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Cobordism distance on the projective
space of the knot concordance group
Charles Livingston
Abstract. We use the cobordism distance on the smooth knot concordance group C to measure
how close two knots are to being linearly dependent. Our measure, Δ(K, J), is built by minimizing
the cobordism distance between all pairs of knots, K′ and J′, in cyclic subgroups containing K

and J. When made precise, this leads to the definition of the projective space of the concordance
group, P(C), upon which Δ defines an integer-valued metric. We explore basic properties of P(C)
by using torus knots T2,2k+1 . Twist knots are used to demonstrate that the natural simplicial complex
(P(C), Δ) associated with the metric space P(C) is infinite-dimensional.

1 Introduction

We let C denote the smooth concordance group of knots in S3. There are two
fundamental measures of relationship between elements in C: one is algebraic, linear
independence; the other is geometric, the cobordism distance, a metric defined by
d(K, J) = g4(K # −J), where g4 denotes the four-genus. Here, we combine these
approaches to build a measure of how close knots are to being dependent inC. Roughly
stated, the distance between a pair of knots is defined as the minimum cobordism
distance between all possible multiples and divisors of the knots. When made formal,
this leads to the definition of the projective space of the concordance group P(C) and
a metric Δ built from the cobordism distance.

To make this more precise, recall that for a vector space V over a field F, there is
relation on V o = V/0 defined by v ∼ w if there exists an α ∈ F, such that w = αv. To
generalize this from vector spaces to abelian groups, we modify the relation so that
it continues to be symmetric. For an abelian group G, we define a relation on the set
Go = G/0 as follows: a ∼ b if there exist α and β ∈ Z and an element c ∈ G such that a =
αc and b = βc. This relation generates an equivalence relation on G0, and we denote
the set of equivalence classes by P(G), calling it the projective space of G. Symmetry
could also be achieved using the condition that a and b have a common multiple, but
this would have the effect of identifying all elements of finite order. Section 4 provides
more details.
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1268 C. Livingston

In the case of P(C), we can define a metric based on the cobordism distance: again
roughly stated, for classes [K] ∈ P(C) and [J] ∈ P(C), the distance Δ([K], [J]) is
defined by minimizing d(K′ , J′) over all representatives of the classes [K] and [J].
To define this formally, there are some technical modifications required to ensure that
the triangle inequality holds. Our goals include the following.

• Define P(C) and study its basic properties. Letting T ⊂ C denote the torsion sub-
group, we show that there is a natural bijection betweenP(C) and the disjoint union
P(T) ⊔ P(C/T). We show that P(T) is either trivial or in bijective correspondence
with Z∞2 /0 depending on whether or not C contains odd torsion. There is a natural
bijection between P(C/T) and the infinite rational projective space QP∞.

• Define the metric Δ∶ P(C) × P(C) → Z. This gives P(C) the structure of a graph:
vertices correspond to elements of the set, and two vertices are joined by an edge if
they are at distance one.

• Provide basic examples by studying the image of the set of (2, 2k + 1)-torus knots
in P(C).

• Define the associated Vietoris–Rips simplicial complex ∣(P(C), Δ)∣ and use twist
knots to prove it is infinite-dimensional.

• Identify basic problems related to (P(C), Δ).

Background. We will work in the smooth category, but our work carries over to the
topological locally flat category. In the 1960s, the combined work of Fox–Milnor [8],
Murasugi [19], Milnor [18], Levine [15], and Tristam [23] demonstrated that as an
abstract group,C ≅ Z∞ ⊕Z∞2 ⊕ G for some countable abelian group G. Nothing more
is known today.

Despite that lack of progress in understandingC from a purely algebraic standpoint,
from a topological perspective, tremendous strides have been made. For instance,
there are natural homomorphisms of C onto the topological concordance group and
onto the higher dimension knot concordance groups. The kernels of these maps are
now known to contain infinite free summands and to contain infinite 2-torsion; a
few references include [4, 14, 17]. The primary examples used in proving the basic
results about C have been built from two-bridge knots and (2, 2k + 1)-torus knots.
Continuing research concerns further understanding of the image of classes of knots,
such as two-bridge knots, torus knots, and alternating knots, in C. A few references
include [6, 9, 16].

From a geometric perspective, understanding the four-genus of knots, g4(K), was
one of the early motivations for developing the concordance group, and the induced
function g4∶ C→ Z continues to be studied. One highlight of this has been the study
of differences of torus knots, g4(Tp,q # −Tp′ ,q′) (see, for instance, [2, 6, 7]).

1.1 Examples

A few examples will clarify the issues underlying the project here. We let T2,2k+1 denote
the (2, 2k + 1)-torus knot and let T2,2k+1 denote its concordance class.

• The classes T2,5 and T2,11 are, in a sense, close to linear-dependent, since
d(2T2,5 ,T2,11) = 1. On the other hand, T2,7 and T2,11 are further from being
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dependent: d(aT2,7 , bT2,11) ≥ 2, for all nonzero a and b. These are simple
consequences of the results of Sections 2 and 3.

• Issues related to the triangle inequality are illustrated by the following. For all
a and b nonzero, the minimum of d(aT2,41 , bT2,61) is 2, realized by d(3T2,41 ,
2T2,61) = 2; the minimum of d(aT2,61 , bT2,91) is 2, realized by d(3T2,61 , 2T2,91) = 2;
and the minimum of d(aT2,41 , bT2,91) is 5, realized by d(2T2,41 ,T2,91) = 5. This is
discussed in Section 7.1.

• The failure of transitivity that appears in defining P(G) is illustrated with the
cyclic group Z6. The pair of elements {1, 2} have a nonzero common multiple,
as does the pair 1 and 3. Yet the pair {2, 3} does not have a common nonzero
multiple. In the context of C, we have 2T2,3 is in an infinite number of distinct
cyclic subgroups, generated by elements of the form T2,3 # J for arbitrary 2-torsion
elements J. Thus, for instance, determining Δ(Tp,q ,Tp′ ,q′) entails determining the
minimum of g4(aTp,q # bTp′ ,q′ # J) for all nonzero a and b and for all knots J of
finite order in C.

1.2 Notation

It will be important to distinguish between a knot and the concordance class repre-
sented by the knot. To do so, we will change typeface; for instance, for the knot K ⊂ S3,
we will write K ⊂ C for the concordance class represented by K. Later, when we place
an equivalence relation on C to form the projective space, P(C), the equivalence class
of K ∈ C will be denoted [K] ∈ P(C).

The functions g4 can be defined on the set of knots or on C. Similarly, we can refer
to the distance d(K , J) or d(K, J), working with knots or concordance classes. This
ambiguity should not be problematic, so we do not add to the notation to distinguish
these functions based on their domains.

1.3 Outline

Sections 2 and 3 discuss a basic family of examples, that of two-stranded torus knots,
T2,2k+1. In this setting, we explore the problem of minimizing d(aT2,2k+1 , bT2,2n+1)
over all a ≠ 0 and b ≠ 0. The first of these two sections concerns geometric tools that
provide upper bounds; the next section uses signature functions to find lower bounds.
We will define d(K , J) = min{d(aK , bJ) ∣ a, b ≠ 0}. Elementary consequences of the
work in these sections are the following results presented in Section 3.6:
• d(T2,2k+1 ,T2,2n+1) goes to infinity for fixed k as n grows. The growth rate is of order

n/2k.
• For fixed N > 0, the set of values d(T2,2k+1 ,T2,2n+1) for all k and n satisfying
∣n − k∣ ≤ N is bounded.

