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Abstract. In this paper, we study the bounded approximation property for the
weighted space HV(U) of holomorphic mappings defined on a balanced open subset U
of a Banach space E and its predual GV(U), where V is a countable family of weights.
After obtaining an S-absolute decomposition for the space GV(U), we show that E has
the bounded approximation property if and only if GV(U) has. In case V consists of a
single weight v, an analogous characterization for the metric approximation property
for a Banach space E has been obtained in terms of the metric approximation property
for the space Gv(U).
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1. Introduction and terminology. Weighted spaces of holomorphic functions
defined on a balanced open subset of a finite-dimensional space have been studied
extensively in the literature by Bierstedt [3–5], Summers [6], Rubel and Shields [28],
etc. The study of infinite-dimensional analogues of such spaces was initiated in [29] and
further carried out in [1,15,16,20]. The main aim of this paper is to study the bounded
approximation property (BAP) for these spaces, of which the finite-dimensional case
was considered in [4] for the weighted spaces of holomorphic mappings containing
polynomials; indeed, in this case, Ces̀aro mean operators Cn are the finite rank
operators converging uniformly on compact sets to the identity operator. For weighted
spaces of holomorphic mappings defined on an open balanced subset of a Banach
space, the techniques involving S-absolute decompositions come to our rescue to
establish results for the BAP.

To begin with, let us denote by �, �0, and � the set of natural numbers, � ∪ {0}
and the complex plane, respectively. The letters E and F are used for the complex
Banach spaces and the symbols E′ and E∗ denote, respectively, the algebraic dual and
topological dual of E. We denote by U a non-empty open subset of E and by UE , the
open unit ball of E. The symbol Bλ

E denotes the set consisting of the elements with
norm ≤ λ. For λ = 1, B1

E is the closed unit ball BE of E. The symbols X and Y are
used for locally convex spaces and X∗

b for the strong dual of X .
For each m ∈ �, L(mE; F) denotes the Banach space of all continuous m-linear

mappings from E to F endowed with the sup norm. A mapping P : E → F is said to
be a continuous m-homogeneous polynomial if there exists a continuous m-linear map
A ∈ L(mE; F) such that P(x) = A(x, . . . , x), x ∈ E. The space of all m-homogeneous
continuous polynomials from E to F is denoted by P(mE; F) which is a Banach
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space endowed with the norm ‖P‖ = sup‖x‖≤1 ‖P(x)‖. A continuous polynomial P is a
mapping from E into F which can be represented as a sum P = P0 + P1 + · · · + Pk

with Pm ∈ P(mE; F) for m = 0, 1, . . . , k. The vector space of continuous polynomials
from E into F is denoted by P(E; F). A polynomial P ∈ P(mE, F) is said to be of finite
type if it is of the form

P(x) =
k∑

j=1

φm
j (x)yj, x ∈ E,

where φj ∈ E∗ and yj ∈ F , 1 ≤ j ≤ k. We denote by Pf (mE, F), the space of finite
type polynomials from E into F . A continuous polynomial P from E into F is said
to be of finite type if it has a representation as a sum P = P0 + P1 + · · · + Pk with
Pm ∈ Pf (mE; F) for m = 0, 1, . . . , k. The vector space of continuous polynomials of
finite type from E into F is denoted by Pf (E; F). Pw(mE, F) denotes the space of m-
homogeneous polynomials which are weakly continuous on bounded subsets of E.
The predual Q(mE) of P(mE), m ∈ �, constructed by Ryan [30], is defined as

Q(mE) = {φ ∈ P(mE)′ : φ|Bm is τ0 − continuous},

where Bm is the unit ball of P(mE). The space Q(mE) is endowed with the topology τm

of uniform convergence on Bm.
A mapping f : U → F is said to be holomorphic, if for each ξ ∈ U , there exists a

ball B(ξ, r) with centre at ξ and radius r > 0, contained in U and a sequence {Pjf (ξ )}∞j=0

of polynomials with Pjf (ξ ) ∈ P(jE; F), j ∈ �0 such that

f (x) =
∞∑

j=0

Pjf (ξ )(x − ξ ), (1)

where the series converges uniformly for each x ∈ B(ξ, r). The series in (1) is called the
Taylor series of f at ξ . The space of all holomorphic mappings from U to F is denoted
by H(U ; F). In case U is an open subset of a finite-dimensional Banach space E,
(H(U ; F), τ0) is a Fréchet space, where τ0 denotes the topology of uniform convergence
on compact subsets of U . For F = �, we write H(U) for H(U ; �). A subset A of
U is called U-bounded if A is bounded and dist(A, ∂U) > 0, where ∂U denotes the
boundary of U . A mapping f in H(U ; F) is of bounded type if it maps U-bounded sets
to bounded sets. The space of holomorphic mappings of bounded type is denoted by
Hb(U ; F).

