
8
Sources of pairing in nuclei

In general the two-body pairing force is parametrized in terms of: (a) an interac-
tion with constant matrix elements of magnitude G ≈ 25/A MeV, (b) a contact
interaction of strength 294

4π MeV fm2, (c) an effective two-body force (Gogny
(1975), Skyrme (1959)) whose parameters were adjusted so as to reproduce
nuclear observables.

Although these calculations have shed much light on the workings of pairing
correlations in nuclei, they say little concerning the relative importance of the
bare nucleon–nucleon interaction and of the many-body renormalization effects
taking place in the atomic nucleus. To gain insight into this question one has
to proceed in several steps, starting with the bare nucleon–nucleon interaction,
adding the renormalization effects afterwards. It has to be remembered that the
results are not expected to be a simple sum of the different contributions, as the
problem is highly non-linear. Making use of an analogy one can think of a metal,
and of the non-linear effects associated with the simultaneous treatment of the
bare Coulomb interaction, the coupling of electrons to plasmons (screening) and
the coupling of electrons to phonons (Cooper pair formation) (see, e.g. Broglia
et al. (2004)).

In the following three chapters we shall show that the nuclear surface plays a
central role in the pairing phenomenon. This is due to the renormalization effects
arising from the coupling of nucleons to low-lying collective surface vibrations.
The most important effects are: the dressing of particles leading to an effective
mass, and the exchange of vibrations among nucleons, giving rise to an induced
pairing interaction. By taking all these effects into account on equal footing with
the bare nucleon–nucleon interaction a consistent picture of pairing in nuclei is
obtained (see Section 10.4 and Chapter 11).

The present chapter is an introduction to the renormalization problem. The
contribution of the bare nucleon–nucleon (NN) interaction to the pairing gap
is discussed in Sections 8.1 and 8.2. Calculations with a local single-particle
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8.1 The bare nucleon–nucleon potential and the pairing interaction 171

potential give a pairing gap in agreement with experiment, but non-local ef-
fects reduce this by a factor of 2 (see Figs. 8.6 and 8.9). This is because the
effective k-mass mk ∼ 0.7m increases the spacing of single-particle levels near
the Fermi surface. The role of the non-local effects is analysed in Section 8.2
(see Appendices B and E and H, Section H.4) with the conclusion that coupling
of single-particle motion to low-energy collective modes must lead to important
renormalization effects. Section 8.3 contains an introduction to particle-vibration
coupling (see Appendices D and H, Section H.4) and the microscopic description
of both low-energy and high-energy (giant resonances) collective modes.

Chapter 9 is concerned with the dynamical shell model. Coupling of single-
particle motion to surface vibrations gives a time-dependent component to the
nucleon–nucleus interaction which manifests itself as an energy dependence
in the shell model potential. This energy dependence can be incorporated in
the ω-mass mω > m which modifies the effects of the k-mass, and also of the
occupation factors (see Appendix E and Section H.4).

The remaining contribution of the particle-vibration coupling is included in an
effective interaction due to the exchange of surface phonons. The renormalized
interaction is studied in Chapter 10 for the case of nuclei lying along the stability
valley and in Chapter 11 for halo (exotic) nuclei.

8.1 The bare nucleon–nucleon potential and the pairing interaction

While one does not know how to work out a reliable nucleon–nucleon interaction
at the level of quarks and gluons, phenomenological nucleon–nucleon interac-
tions exist which describe quite accurately the variety of phase shifts obtained
from the analysis of scattering processes in isolated two-nucleon systems (e.g.
np and pp systems) and arising from the exchange of mesons, the carriers of the
strong interaction. In the present context we are interested in the 2S+1L J = 1S0

phase shift, observed in the s-wave channel in the scattering of two identical
(T = 1) nucleons in a singlet spin state.

This phase shift, shown in Fig. 8.1, is large and positive (implying an attractive
interaction) at low relative momenta (typical, in the case of the atomic nucleus,
of the surface region). It decreases as the relative momenta increase becoming
zero and eventually negative (repulsive interaction) at relative momenta typical
of nuclear saturation density.