• The function d∶ C × C→ Z does not satisfy the triangle inequality.
In Section 4, we develop the formal algebra that permits us to define the appro-

priate equivalence relation and form the quotient space P(C). In our setting, we
could restrict our algebraic discussion to general abelian groups, but the natural
map C→ C⊗Q leads us to consider projectivizing modules over Q, and ultimately
modules M over arbitrary integral domains. In Section 5, we define a canonical metric
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1270 C. Livingston

on P(M) for a given integer-valued metric on M, and Section 6 considers basic
properties of that metric in the case of P(C).

In Section 7, we discuss tools for computing a pseudometric δ that is initially
defined on P(C). This discussion is based on the signature function, as developed
in Section 3.

Section 8 concerns the metric Δ∶ P(C) × P(C) → Z. Computations are much more
difficult, so we restrict ourselves to the setting of (2, 2k+1)-torus knots and the analysis
of small balls in the subset of P(C) consisting of elements represented by these knots.
It is worth mentioning now that for any class K in the span of such torus knots, there
are concordance class J ∈ C satisfying J ∈ [K], but for which J is not represented by
a knot in the span of torus knots. Here is a simple example. Let J be any element of
order two in C. Then 2(T2,3 # J) = 2T2,3, so both represent the same element in P(C);
however, T2,3 # J is not in the span of torus knots.

A challenging problem asks, for each subgroup S ⊂ C, whether the inclusion
P(S) → P(C) is an isometry. This and other problems are summarized in Section 11.

2 Torus knots, T2,2k+1: geometric constructions

The spaceP(C)will provide a structure for exploring knot concordance, but ultimately
the questions that arise can only be understood by constructing surfaces in B4

bounded by connected sums of the form aK # −bJ and then finding lower bounds on
the genus of such surfaces. In this section, we consider the construction of surfaces
bounded by linear combinations of pairs {T2,2k+1 , T2,2n+1} and then focus on the
special case of minimizing g4(T2,2k+1 # −βT2,2n+1). In the next section, we use the
signature function to show that minimizing g4(aT2,2k+1 # −bT2,2n+1) over all a and b
can be reduced to a finite set of such pairs, and we completely resolve the problem of
minimizing g4(T2,2k+1 # −bT2,2n+1). We also provide examples for which the overall
minimum over all a and b is not achieved with a = 1.

At this point, we note an interesting aspect of the family of (2, 2k + 1)-torus
knots: from the perspective of Heegaard Floer theory, they all appear to be lin-
early dependent: there is a chain homotopy equivalence CFK∞(nT2,2k+1) ⊕ A1 ≃
CFK∞(kT2,2n+1) ⊕ A2 for some pair of acyclic complexes A1 and A2. More generally,
Feller and Krcatovich [5] have demonstrated the limited ability of Heegaard Floer
Upsilon to obstruct linear dependance inC among general torus knots. If one moves to
the realm of involutive Heegaard Floer theory, some limited results concerning torus
knots T2,2k+1 become available (see [12]).

2.1 Basic construction

A Seifert surface for T2,2k+1 is constructed by attaching 2k once twisted bands to a
disk. Figures 1 and 2 are schematic representations of Seifert surfaces for T2,13 # −2T2,5
and T2,13 # −3T2,5. Curves drawn on the surface represent unlinks with 0 framing
on the surfaces. (In the first illustration, there are eight such curves; each one goes
over a band on the top and a band on the bottom. In the second illustration, there are
10 such curves.) Surgery can be performed on the surfaces in B4 to yield surfaces of
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Figure 1: A schematic of a Seifert surface for T2,13 − 2T2,5 and surgery curves.

Figure 2: A schematic of a Seifert surface for T2,13 − 3T2,5 and surgery curves.

lower genus than the Seifert surfaces, thus giving upper bounds on the four-genus of
the knots.

2.2 Application to T2,2n+1 − aT2,2k+1

Figures 1 and 2 illustrate two possibilities for connected sums T2,2n+1 # −aT2,2k+1,
where n > k. In each case, there is an elementary computation of the genus of the
resulting surface in B4. With a bit of experimenting, one might suspect that the
minimum four-genus of T2,2n+1 # −aT2,2k+1 is achieved when a is close to α = ⌊ 2n+1

2k+1 ⌋.
Here, we present the computation for the two values of a closest to α. Once we
consider signatures, we will prove that one of these surfaces realizes the minimum. As
mentioned earlier, it is not always the case the min{d(aT2,2k+1 , bT2,2n+1) ∣ a, b ≠ 0} is
realized with b = 1.

Theorem 2.1 For 0 < k < n, let α = ⌊ 2n+1
2k+1 ⌋.

(1) g4(T2,2n+1 # −αT2,2k+1) ≤ n − αk.
(2) If 2k + 1 does not divide 2n + 1, then g4(T2,2n+1 # −(α + 1)T2,2k+1) ≤ α(k + 1) +

k − n.

Proof The genus of the surface before the surgery is one half the total number of
bands. Surgery reduces the genus by the number of surgery curves, which is one half
the number of bands that have surgery curves going over them. We call the bands that
do not have surgery curves going over them free bands. Thus, the genus after surgery
is one half the number of free bands. For instance, in Figure 1, there are four such
bands, all on top. In Figure 2, there are also four such bands, two on top and two on
the bottom.

In the first case, all the free bands are on top. There are two types: those resulting
from gaps and those at the end. The count is (α − 1) + (2n − (α(2k + 1) − 1))
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In the second case, there are α free bands on the top (this uses the fact that 2k + 1
does not divide 2n + 1). On the bottom, there are 2k − (2n − α(2k + 1)) free bands.
The result now follows from an algebraic simplification. ∎

3 Torus knots, T2,2k+1: signature results

The signature function provides strong bounds on the four-genus of knots. In this
section, we will consider the special case of torus knots of the form T2,2k+1 and
undertake signature function calculations related to determining the distance between
a pair aT2,2k+1 and bT2,2n+1.

In the rest of this section, we will restrict our attention to the case that the
parameters a and b are positive. This is motivated by two observations. First, if a
and b are of opposite sign, then the classical Murasugi signature [19] determines that
the four-genus satisfies g4(aT2,2k+1 # −bT2,2n+1) = ∣ak − bn∣. Second, if one considers
more general pairs of positive torus knots, still with opposite signs, then the signature
function is not sufficient to determine the four-genus g4(aTp,q # −bTp′ ,q′), but the
Ozsváth–Szabó τ–invariant [20] and the Rasmussen s-invariant [21] do suffice. On
the other hand, it is remarkable how challenging it is to analyze the case in which the
signs are the same, and perhaps surprising that signature functions can be effective
while more modern methods yield little information.