Let V = {vn} be a countable family of positive continuous functions on U(referred
to as weights) such that for each x ∈ U , there is n ∈ � such that vn(x) > 0. In case V is
a singleton set {v}, v is strictly positive on U . A weight v defined on an open balanced
subset U of E is said to be radial if v(tx) = v(x) for all x ∈ U and t ∈ � with |t| = 1,
and on E it is said to be rapidly decreasing if supx∈E v(x)‖x‖m < ∞ for each m ∈ �0.
The weighted spaces of holomorphic functions is defined as

HV(U ; F) = {f ∈ H(U ; F) : pvn (f ) = sup
x∈U

vn(x)‖f (x)‖ < ∞ for each n ∈ �}
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and

HV0(U ; F) = {f ∈ H(U ; F) : for given ε > 0 and n ∈ �, there exists a U-bounded

set A such that sup
x∈U\A

vn(x)‖f (x)‖ < ε}.

For F = �, we write HV(U) and HV0(U) instead of HV(U, F) and HV0(U, F). The
spaces HV(U) and HV0(U) are endowed with the topology τV generated by the family
of semi-norms {pvn : n ∈ �}.

A family V of weights satisfies condition I if for each U-bounded set A, there exists
n ∈ � such that infx∈A vn(x) > 0 and, V satisfies condition II if for each n ∈ �, there
exist R > 1 and m ∈ � such that

pvn (Pjf (0)) ≤ 1
Rj

pvm (f )

for each j ∈ � and f ∈ HV(U).
We refer to [15] for the following result and notations.

PROPOSITION 1.1. Let V be a family of weights satisfying condition I and the space
HV(U) contains all the polynomials. Then the topology τV restricted to P(mE) coincides
with the norm topology for each m ∈ �.

For α = {αn}∞n=1, a sequence of strictly positive numbers, we write

Dα = {f ∈ HV(U) : pvn (f ) ≤ αn for each n}.

Clearly, Dα is a τV -bounded set. Also, {Dα}α is a fundamental system of absolutely
convex τV -bounded sets which are τ0-compact. Further, it can be easily seen that
{Vn,ε : n ∈ �, ε > 0}, where Vn,ε = {f ∈ HV(U) : pvn (f ) ≤ ε}, is a fundamental 0-
neighbourhood system consisting of absolutely convex τ0-closed sets. Then the space

GV(U) = {φ ∈ HV(U)′ : φ|Dα is τ0 -continuous}

is a complete barrelled DF-space, cf. [3] whose strong dual is topologically isomorphic
to HV(U). For U = UE , the following linearization result for HV(U, F) is given in [16],
p. 216 and for an arbitrary open set U , the proof follows analogously.

THEOREM 1.2 (Linearization theorem). For an open subset U of a Banach space E
and a family V of weights on U satisfying condition I, there exists a complete barrelled
(DF)-space GV(U) and a mapping 	 ∈ HV(U,GV(U)) with the following property: for
each Banach space F and each mapping f ∈ HV(U, F), there is a unique operator Tf ∈
L(GV(U), F) such that Tf ◦ 	 = f . Also, the correspondence f → Tf is a topological
isomorphism.

A sequence of subspaces {Xn}∞n=1 of a locally convex space X is called a Schauder
decomposition of X if for each x ∈ X , there exists a unique sequence {xn} of vectors
xn ∈ Xn for all n, such that

x =
∞∑

n=1

xn = lim
m→∞ um(x),
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where the projection maps {um}∞m=1 defined by um(x) = ∑m
j=1 xj, m ≥ 1 are continuous.

If each Xn is one dimensional and Xn = span{en}, then {en}n is a Schauder basis of X .
Let us denote by S, the subspace {(βn)}∞n=1 : βn ∈ � and lim supn→∞ |βn| 1

n ≤ 1} of
the vector space of all scalar sequences. Corresponding toS, a Schauder decomposition
{Xn}n is said to be S-absolute if

(i) for each β = (βj) ∈ S and x = ∑∞
j=1 xj ∈ X , xj ∈ Xj, β · x = ∑∞

j=1 βjxj ∈ X ; and
(ii) if p is a continuous semi-norm on X and β ∈ S, then pβ(x) = ∑∞

j=1 |βj|pβ(xj)
defines a continuous semi-norm on X .

