . , . . Eventually linear
or trivial group of umts
Semigroup with 1, perfect .

3. . . n Eventually piecewise linear
group of units ¥= 1

4. Semigroup without 1 Essentially exponential
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2. Proofs

PROOF OF THEOREM 1. Firstly, it is clear that d(S") < d(T") + kn. This is
because S has an identity element, 1 shall we say, and so S" is generated by the n
factors of the product. By the /th factor here we mean all"strings" in S" whose
components are all 1 outside the /th position.

Next, observe that any set X of generators for S" must contain a set of
generators for T", its group of units. The reason is that in any finite semigroup
with identity, a product xy is a unit if and only if x an y are both units.

Take any element s of S. Then the element s-= (s, 1,1,. . .,1) of S" is a
product of elements of X, each of which will, of course, have elements of T in
every component later than the first. Taking all the elements of X involved in
expressions for all s, one finds that they must include enough elements (x, *,..., *)
so that the first components form a generating set for S, and the stars denote
elements of T. In other words, X contains k elements (uu * , . . . , * ) ,
. . . ,(uk, * , . . . , * ) , where ul,...,uk generate S modulo T. Similar arguments
apply for the elements (1,J, 1,...,1) etc., and we find that X contains kn
elements which are different from each other and are not elements of T". By the
remark at the beginning of the preceding paragraph, this means that d(Sn)> kn
+ d(T"), and so we have completed the proof of Theorem 1.

PROOF OF THEOREM 2. Here S is a semigroup without identity of order t. There
cannot be elements x and y of S such that Sx = S = yS, for some power of such
an x would be a right identity and some power of y a left identity. Thus without
loss of generality we may assume that \Sx\ < t - 1 for all x in S. But this means
that, for every z in S",

Let zv z2,...,zr be any elements of S". The subsemigroup A they generate has
order at most r + r(t — 1)", because A consists of the elements zv z2,...,zr and
products of them. Since |S"| = t", in order that A = S" it must be the case that
{1 + (/ - l )"}r > t", or r > t"/(l + (t - 1)"). Very elementary arithmetic
shows that

t" ( It

and this completes the proof of Theorem 2.
Note that the proof of this theorem is extremely elementary. It is not surprising,

therefore, that the exponentiation constant 2t/(2t — 1) is very small. The main
amiable feature is that it exceeds unity, and no doubt it should be possible to
replace it by a much larger constant. Some investigation of the intersections
Snzi n SnZj could be of value. Note too that no mention is made of d(S) in the
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statement; we could strengthen it by observing that d(Sn) > d(S) for all n. All

the examples provided in §3 have growth sequences very much faster than the

lower bound provided in Theorem 2.

3. Examples

We shall restrict ourselves here to examples of semigroups that are not groups,
since groups have been covered adequately in the papers referred to at the end.

Firstly, an example to illustrate Theorem 1.

EXAMPLE 1. Let T be any finite group and k any positive integer. Then there
exists a semigroup S with identity having T as group of units and such that k
elements are required to generate S modulo T.

The referee has suggested the following easier example than my original one:
my thanks to him for this.

Define So = T and inductively

with zkx = xzk = zk for all x in Sk. Then Sk has T as group of units, and k

elements are required to generate S modulo T.

As indicated previously, semigroups without identity are not so easy. Firstly

note that the obvious upper bound t" for d(Sn) is sometimes attained. To see

this, take S = Lt, the semigroup of order t of left zeros, that is, that satisfies the

law xy = x. Then S" = L,*, every subset of S" is a subsemigroup, and so all the

elements are needed to generate it.

Before giving our next example, we prove an auxiliary result, which should

perhaps be viewed in conjunction with Theorem 2.

LEMMA. Let S be a semigroup of order t having a elements that are not products.
Then for all n > 1, d(S") > t" - (t - a)".

PROOF. If x = (xvx2,...,xn) is an element of S" where at least one xt is a
non-product in S, then x is a non-product in S". Every generating set for S"
contains every such element, and a quick count proves that there are t" — (t — a)n

of these.

EXAMPLE 2. Let S be a finite cyclic semigroup of order t that is not a group. Then

d(Sn) = t" - ( t - \)" for all n > 1.
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Let a be a generator for S. Then a is the only element of S that is not a
product, and thus we have d(S") > t" — (t — 1)" by the lemma. However, the
nonproducts in S", that is, the elements ( a \ aXl,..., aX") where X, = 1 for at
least one /, actually generate S". Take any (a**1, a1*2,..., a*1"). If any ju, is 1, there
is nothing to prove; so assume that that ju,- > 2 or all 1. Then

and an easy induction on m i n ^ , . . . , jun) gives the answer.
In Example 2, it is the existence of nonproducts that causes the growth

sequence to be fast. However, I have not been able to find a semigroup S without
identity such that d(S") is significantly less than 2" for large n. Perhaps this
reflects the true picture.

References

[1] James Wiegold, 'Growth sequences of finite groups', J. Austral. Math. Soc. 17 (1974),
133-141.

[2] James Wiegold, 'Growth sequences of finite groups II', J. Austral. Math. Soc. 20 (1975),
225-229.

[3] James Wiegold, 'Growth sequences of finite groups III', J. Austral. Math. Soc. 25 (1978),
142-144.

[4] James Wiegold, 'Growth sequences of finite groups IV', J. Austral. Math. Soc. 29 (1980),
14-16.

[5] D. Meier and James Wiegold, 'Growth sequences of finite groups V , / . Austral. Math. Soc. 31
(1981), 374-375.

[6] James Wiegold and John Wilson, 'Growth sequences of finitely generated groups', Arch. Math.
30 (1978), 337-343.

Department of Pure Mathematics
University College
Cardiff CF1 1XL
Wales, United Kingdom

https://doi.org/10.1017/S1446788700028925 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028925