3.1 Signature functions

In order to simplify our calculations, rather than work with the (two-sided averaged)
Levine–Tristram signature function, σK(ω), we will normalize and define σ ′K(ω) =
−σK(ω)/2. To further simplify notation, instead of working with unit complex num-
bers on the upper half-circle, ω, we will change variables so that domain is [0, 1] by
setting ω = eπit . The next well-known result follows from the work of Tristram [23]
and Viro [24].
Proposition 3.1 For all knots K and for all t ∈ [0, 1], g4(K) ≥ ∣σ ′K(t)∣.

In light of this, we define the function that maximizes this bound.
Definition 3.1 For a knot K, S(K) = max0≤t≤1{∣σ ′K(t)∣}.

3.2 Signature functions of T2,2k+1.

A standard result for 2-stranded torus knot is the following.

Proposition 3.2 If 1 ≤ j ≤ k and 2 j−1
2k+1 < t < 2 j+1

2k+1 , then σ ′T2,2k+1
(t) = j. If t < 1

2k+1 , then
σ ′T2,2k+1

(t) = 0.
It is clear from Theorem 2.1 that in studying the difference bT2,2n+1 # −aT2,2k+1,

care is required in the special case that 2n+1
2k+1 is an integer. Because of this, the floor

function arises naturally in the calculations, but it has to be slightly modified.
Definition 3.2 We will write ⌊⌊x⌋⌋ for the function that equals ⌊x⌋ if x is not an integer
and ⌊x⌋ − 1 if x ∈ Z. More concisely, ⌊⌊x⌋⌋ = ⌈x⌉ − 1.

A simple calculation now yields the following result.
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Corollary 3.3 Let K = bT2,2n+1 # −aT2,2k+1 with 0 < k < n and a, b > 0. For suffi-
ciently small ε with ε > 0, we have:
(1) σ ′K( 1

2k+1 − ε) = b⌊⌊ 1
2

2n+1
2k+1 +

1
2 ⌋⌋ ≥ b.

(2) σ ′K(1) = bn − ak.
(3) σ ′K( 2k−1

2k+1 + ε) = bn − ak − b⌊⌊ 2n+1
2k+1 ⌋⌋.

Corollary 3.4 If k and n satisfy 0 < k < n and N > 0, then the set of positive pairs a
and b such that S(bT2,2n+1 # −aT2,2k+1) ≤ N is finite.

Proof Suppose that S(bT2,2n+1 # −aT2,2k+1) ≤ N with a > 0 and b > 0. Condition (1)
of Corollary 3.3 implies that 0 < b ≤ N . For each value of b in that interval, Condition
(2) implies that the set of possible values of a is also finite. ∎

3.3 The case of b = 1: minimizing g4(T2,2n+1 # −aT2,2k+1)

Theorem 3.5 Let α = ⌊ 2n+1
2k+1 ⌋. The minimum value of g4(T2,2n+1 − aT2,2k+1) is achieved

when a = α or α + 1, with the two possible values given by:
• g4(T2,2n+1 # −αT2,2k+1) = n − αk.
• g4(T2,2n+1 # −(α + 1)T2,2k+1) = (α + 1)(k + 1) − n − 1.

Proof Let F(a) denote the signature function bound on g4(T2,2n+1 # −aT2,2k+1). We
consider two cases: a ≤ α and a ≥ α + 1.

Case 1: a ≤ α. In this case, we consider the signature at t = 1. Noting that n − ak ≥ 0,
we find that F(a) ≥ n − ak. This bound is realized at a = α, so we have F(α) = n − αk
and F(a) > F(α) for all a < α.

Case 2: a ≥ α + 1. In this case, we consider the signature at t = 2k−1
2k+1 + ε for some small

ε. In this case, we have F(a) ≥ ak − n + ⌊ 2n+1
2k+1 ⌋. This bound is realized when a = α + 1.

Now, we can combine these two cases. If S(α) ≤ S(α + 1), then S(α) ≤ S(a) for all
a and g4(T2,2n+1 # −aT2,2k+1) is minimized at a − α. Similarly if S(α + 1) ≤ S(α). ∎

3.4 Basic examples

We begin with a few examples. In each case, we assume either a or b is nonzero.

Example 3.6 min{g4(bT2,23 # −aT2,7), a, b ∈ Z>0} = g4(T2,23 # −3T2,7) = 2. In this
case, we have n = 11 and k = 3.

Applying Corollary 3.3, we find

g4(bT2,23 − aT2,7) ≥ S(bT2,23 # −aT2,7) ≥ max{2b, ∣11b − 3a∣, ∣8b − 3a∣}.

By Theorem 2.1, we have g4(T2,23 # −3T2,7) ≤ 2. We claim that (a, b) = (3, 1) is the
unique positive pair for which max{2b, ∣11b − 3a∣, ∣8b − 3a∣} ≤ 2. Clearly, if b = 0, then
a must equal 0 for the inequality to hold, and if b > 1, then the inequality cannot hold.
In the case that b = 1, one observes that for ∣11 − 3a∣ and ∣8 − 3a∣ to both be less than
3, we must have a = 3.

Example 3.7 min{g4(bT2,17 # −aT2,11), a, b ∈ Z>0} = g4(2T2,17 # −3T2,7) = 2. Here,
we present a case in which g4(bT2,2n+1 # −aT2,2k+1) is not realized by g4(T2,2n+1 #
−aT2,2k+1) for any a. Let k = 5 and n = 8. By Corollary 3.3, if we consider combinations
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Figure 3: σK(ω) for K = T2,17 # −2T2,11 and K = 2T2,17 # −3T2,11.

Figure 4: σK(ω) for K = T2,17 # −2T2,11 and K = 2T2,17 # −3T2,11 .

of the form T2,17 # −aT2,11 (Figure 3), we have

S(T2,17 # −aT2,11) ≥ max{1, ∣8 − 5a∣, ∣7 − 5a∣}.

For all values of a, this is always at least 3.
For general b, we have

S(bT2,17 # −aT2,11) ≥ max{b, ∣8b − 5a∣, ∣7b − 5a∣}.

For b = 2 and a = 3, the maximum is 2, and one can quickly check that this is the only
pair for which the maximum of 2 is realized.

We finally observe that g4(2T2,17 # −3T2,11) = 2. If we draw a schematic for this
difference, there are two groups of 16 bands on the top and 3 groups of 10 bands on
the bottom. All 10 bands of the bottom-left group can be surgered, as can the 10 bands
of the bottom-right group. This leaves five bands free on each of the top two groups.
These can be combined with bands on the bottom-central group to perform surgery
on nine more curves. Thus, we have reduced the genus by 10 + 10 + 9 = 29. Finally,
31 − 29 = 2, yielding the minimum.

Figure 3 illustrates two of the signature functions that were implicitly considered
above. (The t-axis is labeled from 0 to 1,000, indicating that the signature function was
evaluated at points i/1, 000.)
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3.5 Failure of the triangle inequality

Our final example is the most technical. It will be used later to demonstrate the failure
of the triangle inequality.

(1) Min{g4(bT2,61 # −aT2,41)} = 2, realized by g4(2T2,61 # −3T2,41) = 2.
(2) Min{g4(bT2,91 # −aT2,61)} = 2, realized by g4(2T2,91 # −3T2,61) = 2.
(3) Min{g4(bT2,91 # −aT2,41)} = 5, realized by g4(T2,91 # −2T2,41) = 5.