A particular case of a result given in [13], p. 196, is:

PROPOSITION 1.3. If the sequence of spaces {Xn}∞n=0 is an S-absolute decomposition
for a locally convex space X, then {(Xn)b

∗}∞n=0 is an S-absolute decomposition for X∗
b .

Let L(X, Y ) denotes the space of all continuous linear operators from X into
Y . An operator T in L(X, Y ) is said to be of finite rank if the range of T is
finite dimensional. The class of all finite rank operators from X into Y is denoted
by F(X, Y ). A locally convex space X is said to have the approximation property
if for every compact set K of X , p a continuous semi-norm on X and ε > 0,
there exists a finite rank operator T = Tε,K such that supx∈K p(T(x) − x) < ε. If
{Tε,K : ε > 0 and K varies over compact subsets of X} is an equicontinuous subset
of F(X, X), X is said to have the BAP. When X is normed and above T can be chosen
with ‖T‖ ≤ 1, we say X has the metric approximation property.

One can easily prove:

PROPOSITION 1.4. Let E be a Banach space with the λ-BAP. Then each complemented
subspace of E with the projection map P has the λ‖P‖-BAP.

We need the following results for our work.

PROPOSITION 1.5 ([11]). If {Xn}∞n=1 is an S-absolute decomposition of the locally
convex space X, then X has the BAP if and only if each Xn has the BAP.

THEOREM 1.6 ([7]). Let E be a Banach space. Then E∗ has the BAP if and only if
Pw(nE) has the BAP for each n ∈ �.

We refer to [12, 13, 23, 26] for the theory of infinite-dimensional holomorphy and
S-absolute Schauder decompositions, and [12, 17, 21] for the theory of approximation
properties.

In this paper, we show that the sequence of spaces {Q(nE)}}∞n=0 is an S-absolute
decomposition for the space GV(U); and consequently, E has the BAP if and only if
GV(U) has the BAP. The last section is devoted to the study of the metric approximation
property for the space E and Gv(E).

2. The bounded approximation property for the spaceHV(U) and its predualGV(U).
Throughout this section, we assume that U is a balanced open subset of a Banach space
E and V is a family of radial weights defined on U . For studying BAP for the spaces
GV(U) andHV(U), we first show that the sequence of spaces {Q(nE)}∞n=0 and {P(nE)}∞n=0
forms an S-absolute decomposition for the spaces GV(U) and HV(U), respectively.

Let us begin with the following lemmas which are useful for establishing the main
result.
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LEMMA 2.1. Let V be a family of weights satisfying condition II. Then for β = (βn) ∈
S and a given sequence α = (αn) of strictly positive numbers, there exists a sequence
α′ = (α′

n) with α′
n > 0 for each n such that

∞∑
j=0

|βj|pvn (Pjf (0)) ≤ α′
n (2)

for each n ∈ � and f ∈ Dα. In particular,

pvn (n2
∞∑

j=n

Pjf (0)) ≤
∞∑

j=n

j2pvn (Pjf (0) ≤ α′
n (3)

for each n ∈ � and f ∈ Dα.

Proof. Fix β ∈ S. Then, β.f = ∑∞
j=0 βjPjf (0) ∈ H(U) for each f ∈ Dα, cf. [12],

p. 119. Let f ∈ Dα and n ∈ �. Then by using our hypothesis on V , there exist R > 1
and m ∈ � such that

pvn (Pjf (0)) ≤ 1
Rj

pvm (f )

for each j = 0, 1, 2 . . . . Therefore,

pvn (β.f ) ≤
∞∑

j=0

|βj|pvn (Pjf (0)) ≤
∞∑

j=0

|βj|
Rj

pvm (f ).

