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1. Introduction and Results

Throughout this paper, we will use the terminologies and notations as in [4].
Thus, UN denotes the open unit polydisc in the space CN of JV complex variables,
TN the distinguished boundary of UN and

VN={(zu-,zN)eCN:\zj\ > 1 for; = l.-.N}.

We say that n = (n1,---,nN) tends to infinity if n,--» oo for each j — 1,---,N.
A polynomial P of N complex variables (zx,---,zN) is said to be of order n
= (nu •••,%) if for each j , 1 ̂  j ^ JV, (dkjdzk

j)P(zu---,zN) is not identically zero
for k = Tij but is the zero function for each k > ny Let P be a polynomial in
CN. If the only zeros of P in ( / " u VN lie on TN, then P will be called a TN-
polynomial. Hence, for N = 1, T = T1, a T-polynomial is a polynomial such that
all its zeros lie on the unit circle T. In the case of one complex variable, diffe-
rent kinds of T-polynomial approximation theorems were obtained in [1,2, and
3]. In this note, we establish these theorems for any JV ^ 1.

THEOREM 1. If f is holomorphic and does not vanish in UN, there exist
TN-polynomials Qm which converge to f uniformly on every compact subset ofUN.

THEOREM 2. IffeH" = HP(UN), where 1 ^ p ^ oo, and does not vanish in
UN, there exist TN-polynomials Qm which converge to f uniformly on every
compact subset ofUN and satisfy | Qm p ^ 2 | / | p / o r all m.

Here, uniform convergence on compact subsets of UN cannot be replaced by
convergence in Hp. For p = oo, it is clear, and for 1 g p < oo, it is proved for
JV = 1 in [2].

Let 3P" = jep(UN) (1 S P < oo) be the class of all holomorphic functions
/ i n UN such that
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1/^J/|*} <co.

It is clear that each $fv with the norm | | p is a Banach space. For the spaces
JFP, we have a stronger result.

THEOREM 3. IffeJ^"(l ^ p < oo) and does not vanish in UN, there exist
TN-polynomials Qm such that

IQm-/lP^o.
The author wishes to thank the referee for his helpful suggestions.

2. Proofs of the above theorems

For z = (zU"-,zN) where z,- + 0, j = 1,•••,AT, we use the notation ljz
= (1/Zi,---, 1/ztf). Let P be a polynomial in CN with no zero in UN and let
M(z) = z"\ •••, z^1 be a monomial of sufficiently large order so that

(1) Q(z) = P(z) + M(z)P(l/z)

is a polynomial. Here, P is the polynomial whose coefficients are the complex
conjugates of the coefficients of P [cf. 4]. Then P(w) = P(l/w) for all weTw.
Hence,

(2) |M(z)P( l /z) /P(z) | = 1

for each z on TN. Since P has no zero in UN, by the maximum principle, we
conclude from (1) and (2) that Q has no zero in UN, except possibly on TN. Now,
since M(z)M(l/z) = 1, we have

(3) M(z)g( l /z ) = G(z).

Hence, Q(l \z) does not vanish in UN, except possibly on TN. That is, Q(z), and
hence Q(z), has no zero in <7iV, except possibly on TN. Therefore, Q is a TN-
polynomial.

Now, le t /be holomorphic in UN and/(z) # 0 for all z in UN. Then for each
r, 0 < r < 1, the function fr defined by/r(z) = f(rz), where rz = (rzl,---,rzN), is
holomorphic and does not vanish in (llr)UN, and can then be uniformly appro-
ximated on UN by polynomials which do not vanish in UN. But fr -*f uniformly
on each compact subset of UN as rf 1. Hence, /can be approximated uniformly
on each compact subset of UN by polynomials Pn which do not vanish on C/N.
Let

(4) &...(z) = P.(z) + Mm(z)PB(l/z)

where Mm are monomials of sufficiently large order m. By (2) and the maximum
principle, we see that
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(5) \Mm{z)Pn(\jz)\^\Pn{z)\

in UN for all sufficiently large m. Since Pn - > / uniformly on compact subsets of
UN, Mm(z)PB(l/z)->0 on compact subsets of UN as n and suitable m = tn(n)
tend to infinity. That is, a sequence of TN -polynomials can be chosen fromQmi,
to approximate/uniformly on every compact subset of UN. This proves the first
theorem. If, in addition, / i s in Hp (1 ^ p S °°), w e c a n choose the Pn so that
1 Pn \l ^ \\f\\P for all n. Hence, using (4) and (5), we have ||Qm,B ||p ^ 2 | / | p for
all n and all sufficiently large m, proving Theorem 2. Now, suppose that
fe Jf" (1 ^ p < oo) and does not vanish in UN. We can choose the PB, which do
not vanish in UN, such that | P n -f\p -» 0. For each r, 0 < r < 1, let Kr = rt/^
and let Dr be the complement of Kr with respect to UN. Since / e ^fp and the
(2Ar-dimensional) Lebesgue measure of Dr tends to zero as r f 1, we have

f \f\> = 0.

Hence, for each s > 0, we can choose 1 — r > 0 so small that

lim
r T l

1JD,.

for all large «. Now, for all sufficiently large m, we obtain, using (5),

^ IP«|P •
Again, since Pn - > / uniformly on Kr, the m = m(n) can be chosen such that
|M m (z) / i

I , ( l /z ) |p-^0 as n and m tend to infinity. Hence, a sequence of TN-
polynomials Qm can be chosen from the Qm „ such that | 2 m - / | p - » 0 . This
completes the proof of the third theorem.
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