We now work through each case.

(1) A construction similar to the one used to show g4(2T2,17 # −3T2,11) = 2 demon-
strates that g4(2T2,61 # −3T2,41) ≤ 2. Thus, we need to show that 2 is the minimum.
Here, n = 30 and k = 20. Applying Corollary 3.3, we find

S(bT2,61 # −aT2,41) ≥ max{b, ∣30b − 20a∣, ∣29b − 20a∣}.

It is now a trivial exercise to show that this has minimum 2, realized when b = 2
and a = 3.

(2) Showing that g4(2T2,91 # −3T2,61) = 2 demonstrates that g4(bT2,91 # −aT2,61) ≤ 2.
Thus, we need only show that 2 is the minimum.

Here, n = 45 and k = 30. Applying Corollary 3.3, we find

S(bT2,91 # −aT2,61) ≥ max{b, ∣45b − 30a∣, ∣44b − 30a∣}.

It is again a trivial exercise to show that this has minimum 2, realized when b = 2
and a = 3.

(3) The basic construction shows that g4(T2,91 # −2T2,41) ≤ 5. Thus, we need to show
that 5 is the minimum.

Here, n = 45 and k = 20. Applying Corollary 3.3, we find

S(bT2,91 # −aT2,41) ≥ max{b, ∣45b − 20a∣, ∣43b − 20a∣}.

The value of the maximum is 5 when b = 1 and a = 2. Here is a summary of the
check that for all a and b, the maximum is never less than 5. If the maximum is
less than 5, then b = 1, 2, 3, or 4. The second term, ∣45b − 20a∣, quickly rules out
the possibility of b = 1, 2, or 3. For b = 4, the second condition would require that
a = 9. But this case is ruled out by the third entry: ∣(43)(4) − (20)(9)∣ = 8.

3.6 The growth of d(T2,2k+1 ,T2,2n+1)

Let d(K, J) = min{d(aK, bJ) ∣ a ≠ 0 ≠ b}. In Section 6, we will describe in detail the
distance δ on the projective space P(C) and will see that in the following theorem
statement, d can be replaced with δ.

Theorem 3.8 For any fixed integer k ≥ 1,

lim
n→∞

d(T2,2k+1 ,T2,2n+1)
n

= 1
2k + 1

.
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Proof By Theorem 2.1, we have that

d(T2,2k+1 ,T2,2n+1) ≤ min{n − αk, (α + 1)(k + 1) − n − 1},

where α = ⌊ 2n+1
2k+1 ⌋. Since ∣α − 2n+1

2k+1 ∣ ≤ 1 and is not multiplied by n in this bound, we can
replace α with 2n+1

2k+1 in the bound without changing the limiting behavior once it is
divided by n. An elementary algebraic manipulation then provides the upper bound
for the limit of d/n to be 1

2k+1 .
To get the lower bound, we use Corollary 3.3, which implies that

d(T2,2k+1 ,T2,2n+1)) ≥ ⌊⌊ 1
2

2n + 1
2k + 1

+ 1
2
⌋⌋.

Again, the floor function differs from its argument by an amount that bounded by 1,
so we have

d(T2,2k+1 ,T2,2n+1)) ≥
1
2

2n + 1
2k + 1

+ 1
2

.

Forming the quotient with n and taking the limit as n goes to infinity gives the desired
lower bound. ∎

4 Projectivizing abelian groups

We would like to define a distance on the concordance group by something like

min{d(K , J) ∣K ∈ S1 , J ∈ S2},

where S1 and S2 are maximal cyclic subgroups of C containing K and J, respectively.
Such maximal subgroups exist by Zorn’s Lemma; however, they need not be unique.
For example, consider Z⊕Z2. The subgroups ⟨(1, 0)⟩ and ⟨(1, 1)⟩ are both maximal
cyclic subgroups containing (2, 0).

In this section, we will discuss a general approach to the algebra associated with the
relation on a group generated by the property of elements being in a common cyclic
subgroup. The construction is modeled on that of projective spaces associated with
vector spaces. Although our interest is ultimately in the abelian group C, a Z-module,
it will be valuable to work with general modules over integral domains.

4.1 The projective space of an R-module

Let R be an integral domain, let M be a left R-module, and let M○ = M/0. Define a
binary relation on Mo by x ∼′ y if there exists an m ∈ M such that x = rm and y = sm
for some r, s ∈ R and some m ∈ M. Notice that this is reflexive and symmetric, but it
need not be transitive.

Example 4.1 Let R = Z and M = Z⊕Z2 ⊕Z2 . Then (1, 1, 0) ∼′ (2, 0, 0) and
(1, 0, 1) ∼′ (2, 0, 0), but (1, 1, 0) /∼′ (1, 0, 1).
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Definition 4.1 Define the projective relation on M○, x ∼M y, to be the equivalence
relation generated by ∼′. That is, a ∼M b if and only if there is a finite chain

x = x0 ∼′ x1 ∼′ ⋅ ⋅ ⋅ ∼′ xn = y.

Except where needed, we will write “∼” instead of “∼M .”

Definition 4.2 Define the projective space P(M) = M○/ ∼. Set P∗(M) = ∗ ⊔ P(M),
where ∗ denotes a disjoint point.

The following result might clarify the equivalence relation and highlights why we
chose to define it in terms of having common divisors instead of having common
multiples. As we do not use it later, the elementary proof is left to the reader.

Theorem 4.2 If x , y ∈ M are nontorsion elements and [x] = [y] ∈ P(M), then there
exist elements a, b ∈ R such that ax = by ≠ 0.

We conclude this subsection with a few basic examples.

Example 4.3 The classes [2] = [3] ∈ P(Z6) have a common divisor, but the two
elements 2, 3 ∈ Z6 have no nonzero multiple in common.

Example 4.4 The projective space P(Z2 ⊕Z2) has three elements corresponding
to the three nontrivial elements in the group. On the other hand, an elementary
calculation shows that P(Z2 ⊕Z2 ⊕Z3) has one element.

Example 4.5 If R = F is a field, then P(M) is the standard projective space. For
instance, if M = Fn , then P(Fn) is, in the usual notation, PFn−1. In Corollary 4.12,
we discuss the case that M = Rn for an integral domain R.

4.2 Induced maps P(M) → P(N)

In the next subsection, we will consider the case of torsion abelian groups. In the
subsection after that, we present the case of torsion free abelian groups. In the first
case, torsion groups can be understood in terms of their elements of prime order. The
projectivization of torsion free groups can be understood by moving from Z-modules
to Q-vector spaces. Underlying these changes of domain is the following result, which
provides induced maps on projective spaces. The proof is straightforward except for
Statement (3), which calls for an example. Such an example is provided by the case of
P(Z2 ⊕Z2) → P(Z2 ⊕Z2 ⊕Z) given in Example 4.4.

Theorem 4.6 Let M be an R-module, let N be an S-module, let ϕ∶ R → S be a ring
homomorphism, and let F ∶ M → N be a module homomorphism over ϕ. Then: (1) F
induces a map F∗∶ P∗(M) → P∗(N), sending the equivalence class of x to ∗ if rx ∈
ker(F) for some r ≠ 0; (2) if F is surjective, then F∗ is surjective; and (3) if F is injective,
then there is also an induced map F∗∶ P(M) → P(N); this map need not be injective.