Since 1+R
2 > 1, there exists j0 ∈ � such that |βj| ≤ ( (1+R)

2 )j, for each j ≥ j0. Choose
C = max{|β0|, |β1|, ·..|βj0−1|, 1}. Then, |βj| ≤ C( (1+R)

2 )j for each j. Hence,

pvn (β.f ) ≤ Cαm

∞∑
j=0

(
(1 + R)

2R
)j = αn

′

for each n ∈ � and f ∈ Dα. Therefore, the set {β.f : f ∈ Dα} ⊂ Dα′. Also, (3) follows
for β = (j2). �

REMARK 2.2. Note that {n2βn}∞n=1 ∈ S for each β = {βn}∞n=1 ∈ S. Hence by Lemma
2.1, there exists a sequence γ α,β = {γ α,β

n } of strictly positive numbers such that

pvn (n2
∞∑

j=n

βjPjf (0)) ≤
∞∑

j=n

j2|βj|pvn (Pjf (0) ≤ γ α,β
n (4)

for each n ∈ � and f ∈ Dα. When βj = 1 for each j, we get the inequality (3).

LEMMA 2.3. Let V be a countable family of weights satisfying condition I and HV(U)
contains all the polynomials. Then the following are true

(a) supx∈U v(x)‖x‖m < ∞ for each v ∈ V and m ∈ �.

(b) The subspace topology on Q(nE), n ∈ � induced by GV(U)coincides with its topology
τn of uniform convergence on Bn.
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Proof.

(a) For each x ∈ U , choose φx ∈ E∗ with ‖φx‖ = 1 and φx(x) = ‖x‖. Then for m ∈ �,
the set {φm

x : x ∈ U} is a norm-bounded subset of P(mE), and hence τV -bounded
by Proposition 1.1. Therefore, for n ∈ �, we have

sup
x∈U

vn(x)‖x‖m ≤ sup
x∈U

sup
y∈U

vn(y)|φm
x (y)| = sup

x∈U
pvn (φm

x ) < ∞.

(b) Fix n ∈ � arbitrarily and denote by τs, the subspace topology induced by GV(U)
on Q(nE). Let us note that Bn ⊂ Dtn for some sequence tn = {tn

m}m≥1 by (a).
Consequently, τn ≤ τs.

On the other hand, for each x ∈ U , there exists m ∈ � such that vm(x) > 0. Choose
r > 0 such that x + rBE ⊂ U . Then for P ∈ Dα ∩ P(nE), we have

‖P‖ = 1
rn

‖P‖rBE ≤ 1
rn

‖P‖x+rBE ≤ 1
rnvm(x)

pvm (P) ≤ αm

rnvm(x)
= C

by Lemma 1.13 in [12], p. 9. Hence, Dα ∩ P(nE) ⊂ CBn. Thus, τn ≥ τs. �

REMARK 2.4. Let us note that the condition (a) in the above lemma is equivalent
to P(nE) ⊂ HV(E) (or P(nE) ⊂ HV(U)) if and only if each v ∈ V is rapidly decreasing
(or each v ∈ V is bounded and U is bounded).

We now prove

THEOREM 2.5. Let V be a family of weights satisfying the conditions I and II, and
HV(U) contains all the polynomials. Then the sequence of spaces {Q(nE)}}∞n=0 is an
S-absolute decomposition for GV(U).

Proof. For φ ∈ GV(U) and n ∈ �, define φn : HV(U) → � by

φn(f ) = φ(Pnf (0)), f ∈ HV(U).

As φ|Dα is τ0-continuous for each α = {αn}∞n=1 and Bn ⊂ Dtn for tn = {tn
m}m≥0, tm

n =
supx∈U vm(x)‖x‖n < ∞ for each m, φn|Bn is τ0-continuous. Thus, φn ∈ Q(nE). Further,
for φ ∈ GV(U) and a sequence α = {αn}∞n=1 of strictly positive numbers,

‖φ −
n−1∑
j=0

φj‖Dα
= sup

f ∈Dα

|φ(
∑
j≥n

Pjf (0))| ≤ 1
n2

‖φ‖Dα′ → 0 as n → ∞

since by (3), {n2 ∑
j≥n Pjf (0) : f ∈ Dα} ⊂ Dα′ . Thus, φ = ∑∞

j=0 φj in GV(U).
In order to prove the continuity of the projection maps Rn : GV(U) → GV(U),

Rn(φ) = φn, φ ∈ GV(U), n ∈ �, consider a net (φη) in GV(U) converging to 0. Then by
(3) and Lemma 2.3(b), we have

‖Rn(φη)‖Bn ≤ sup
P∈Dtn

|φη
n (P)| = sup

P∈Dtn

|φη(P)| ≤ 1
n2

‖φη‖Dα′ → 0.
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Now, we show that β · φ ∈ GV(U) for φ = ∑∞
n=0 φn in GV(U) and β = {βn} ∈ S.