4.3 Torsion groups

Example 4.7 For any n > 1, P(Zn) has one point, the equivalence class of 1.

Theorem 4.8 If G is a torsion abelian group containing elements a and b of distinct
prime orders p and q, then P(G) has one element.
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Proof Given an arbitrary x ≠ 0 ∈ G, by taking a multiple, we see that x is equivalent
to some element x′ of prime order s. Assume that s ≠ q. Then

x′ ∼′ qx′ = q(x′ + b) ∼′ s(x′ + b) = sb ∼′ b.

Thus, every element is equivalent to either a or b. But these are also equivalent:

a ∼′ qa = q(a + b) ∼′ p(a + b) = pb ∼′ b. ∎

Theorem 4.9 Suppose that p is a prime and that each element of an abelian group G
has order pk for some k. Let H ⊂ G be the subgroup consisting of elements x satisfying
px = 0. Then the map induced by inclusion P(H) → P(G) is a bijection.

Proof Notice that H is a Zp-vector space and thus each nonzero element lies on a
unique line, or stated equivalently, in a unique cyclic subgroup.

Given an element x ≠ 0 ∈ G, choose the least n > 0 such that nx ∈ H and note
nx ≠ 0. Denote nx by F(x). We claim that F induces a bijection F∗∶ P(G) → P(H).

First, we show that it is well defined. If x ∼′ y, then x and y are in a common cyclic
subgroup of G. The intersection of that subgroup with H is a cyclic subgroup, and so
F(x) and F(y) lie on a common line in H, which must be the unique line through
F(x). Continuing in this way, if there is a sequence x = x0 ∼′ x1 ∼′ ⋅ ⋅ ⋅ ∼′ xn = y, we
see that F(x i) lies on the line through F(x) for all i and in particular F(x) and F(y)
lie in a common cyclic subgroup. Thus, F∗ is well defined.

It is clear that F∗ is surjective.
For injectivity, first, note that it is evident that if F(x) ∼H F(y), then F(x) ∼G F(y).

It is also clear that F(x) ∼G x and F(y) ∼G y. So, if F(x) ∼H F(y), we have the chain

x ∼′G F(x) ∼′G F(y) ∼′ y. ∎

Example 4.10 For direct sums, infinite as well as finite, and for any prime p, the
inclusion ⊕iZp → ⊕iZpai induces a bijection P(⊕iZp) → P(⊕iZpai ). The domain is
a Zp-projective space. There is one point in P(⊕iZp) for each order p cyclic subgroup.

In the case of p = 2, cyclic subgroups correspond to nontrivial elements ofP(⊕iZ2)
and thus there is a bijection (⊕iZ2/0) → P(⊕iZ2a

i
).

In the case of a finite sum, ⊕n
i=0Zpai , we have that the number of elements in the

projective space is (pn − 1)/(p − 1).

4.4 The torsion-free case

Let M be a torsion-free module over R, and let Q(R) denote the field of fractions. Let
MQ = M ⊗Q(R) be the associated Q(R) vector space.

Theorem 4.11 If M is torsion-free, then there is a natural bijection P(M) → P(MQ).

Proof We first recall the elementary fact that M is torsion-free implies that M → MQ

is injective. Another elementary observation is that for every x ≠ 0 ∈ MQ, there is
an α ≠ 0 ∈ R such that αx ∈ M. By Theorem 4.6, there is a natural map ψ∶ P(M) →
P(MQ).

It is clear that ψ is surjective: m ⊗ a
b ∼′ b(m ⊗ a

b ) = m ⊗ a = am ⊗ 1.
To show that ψ is injective, suppose that a, b ∈ M and a ∼MQ

b. Then there are an
r, s ∈ Q(R) and an m ∈ MQ such that a = rm and b = sm. Choose an element in t ∈ R
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such that tr ∈ R, ts ∈ R, and tm ∈ M. Then we have the following relations in M, where
each element within parentheses is in R or M.

a ∼′M (t2)a = (t2)(rm) = (tr)(tm) ∼′M (tm) ∼′M (ts)(tm) = (t2)(sm) = (t2)b ∼′ b.

∎

Corollary 4.12 The inclusion Z→ Q induces a bijection P(Z∞) → P(Q∞) = QP∞.

4.5 Modules with free parts and torsion

We continue to assume that R is an integral domain.

Theorem 4.13 For arbitrary nonzero elements a and b in an R-module M, if a ∼ b and
a is R-torsion, then b is also R-torsion.

Proof If a ∼′ b, then there are an m, r, and s so that a = rm and b = sm. There is an
α ∈ R such that α ≠ 0 and αa = 0. Thus, αrm = 0. We then have that αrb = αrsm = 0.
Since α ≠ 0, r ≠ 0, and R is an integral domain, it follows that αr ≠ 0. Thus, b is also
torsion.

Finally, we see that in any sequence

a = x0 ∼′ x1 ∼′ ⋅ ⋅ ⋅ ∼′ xn = b,

each successive x i is torsion. ∎

Let Tor(M) denote the R-torsion submodule in the R-module M.

Theorem 4.14 If x ∈ M is not R-torsion and y ∈ M is R-torsion, then [x] = [x + y] ∈
P(M).

Proof Suppose that r ≠ 0 and r y = 0. Then 0 ≠ rx = r(x + y) and

x ∼′ rx = r(x + y) ∼′ x + y. ∎

Theorem 4.15 For any R-module M,P(M) = P(Tor(M))⊔P(M/Tor(M)), where⊔
denotes disjoint union.

Proof Let T(M) denote the set of classes in P(M) that are represented by elements
in Tor(M), and let F(M) consist classes in P(M) that are represented by nontorsion
elements of M. If follows from Theorem 4.13 that P(M) = T(M)⊔F(M). Thus, we
want to show that P(Tor(M)) = T(M) and P(M/Tor(M)) = F(M).
Step 1. Consider a, b ∈ Tor(M). We first want to show that if a ∼M b, then a ∼Tor(M) b.
Suppose that

a = x0 ∼′M x1 ∼′M ⋅ ⋅ ⋅ ∼′M xn = b

is a chain. We first note that each x i ∈ Tor(M). If a = rm and x1 = sm, then since a is
torsion, m is also torsion, and thus x1 is torsion. Proceed by induction.

We now need to show that if a, b ∈ Tor(M) and a ∼′M b, then a ∼′Tor(M) b. Again,
if a = rm and b = sm, then since a is torsion, m is also torsion, and thus a and b are
multiples of a common element in Tor(M).
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Step 2. We now observe that the previous step implies that P(Tor(M)) = T(M). The
inclusion Tor(M) → M induces a map P(Tor(M)) → T(M). It is clearly surjective,
and the previous step shows that it is injective.
Step 3. We now want to understand F(M). Define ϕ∶ F(M) → P(M/Tor(M)) by
[a] → [a], where a is the image of a in M/Tor(M). It is clear that ϕ is well defined: if
[a] = [a′], then a ≠ 0 ≠ a′ and [a] = [a′]. It is also clear that ϕ is surjective.

We now prove injectivity. If a ∼′ b, then there are an element m ∈ M, elements
r, s ∈ R, and torsion elements t1 , t2 ∈ Tor(M) such that a + t1 = rm and b + t2 = sm.
Suppose that α ∈ R satisfies αt1 = 0 = αt2. Then αa = αrm and αb = αsm. We then
have the chain

a ∼′ αa ∼′ m ∼′ αb ∼′ b. ∎

4.6 The projectivization of the concordance group: P(C)

We have the decomposition P(C) = P(Tor(C)) ⊔ P(C/Tor(C)).
By Theorem 4.11, we have that P(C/Tor(C)) is in bijective correspondence with

P(V) for some Q-vector space. Also, C contains an infinite linearly independent set,
so if fact, P(C/Tor(C)) is in bijective correspondence with P(Q∞).

Since C contains 2-torsion, if it also contains torsion of odd order, then by Theo-
rem 4.8, P(C/Tor(C)) has one point. On the other hand, if all elements are of order 2k

for some k, then by Theorem 4.9, we have P(C/Tor(C)) is in bijective correspondence
with P(Z∞2 ). We summarize these observations with the following theorem.

Theorem 4.16 Either P(C) = P(Z∞2 ) ⊔ P(Q∞) or P(C) = ∗ ⊔ P(Q∞), where ∗ is a
single point. The first case holds if C contains no odd order torsion. The second case holds
if there is odd torsion.

5 Metrics on P∗(M)

Suppose that d is an integer-valued metric on the module M. We show that it induces
a metric Δ on P∗(M).

5.1 Definition of Δ.

Recall that for an element x ∈ M, we denote its equivalence class by [x] ∈ P∗(M). Also,
0 ∈ M is the unique representative of the class we have denoted ∗.

Definition 5.1
(1) For [x] ∈ P∗(M) and [y] ∈ P∗(M),

δ([x], [y]) = inf{d(x′ , y′) ∣ x′ ∈ [x] , y′ ∈ [y]}.

(2) For [x] ∈ P∗(M) and [y] ∈ P∗(M),

Δ([x], [y]) = min{δ([x0], [x1]) + δ([x1], [x2]) + ⋅ ⋅ ⋅ + δ([xn−1], [xn])},

where the minimum is taken over all sequences of classes for which [x0] = [x]
and [xn] = [y].
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Elementary examples demonstrate the need of considering chains to achieve
transitivity. The proof of the following result is immediate, given that d is integer-
valued.

Theorem 5.1 The function Δ∶ P∗(M) × P∗(M) → Z is a metric.

5.2 Mappings of metric spaces (P∗(M), Δ).

Definition 5.2 Suppose that F∶ (X , d) → (Y , d′) is a function between metric
spaces. Then F is called a weak contraction if d′(F(x0), F(x1)) ≤ d(x0 , x1) for all x0
and x1 in X.

We have the following elementary result.

Theorem 5.2 If F∶ (M , d) → (N , d′) is a weak contraction of modules with integer
valued metrics, then F∗∶ (P∗(M), Δ) → (P∗(N), Δ′) is a weak contraction with respect
to the induced metrics.

6 Properties of the metric Δ on P∗(C)

Here is the definition of the metric Δ restated for the special case of knots.

Definition 6.1
(1) For K and J in C, d(K, J) = d(K , J) = g4(K # −J), where K and J are arbitrary

representatives of K and J.
(2) For [K] ∈ P(C) and [J] ∈ P(C),

δ([K], [J]) = min{d(K′ , J′) ∣K′ ∈ [K] , J′ ∈ [J]}.

(3) For [K] ∈ P(C) and [J] ∈ P(C),

Δ([K], [J]) = min{δ([K0], [K1]) + δ([K1], [K2]) + ⋅ ⋅ ⋅ + δ([Kn−1], [Kn])},

where the minimum is taken over all sequences of classes for which [K0] = [K]
and [Kn] = [J].

Here is a consequence of Theorem 4.2 relating the metric Δ to linear independence
in C.

Theorem 6.1 If K and J are elements of infinite order in C, then Δ(K, J) = 0 implies
that there are a, b ∈ Z such that aK = bJ ≠ 0.

Example 4.3 demonstrates that if C contains an element of odd order, then the
converse does not generalize to the case of knots of finite order. On the other hand, if
C ≅ Z∞2 ⊕Z∞ as might be conjectured, then the condition that K and J are of infinite
order could be dropped.

Another elementary result is the following.

Theorem 6.2 (1) Δ(K, J) = 1 if and only if δ(K, J) = 1. (2) If δ(K, J) = 2, then
Δ(K, J) = 2.

Here is one topological result concerning Δ([K], [J]).
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Theorem 6.3 If Δ([K], [J]) = n > 0, then there exists a sequence K =
K0 ,K1 , . . . ,Kn = J such that for 0 ≤ i ≤ n − 1, δ(Ki ,Ki+1) = 1.

Proof We work with δ and prove the analogous statement. This clearly implies the
result for Δ. Thus, assume that δ([K], [J]) = n > 0. Then there exist representative
knots K′ ∈ [K] and J′ ∈ [J] for which d(K′ , J′) = n.

Let C be a genus n cobordism from K′ to J′. An isotopy can be performed so that the
maximums all occur first and the minimum last. Call the count of these M and N. The
saddle points can be put in arbitrary order, the count of these will call S. From the Euler
characteristic, we know that genus of the cobordism satisfies n = (S − M − N)/2.

By ordering the saddle points, we can arrange that the first N saddle points create
a genus 0 cobordism, a concordance, between K′ and a knot K′′. That is, after the
maximum are passed, there are N + 1 components, and the first N saddle points
reconnect the curve. Similarly, the remaining saddle points can be paired so that the
last ones along with the minimums form a concordance from J′ to a knot J′′.

We are now left with a cobordism of genus n from K′′ to J′′ containing only saddle
points. Those saddle points can now be ordered to form a set of (S − M − N) pairs:
the first of each pair disconnects the curve, and the second reconnects them. Thus, we
have built a cobordism that consists of a sequence of cobordisms, each of genus 1. The
knots formed in this process constitute the desired knots K i . ∎

7 Computation the projective distance

In general, computing the projective distance δ([K], [J]) is inaccessible, and com-
puting Δ is even more difficult. For instance, if C contains elements that are infinitely
divisible, it is hard to imagine what tools could effectively measure the distance
between all divisors for a pair of such knots. Thus, we will want to restrict ourselves
to knots that are primitive, using an additive function to do so, and then use perhaps
other additive functions to bound the distance.

We begin with an elementary observation and move to Theorem 7.3, which provides
a tool in our computations of δ. In the next section, we consider the metric Δ.

Theorem 7.1 Let ν∶ C→ Z and ψ∶ C→ R be additive functions. If ν(K) = 1, then for
all K′ ∈ [K], ψ(K′) = ν(K′)ψ(K).