For l ≥ k, consider

‖
l∑

n=k

βnφn‖Dα
≤

l∑
n=k

1
n2

sup
f ∈Dα

|φ(n2βnPnf (0))| ≤ ‖φ‖Dγ (α,β)

l∑
n=k

1
n2

→ 0 as k, l → ∞

by (4). Thus, the series
∑∞

n=0 βnφn converges in GV(U) which is a dual Fréchet space.
Further, proceeding on similar lines, we can establish

∑
n≥1

|βn|‖φn‖Dα
≤ ‖φ‖Dγ (α,β)

∑
n≥1

1
n2

.

Thus, the sequence of spaces {Q(nE)}∞n=0 is an S-absolute decomposition for GV(U). �
Using Proposition 1.3, the following result which is given in [15], is an immediate

consequence of Theorem 2.5.

PROPOSITION 2.6. If V satisfies the hypothesis of Theorem 2.5, then {P(nE)}∞n=0 is an
S-absolute decomposition for HV(U).

In our next result, we consider spaces E for which P(mE) = Pw(mE) holds for each
m ∈ �; cf. [13] for examples.

THEOREM 2.7. Let U be an open balanced subset of a Banach space E with P(mE) =
Pw(mE), for each m ∈ � . Assume that V satisfies the conditions I and II, and HV(U)
contains all the polynomials. Then the following are equivalent:

(a) E∗ has the BAP.
(b) P(mE) has the BAP for each m ∈ �.
(c) HV(U) has the BAP.

Proof. (a) ⇒ (b). Follows from Proposition 1.6 since P(mE) = Pw(mE) for each m.
(b) ⇒ (a). Take m = 1 in (b).
(b) ⇔ (c). Use Propositions 1.5 and 2.6. �

Combining the result of Caliskan [10], we state the main result of this section as

THEOREM 2.8. Let V be a family of weights defined on an open balanced subset U of
a Banach space E. Assume that V satisfies the conditions I and II, and HV(U) contains
all the polynomials. Then the following are equivalent:

(a) E has the BAP.
(b) Q(mE) has the BAP for each m ∈ �.
(c) GV(U) has the BAP.

Proof. (a) ⇔ (b) cf. [9], Proposition 2.
(b) ⇔ (c). It is a direct consequence of Proposition 1.5 and Theorem 2.5. �

REMARK 2.9. For characterizing the BAP of Gv(U), the method of S-absolute
decompositions is not applicable; indeed, in this case, the sequence {Q(nE)}∞n=0 does
not form an S-absolute decomposition for Gv(U), as exhibited in

EXAMPLE 2.10. For E = �, consider the weight v(z) = e−|z|, z ∈ �. If {Q(n�)}∞n=0
is an S-absolute decomposition for Gv(�), then by Proposition 2.1, {P(n�)}∞n=0 is an
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S-absolute decomposition for Hv(�); but for f (z) = ez ∈ Hv(�), and z = x, a real
number, we have

v(x)|f (x) −
n∑

m=0

Pmf (0)(x)| = |
ex −

n∑
m=0

xm

m!

ex
| → 1

as x → ∞ for any given n, implying that {P(n�)}∞n=0 is not even a Schauder
decomposition for Hv(�).

REMARK 2.11. Let us note that the condition II satisfied by the family of weights
plays a vital role in proving Theorems 2.5 and 2.8. It does not happen in case V is a
singleton set, for

pv(Pjf (0)) ≤ 1
Rj

pv(Pjf (0))

for each j ∈ � and f ∈ Hv(U), yields that R ≤ 1.

However, for examples of family of weights satisfying Conditions I and II, we refer
to [15].

3. The metric approximation property. In this section, we consider the family V
consisting of a single weight v satisfying condition I. As observed in Example 2.10 of
the preceding section, the techniques involving S-absolute Schauder decompositions
will not be applicable for proving the results on the BAP for the space Gv(U). Let us
note that for V = {v}, the weighted space

Hv(U ; F) = {f ∈ H(U ; F) : ‖f ‖v = sup
x∈U

v(x)‖f (x)‖ < ∞}

is a Banach space equipped with ‖ · ‖v-norm. For F = �, we write Hv(U) = Hv(U ; �)
and the closed unit ball of Hv(U) is denoted by Bv. Since Bv is τ0-compact, cf. [29],
p. 349, the predual of Hv(U) is given by

Gv(U) = {φ ∈ Hv(U)′ : φ|Bv is τ0-continuous}

by the Ng Theorem, cf. [27]. The evaluation map Jv
U : Hv(U) → Gv(U)∗ defined as

Jv
U (f )(φ) = φ(f ), φ ∈ Gv(U), f ∈ Hv(U) is an isometric isomorphism. For V = {v},

the Linearization Theorem 1.2 takes the following form, cf. [1, 18] .

THEOREM 3.1 (Linearization theorem). For an open subset U of a Banach space E
and a weight v defined on U satisfying condition I, there exists a Banach space Gv(U)
and a mapping 	v ∈ Hv(U,Gv(U)) with the following property: for each Banach space F
and each mapping f ∈ Hv(U, F), there is a unique operator Tf ∈ L(Gv(U), F) such that
Tf ◦ 	v = f . Also, the correspondence 
 between Hv(U, F) and L(Gv(U), F) given by


(f ) = Tf

is an isometric isomorphism.
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Writing

Hv(U) ⊗ F = {f ∈ Hv(U, F) : f has finite-dimensional range},

a direct application of the above theorem is the following result, also given in [1, 20]

PROPOSITION 3.2. Let v be a weight defined on an open subset U of a Banach space
E. Then f ∈ Hv(U) ⊗ F if and only if Tf ∈ F(Gv(U), F).

We now start this section with the following representation result for the members
of Gv(U).

THEOREM 3.3. Let v be a weight on an open subset U of a Banach space E. Then
each u in Gv(U) has a representation of the form

u =
∑
n≥1

αnv(xn)	v(xn) (5)

for (αn) ∈ l1 and (xn) ⊂ U. Also,

‖u‖ = inf{‖α‖1 : α varies over all represtations of u in (5)}. (6)

Proof. Corresponding to the dual pair 〈Gv(U),Hv(U)〉, we have

(Jv
U (Bv))◦ = {φ ∈ Gv(U) : | < φ, Jv

U (f ) > | ≤ 1, for every f ∈ Bv}
= {φ ∈ Gv(U) : |φ(f )| ≤ 1, for every f ∈ Bv} = BGv (U).

Also, Jv
U (Bv) = {(v	v)(x) : x ∈ U}◦. Consequently, the balanced closed convex hull

�{(v	v)(x) : x ∈ U} of the set {(v	v)(x) : x ∈ U} coincides with BGv (U) by Bipolar
Theorem [19], p. 192. Thus, for any u ∈ Gv(U), there exist sequences (αn) ∈ Bl1 and
{xn} ⊂ U such that

u =
∑
n≥1

αn‖u‖v(xn)	v(xn).

Write (βn) = (αn‖u‖). Clearly, ‖(βn)‖1 ≤ ‖u‖. Also, for any representation of u in (5),
‖u‖ ≤ ‖(αn)‖1 as v(xn)‖	v(xn)‖ ≤ 1. Thus, (6) follows. �

PROPOSITION 3.4. Let U be an open subset of a separable Banach space. Then, Gv(U)
is separable for any bounded weight v on U.

Proof. Since l1 is separable, there exists a countable dense set � in l1. Choose ε > 0
arbitrarily. For α in l1, there exists β ∈ � such that ‖α − β‖1 < ε

3 . Let D = {yn : n ∈ �}
be a countable dense subset of U . Define

M =
{

m∑
n=1

βnv(yn)δyn : yn ∈ D, β ∈ �, m ∈ �

}
.

Then, M is clearly a countable subset of Gv(U). We now show that M = Gv(U). Let us
consider u ∈ Gv(U). Then, u = ∑

n≥1 αnv(xn)δxn for some (αn) ∈ l1 and (xn) ⊂ U . Set
v = ∑

n≥1 βnv(xn)δxn . Then, ‖u − v‖ < ε. Let λ = sup{v(x) : x ∈ U}. Choose n0 ∈ �
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such that
∑

n≥n0
|βn| < ε

3 . Write ε′ = ε
3‖β‖1

( 1
inf1≤n≤n0 v(xn) + λ). Then by continuity of v

and equicontinuity of Bv, there exists δ > 0 such that

|v(xn) − v(y)| < ε′, ‖f (xn) − f (y)‖ < ε′ for each f ∈ Bv

for each y with ‖y − xn‖ < δ and 1 ≤ n ≤ n0. Now for given n, 1 ≤ n ≤ n0, there exists
yn ∈ D such that ‖xn − yn‖ < δ. Write u0 = ∑