Proof If we simplify the condition that ν(K) = 1 to ν(K) ≠ 0, it is clear from the
definition of ∼′ that if K ∼′ K′, then (ν(K′), ψ(K′)) = c(ν(K), ψ(K)) for some
c ≠ 0 ∈ Q. Thus, it quickly follows that if K ∼K′, we also have (ν(K′), ψ(K′)) =
c(ν(K), ψ(K)) for some c ≠ 0 ∈ Q. Applying the condition that ν(K) = 1 gives the
desired result. ∎

Theorem 7.2 Let ν1∶ C→ Z and ν2∶ C→ Z be additive functions, and let ψ∶ C→ R be
an additive function satisfying ∣ψ(K)∣ ≤ g4(K) for all K ∈ C. Suppose that ν1(K) = 1
and ν2(J) = 1. Then

δ([K], [J]) ≥ min{ψ(aK # −bJ) ∣ a, b ≠ 0}.
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Let Ω denote a set of real-valued additive invariants on the concordance group that
give lower bounds on the four-genus. Let ν1 and ν2 be Z-valued additive invariants.
The following is now immediate.

Theorem 7.3 Suppose that ν1(K) = 1 and ν2(J) = 1. Then

δ([K], [J]) ≥ min{∣max{∣aψ(K) − bψ(J)∣ ∣ ψ ∈ Ω} ∣ a ∈ Z, b ∈ Z, ab ≠ 0}.

Example 7.4 We apply Theorem 7.2 to show that δ([T2,3], [T2,13]) = 2.
Let ν1(K) = σ ′∗( 1

3 + ε), and let ν2(K) = σ ′∗( 1
13 + ε). Then these satisfy the con-

ditions required by Theorem 7.2. Our set of homomorphisms Ω will be the set of
signature functions σ ′∗(t) for 0 ≤ t ≤ 1. We then have

δ([T2,3], [T2,13]) ≥ min{∣max{∣bσ ′T2,13(t) − aσ ′T2,3(t)∣ ∣ t ∈ [0, 1]} ∣ a ∈ Z, b ∈ Z, ab ≠ 0}.

Considering the signature at x = 3
13 + ε, we have σ ′T2,3

(x) = 0, and thus for all a,

∣bσ ′T2,13
(t) − aσ ′T2,3

(t)∣ ≥ 2b.

It follows that δ([T2,3], [T2,13]) ≥ 2. A construction such as in Section 2 shows that
g4(T2,13 # −4T2,3) ≤ 2.

The proof of Theorem 3.8 relied on the signature function, so we have the following
corollary of Theorem 7.2.

Corollary 7.5 For any fixed integer k ≥ 1,

lim
n→∞

δ([T2,2k+1], [T2,2n+1])
n

= 1
2k + 1

.

7.1 Failure of the triangle inequality for δ.

The results of Section 3.5 gave us the following.
• δ({[T2,41], [T2,61]) = 2.
• δ([T2,61], [T2,91]) = 2.
• δ([T2,41], [T2,91]) = 5.

To expand on this, applying Theorem 6.2, we have
• Δ([T2,41], [T2,61]) = 2.
• Δ([T2,61], [T2,91]) = 2.
• Δ([T2,41], [T2,91]) ≤ 4.

With this, the necessity of considering chains when defining Δ is apparent.

8 The metric Δ on P(C) and balls of small radius

Informally, Definition 6.1 states that the distance Δ([K], [J]) is the minimal length
of a path from K to J formed from classes Ki , where the length of each step is given
by δ([Ki], [Ki+1]). Theorem 6.3 states that the minimum can be realized by paths
in which each step is of length 1. Thus, to understand the metric Δ, it is important
to understand balls for Δ-radius 1. In this section, we discuss this in the case of
2-stranded torus knots. We also include Theorem 8.4, stating a simple case in which a
ball of radius 2 can be determined.
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Our main application of the results of this section are presented as a series of
examples in Section 9. The main goal of these examples is to emphasize the following:
even if one is interested only in the restriction of the metric Δ to the projective
space associated with a linear subspace of C, in order to use such geometric results
as Theorem 6.3, one must work in the full projective space P(C).

8.1 Balls of radius one

In this subsection, we answer the question of determining all pairs of 2-stranded torus
knots, T1 and T2, for which δ([T1], [T2]) = 1.

Theorem 8.1 If n > k and δ([T2,2k+1], [T2,2n+1]) = 1, then either (1) n = k + 1, 2k + 1,
or 3k + 1, in which case the minimum is realized by T2,2n+1 − αT2k+1, or (2) n = 2k, in
which case the minimum is realized by T2,2n+1 − (α + 1)T2,2k+1.

Proof If δ([T2,2k+1], [T2,2n+1]) = 1, then for some a and b, g4(bT2,2n+1 #
−aT2,2k+1) = 1. The signature condition implies that a = 1 and we are in the
setting of Theorem 3.5.

The genus 1 surface is built as illustrated in Figures 1 and 2. In those diagrams,
many of the bands have surgery curves going over them. Let the number of bands on
the upper set that do not interact with surgery curves be denoted U. Let the lower
count be L. In Figure 1, we have U = 1 + 3 = 4 and L = 0. In Figure 2, we have U = 2
and L = 2. An important observation is that after surgery, the genus of the surface that
results is (U + L)/2.

By Theorem 3.5, we need to consider two cases: T2,2n+1 # −αT2,2k+1 and T2,2n+1 #
−(α − 1)T2,2k+1 (recall that α = ⌊ 2n+1

2k+1 ⌋).

Case 1: T2,2n+1 # −αT2,2k+1. (See Figure 1.) In this case, we have that L = 0 and U =
(α − 1) + (2n − (α(2k + 1) − 1)), which simplifies to give

(U + L)/2 = n − αk.

If this equals 1, so that n = αk + 1, we find

α = ⌊2n + 1
2k + 1

⌋ = ⌊2αk + 2 + 1
2k + 1

⌋ = ⌊2αk + α + 3 − α
2k + 1

⌋ = ⌊α + 3 − α
2k + 1

⌋.

Since α is a positive integer, this can occur only if 1 ≤ α ≤ 3.

Case 2: T2,2n+1 # −(α + 1)T2,2k+1. (See Figure 2.) In this case, U = α. For the lower
surface, we have L = 2k − (2n − α(2k + 1)) = 2k(α + 1) + α − 2n. Thus, we have

(U + L)/2 = kα + k + α − n.

Thus, if this is 1, we have n = kα + k + α − 1, and

α = ⌊2n + 1
2k + 1

⌋ = ⌊2αk + 2k + 2α − 2 + 1
2k + 1

⌋ = ⌊2αk + α + 2k + α − 1
2k + 1

⌋ = ⌊α + 2k + α − 1
2k + 1

⌋.
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This is possible only if

2k + α − 1
2k + 1

< 1.

This implies that α < 2, that is, α = 1. This reduces to the case of n = 2k, as desired. ∎

In the following corollary, we make a small change in notation, working with torus
knots T2,N rather than T2,2k+1.

Corollary 8.2 The ball of radius one about the class [T2,N] contains the following
classes: [T2,N+2], [T2,2N−1], [T2,2N+1], and [T2,3N], and no other elements [T2,N ′] with
N ′ > N.

Example 8.3 The ball of radius one around the class [T2,15] consists of the following
set:

B1[(T2,15]) = {[T2,5], [T2,7], [T2,29], [T2,31], [T2,45]}.

8.2 Balls of radius two

The following result will be used in Example 9.1, below.