n≤n0
βnv(yn)δyn . Then, we have

‖u − u0‖ ≤ ‖u − v‖ + ‖v − v0‖ <
2ε

3
+ ‖

n0∑
n=1

βn(v(xn)δxn − v(yn)δyn )‖

≤ 2ε

3
+

n0∑
n=1

|βn||v(xn) − v(yn)|‖δxn‖ +
n0∑

n=1

|βn||v(yn)‖δxn − δyn‖

≤ 2ε

3
+ ε′

n0∑
n=1

|βn| 1
inf

1≤n≤n0

v(xn) + λ
≤ ε.

�

The next theorem which is a consequence of Proposition 4.2 and Theorem 4.7
proved in [18], can be proved directly by using Theorems 3.1 and 3.3 as follows.

THEOREM 3.5. Let v be a weight on an open subset of a Banach space E. Then the
restriction of the map 
 : (Hv(U, F), τc) → (L(Gv(U), F), τc) to ‖.‖v-bounded subsets
of Hv(U, F) is a topological isomorphism.

Proof. As 	v(K) is a compact subset of Gv(U) for any compact subset K ⊂ U ,
τc − τc continuity of 
 follows. For the converse, consider a bounded subset B of
Hv(U, F) with ‖f ‖v ≤ λ for all f ∈ B. Let L be a compact subset of Gv(U). Then,

L ⊂ �{um : m ∈ �}

for some null sequence (um) in Gv(U). For arbitrarily chosen ε > 0, choose m0 ∈ �

such that ‖um‖ < ε for m > m0. Then for u ∈ L with u = ∑
m≥1 αmum, (αm) ∈ Bl1 and

f ∈ B, we have

‖Tf (u)‖ ≤
∑

m≤m0

|αm|‖Tf (um)‖ + λε.

Now by Theorem 3.3,

um =
∑
i≥1

βm
i v(xm

i )δxm
i

for (βm
i )i≥1 ⊂ l1 and (xm

i )i≥1 ⊂ U , 1 ≤ m ≤ m0. Choose j ∈ � such that
∑

i>j |βm
i | <

ε for each 1 ≤ m ≤ m0. Write K = {xm
i : 1 ≤ m ≤ m0, 1 ≤ i ≤ j} and C =

λ
∑

m≤m0
|αm| ∑i≤j |βm

i |. Then, K is a compact subset of U and

∑
m≤m0

|αm|‖Tf (um)‖ ≤ λε + C sup
x∈K

‖f (x)‖.

https://doi.org/10.1017/S0017089517000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000118


THE BOUNDED APPROXIMATION PROPERTY 317

Consequently,

sup
u∈L

‖Tf (u)‖ ≤ 2λε + C sup
x∈K

‖f (x)‖.

Thus, 
−1|B is τc − τc continuous. �
PROPOSITION 3.6. Let v be a radial rapidly decreasing weight on a Banach space E.

Then E is topologically isomorphic to a 1-complemented subspace of Gv(E).

Proof. Since supx∈U v(x)‖x‖ < ∞, the identity map I from E to itself is a member
of Hv(E, E). By Theorem 3.1, there exists T ∈ L(Gv(E), E) and 	v ∈ Hv(E,Gv(E))
such that T ◦ 	v = I and ‖T‖ = ‖I‖v. Write S = P1	v(0). Then, S ∈ L(E,Gv(E)) and
by Cauchy’s integral formula, for t ∈ E,

S(t) = 1
2π i

∫
|ζ |=r

	v(ζ t)
ζ 2

dζ ⇒ T ◦ S(t) = t ⇒ ‖S(t)‖ ≥ 1
‖T‖‖t‖.

Thus, S is an injective map and S−1 is continuous.
Define P = S ◦ T . Then, P is a projection map from Gv(E) onto P(Gv(E)) = S(E). In
order to show that ‖P‖ ≤ 1, consider a u ∈ BGv (E). Then by Theorem 3.3,

u =
∞∑

m=1

αmv(xm)	v(xm)

for some sequence (αm) ∈ Bl1 and (xm) ⊂ E. Consequently,

‖P(u)‖ = ‖
∞∑

m=1

αmv(xm)S(xm)‖ ≤
∞∑

m=1

|αm|v(xm)‖P1	v(0)(xm)‖ ≤ 1

as for x ∈ E, ‖P1	v(0)(x)‖ ≤ sup|λ|=1 ‖	v(λx)‖ ≤ sup|λ|=1
1

v(λx) = 1
v(x) .

Thus, ‖P‖ = 1 and E is topologically isomorphic to a 1-complemented subspace of
Gv(E). �

Finally, we prove

THEOREM 3.7. Let v be a radial rapidly decreasing weight on a Banach space E
satisfying v(x) ≤ v(y) whenever ‖x‖ ≥ ‖y‖, x, y ∈ E. Then the following assertions are
equivalent:

(a) E has the MAP.
(b) {P ∈ Pf (E, F) : ‖P‖v ≤ 1}τc = BHv (E,F) for any Banach space F.
(c) BHv (E)

⊗
F

τc = BHv (E,F) for any Banach space F.
(d) 	v ∈ BHv (E)

⊗
Gv (E)

τc
.

(e) Gv(E) has the MAP.

Proof. (a) ⇒ (b). Let f ∈ Hv(E, F) with ‖f ‖v ≤ 1 and K ⊂ E be compact. Consider
the Cesàro means of f defined as

Cmf (x) = 1
m + 1

m∑
k=0

(
k∑

j=0

Pjf (x)), x ∈ E, m ∈ �.
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Since Cmf → f in τ0-topology, there exists m ∈ � such that supx∈K ‖Cm(f )(x) −
f (x)‖ < ε

2 . As Cm(f ) ∈ P(E, F), there exists δ > 0 such that

‖Cm(f )(x) − Cm(f )(y)‖ <
ε

2
, (7)

whenever x ∈ K, y ∈ E with ‖x − y‖ < δ. By (a), there exists T ∈ F(E, E) with ‖T‖ ≤ 1
such that

sup
x∈K

‖T(x) − x‖ < δ. (8)

Using (3.3) and (3.4),

sup
x∈K

‖Cm(f ) ◦ T(x) − Cm(f )(x)‖ <
ε

2
.

Hence,

pK (Cm(f ) ◦ T − f ) < ε.

Clearly, Cm(f ) ◦ T ∈ Pf (E, F). Also, ‖Cm(f )oT‖v ≤ 1; indeed, ‖Cm(g)(u)‖ ≤
sup|λ|=1 ‖g(λu)‖, for any u ∈ E and g ∈ H(E) cf. [22] yields

‖Cm(f ) ◦ T‖v = sup
x∈E

v(x)‖Cm(f )(T(x))‖ ≤ sup
x∈E

v(x) sup
|λ|=1

‖f ◦ T(λx)‖

≤ sup
x∈E

sup
|λ|=1

v(T(λx))‖f ◦ T(λx)‖ ≤ ‖f ‖v

as ‖T(λx)‖ ≤ ‖x‖ for |λ| = 1 and v is norm decreasing.
(b) ⇒ (c). As v is rapidly decreasing,Pf (E, F) ⊂ P(E, F) ⊂ Hv(E) ⊗ F for any Banach
space F . Thus, BHv (E)

⊗
F

τc = BHv (E,F) by (b).
(c) ⇒ (d) follows as 	v ∈ BHv (E,Gv (E)).

(d) ⇒ (e). Since T	v
= IGv

and Hv(E)
⊗

Gv(E) can be identified with F(Gv(E),Gv(E))
by Proposition 3.2, IGv (E) ∈ BF(Gv (E),Gv (E))

τc by Theorem 3.5 and (d). Thus, Gv(E) has
the MAP.
(e) ⇒ (a). Follows from Propositions 1.4 and 3.6. �

Since a reflexive Banach space E having AP is equivalent to having MAP, cf. [21],
p. 40, we have the following characterization.

THEOREM 3.8. For a weight v satisfying the conditions of Theorem 3.7, a reflexive
Banach space E has BAP if and only if Gv(E) has BAP.

It is known [9] that for v = 1, a separable Banach space E has the BAP if and only
if Gv(UE) has the BAP. It would be interesting to know the solution of the following
problem for the case when v is a radial rapidly decreasing weight, or the analogoue of
Theorem 3.7 for the BAP.

PROBLEM 3.9. Let E be a separable Banach space and v be a radial rapidly decreasing
weight on E such that v(x) ≤ v(y), whenever ‖x‖ ≥ ‖y‖, x, y ∈ E. Then E has the BAP
if and only Gv(E) has the BAP.
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