Theorem 8.4 For n = 5k + 2, Δ([T2,2k+1], [T2,2n+1]) = 2.

Proof A construction such as illustrated in Figure 1 shows that in the case that n =
5k + 2, δ([T2,2k+1], [T2,2n+1]) ≤ 2. The signature function, evaluated at 3

10k+5 + ε, can
be used to show that this is an equality. ∎

9 Linear spans

Given any subgroup S ⊂ C, there is the projective space P(S) along with the metric
ΔS. In this section, we present a few examples, culminating with a demonstration that
the inclusion (P(S), Δs) → (P(C), Δ) need not be an isometry.

Example 9.1 According to Theorem 8.4, we have that Δ(T2,3 ,T2,15) = 2. Notice
that there is a chain: δ(T2,3 ,T2,5) = 1 and δ(T2,5 ,T2,15) = 1. There is also the chain:
δ(T2,3 ,T2,7) = 1 and δ(T2,7 ,T2,15) = 1.

Example 9.2 Again, by Theorem 8.4, we have that Δ(T2,5 ,T2,25) = 2. However, there
is no chain of length two among two-stranded torus knot classes with both steps of
length one. Starting with T2,5, the results of the previous section show that the only
knots within a δ-distance of 1 are T2,3 ,T2,7, T2,9, T2,11, and T2,15. The radius one balls
around these include T2,9, T2,13, T2,15, T2,21, T2,11, T2,17, T2,19, T2,27, T2,17, T2,29, T2,31,
and T2,45. Notice that T2,25 is not on the list.

Theorem 6.3 implies that there is a knot J for which δ(T2,5 , J) = 1 and
δ(J,T2,25) = 1. One example is J = 2T2,5 # T2,15. We leave it as an exercise to find a
pair of band moves that converts 5T2,5 into J, and another pair of band moves that
converts J into T2,25.
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Example 9.3 Continuing with the example of the pair T2,5 and T2,25, a simple
calculation shows that if K = aT2,5 # cT2,25 and ε is small, then ∣σ ′K( 1

5 − ε)∣ = ∣2c∣. It
follows that the unit δ-ball around the element [T2,5]within the projective space of the
two-dimensional span ⟨T2,5 ,T2,25⟩ is the single element [T2,5]. In particular, although
Theorem 6.3 guarantees the existence of two step paths joining thee classes, the only
such paths must leave the projective space of the span of these two knots.

Example 9.4 Let S = ⟨T2,41 ,T2,91⟩. The inclusion P(S) → P(C) is not an isometry.
From Section 3.5, we have that the distance between any two elements in S is at
least 5, so that the projective distance ΔS([T2,41], [T2,91]) ≥ 5. In fact, the distance
is precisely 5. On the other hand, we saw in that section that in P(C) we have
Δ([T2,41], [T2,91]) ≤ 4.

10 A simplical complex built from P(C)

There is a canonical simplicial complex associated with (P(C), Δ), denoted (P(C), Δ),
which we will abbreviate P(C). We introduce it here to provide concise statements of
basic questions about the metric properties of P(C).

For any set with integer-valued metric, (X , d), there is an embedding of X into a
simplicial complex (X , d). By definition, an n-simplex of (X , d) consists of a set of
distinct elements {x0 , . . . , xn} such that d(x i , x j) = 1 if i ≠ j. This is an example of a
Vietoris–Rips complex [10].

Example 10.1 The following is a 3-simplex of P(C): {[T2,3], [T2,5], [T2,7], [T2,3 #
T2,5]}.

Example 10.2 There exists an infinite set of n-simplices in P(C). Let Kn be the

n-twisted double of the unknot with clasp chosen so that the Seifert form is (1 1
0 n) .

The set {Kn}n≥1 is linearly independent; this follows from the independence of the
signature functions, which have jumps at complex numbers eθn i where cos(θn) =
1 − 1

2n . (These knots were first used to show that C contains an infinite free summand
by Milnor [18].)

The knot Kn can be unknotted with a single negative to positive crossing change.
Thus, Kn # −Km can by unknotted with one positive and one negative crossing change.
It follows that Kn # −Km bounds a disk in B4 with two double points of opposite
sign. A simple tubing construction yields an embedded punctured torus, showing that
Δ([Kn], [Km]) = 1. Thus, any set of n + 1 of these knots yields an n-simplex in P(C).

Example 10.3 There exists an infinite set of n-simplices in P(C) spanned by alge-
braically slice knots. We work with the same knots Kn but use the set of knots {Kn}
where n is restricted to be of the form n = −k(k + 1) for some k ≥ 2. Using the results
of [3], Jiang [14] proved that the concordance classes of these knots are linearly
independent over Z. The same proof as in the previous example shows that they are
all of Δ-distance 1 from each other.
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11 Problems

Here are a few problems.

(1) Show that (P(C), Δ) is unbounded.
(2) Show that every element of (P(C), Δ) has infinite order; that is, the ball of

radius one about every element is infinite. In [13], Hirasawa and Uchida proved
such a statement for the Gordian complex of the set of knots, where distance is
determined by the minimal number of crossing changes required to convert one
knot into another; further results were obtained by Baader [1]. The invariants used
in those papers do not seem to be applicable in working with P(C).

(3) Under what conditions on S is the map (P(S), ΔS) → (P(C), Δ) isometric?
Note that in Example 9.4 we saw that the inclusion P(⟨T2,41 ,T2,91⟩) → P(C)
is not an isometry. One might conjecture that if S is the span of positive (or
strongly quasipositive) knots, then the inclusion is isometric. (The importance
of strongly quasipositive knots appeared in the work of Rudolph [22] and has
been extensively studied from the perspective of Heegaard Floer theory; see, for
instance, [11].)

(4) A metric can be defined on P(C/Torsion) by modifying Definition 6.1 so that
the path is restricted to nontorsion classes. Using this metric, is the injection
P(C/Torsion) → P(C) isometric?

(5) Let S denote the concordance group of topologically slice knots or the subgroup
generated by knots with Alexander polynomial AK(t) = 1. What can be said about
(P(S), ΔS)? In particular, what is the dimension of (P(S), Δ)?

(6) Let d be a metric on Z⊕Z; for instance, one can build d using the L1-
norm ∣(a, b)∣ = max{∣a∣, ∣b∣}. Describe the metric space (P(Z⊕Z), Δ). Notice
that P(Z⊕Z) is in natural bijective correspondence with the 1-dimensional
rational projective line QP1. What can be said about the simplicial complex
P(Z⊕Z), Δ)?

Here are two simple examples that illustrate a property of P(Z⊕Z), Δ). The
arrows indicate steps of length 1.

(8, 15) → (8, 14) ∼ (4, 7) → (4, 6) ∼ (2, 3) → (2, 2) ∼ (1, 1),

(135, 173) → (135, 174) ∼ (45, 58) → (44, 58) ∼ (22, 29) →

(21, 28) ∼ (3, 4) → (3, 3) ∼ (1, 1).

The first example, showing that Δ((8, 15), (1, 1)) ≤ 3, points to the fact that
in general Δ((x , y), (1, 1)) is bounded above by something of the order of
max{log2(x), log2(y)}. The second indicates that this bound is probably a sig-
nificant overestimate in many cases.
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