Conventional models of the NN interaction are based on non-relativistic pro-
tons and neutrons interacting via a two-body potential. Typical NN potentials
contain a strong short-range repulsion, an intermediate-range attraction, and a
long-range one-pion-exchange (OPE) part (see Fig. 8.2(a)). One knows that
such an approach is a great simplification over reality. Nucleons are composite
systems with a rich resonance structure, which can be attributed to constituent
quarks interacting by gluon exchange. Ideally a model of the NN interaction
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Figure 8.1. (Top) Schematic representation of the nuclear density ρ in units of fm−3 plotted
as a function of the distance r (fm) from the centre of the nucleus. (Bottom) Phase shift
δ associated with the elastic scattering of two nucleons moving in a singlet state of spin
zero. Positive values of δ imply an attractive interaction, negative a repulsive one. For kinetic
energies EL associated with low relative velocities, i.e. around the nuclear surface where
the density is low, the 1 S0 phase shift arising from the exchange of mesons (for example
pions, represented by a horizontal dotted line in the scattering diagrams) between nucleons
(represented by upward pointing arrowed lines) is attractive, and nucleons moving in time-
reversal states form Cooper pairs which eventually condense leading to nuclear superfluidity.
This effect is further accentuated because of the exchange of collective surface vibrations
(wavy line in the scattering process) between the members of the Cooper pair.

would start with a field theoretical description of quark–quark interactions, but
no satisfactory theory has yet been developed.

The Argonne v14 potential (Wiringa et al. (1984)) provides a convenient pa-
rametrization of the NN interaction to be used in nuclear structure calculations.
It has the form

v14(i j) =
∑

p=1,14

[v p
π (ri j )+ v p

I (ri j )+ v p
s (ri j )]O p

i j , (8.1)
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Figure 8.2. (a) T = 1, S = 0 central potential associated with the v14 NN interaction. (b)
T = 1, S = 0 1 S0 phase shifts: solid lines and dots are the energy-dependent and energy-
independent phases of Arndt and Roper (1985). The dashed curve is the v14 model phase shift.
Reprinted with permission from Wiringa et al., Phys. Rev. C29: 1207–21 (1984) Copyright
1984 by the American Physical Society.

where

O p=1,14
i, j = 1, 	τi · 	τ j , 	σi · 	σ j , (	σi · 	σ j )(	τi · 	τ j ), Si j , Si j (	τi · 	τ j ),

( 	L · 	S), ( 	L · 	S)(	τi · 	τ j ), 	L2, 	L2(	τi · 	τ j ), 	L2(σi · σ j ),

	L2(	σi · 	σ j )(	τi · 	τ j ), ( 	L · 	S)2, ( 	L · 	S)2(	τi · 	τ j ). (8.2)

Here

Si j = 3(σi · r̂i j )(σ j · r̂i j )− 	σi · 	σ j (8.3)

is a tensor operator, 	L is the relative orbital angular momentum, and 	S is the
total spin of the pair.

The first eight operators of equation (8.2) are the standard ones required to
fit singlet and triplet S- and P-wave data. The 14 operators provide sufficient
freedom to characterize the 14 singlet and triplet S, P, D and F states. The three
radial components include the long-range OPE part v p

π , and phenomenological
intermediate-range and short-range parts v p

I (r ), v p
s (r ). As an example we show

in Fig. 8.2(a) the T = 1, S = 0 central potential. The Argonne v14
1S0 phase

shift fits for the experimental data (see Fig. 8.2(b)) are quite good with only one
short-range functional form.

8.1.1 Calculation of the pairing properties of 120Sn

Hartree–Fock–Bogoliubov-like calculations (Thouless (1961a,b), Ring and
Schuck (1980)) of the pairing properties of the semi-magic nucleus 120

50 Sn70

have been carried out by Barranco et al. (1997), allowing the neutrons to
move in the single-particle states of a Saxon–Woods potential (with parame-
ters V 0 = −55 MeV, r0 = 1.2 fm, a = 0.65 fm) and interacting through a v14
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NN interaction. By solving the matrix equation(
εi − λ �

� −(εi − λ)

)(
Ui

Vi

)
= Ei

(
Ui

Vi

)
(8.4)

self-consistently with the constraint

N = 2
∑
a1>0

Vi
2, (8.5)

which fixes the average number of particles of the system and the Fermi energy
λ, one obtains the quasiparticle energies Ei and occupation amplitudes Vi and
Ui . The state-dependent pairing gap

�a1a2 = −
1

2

∑
b1b2

∑
i

U i
b1

V i
b2
〈a1ã2|v14|b1b̃2〉, (8.6)

with a1 ≡ (n1(l11/2) j1,m1), where n1, l1, j1 and m1 are the number of modes,
the orbital, the total angular momentum and its projection respectively of the
state |a1〉, depends on the matrix elements between two-particle states with the
same or different number of nodes. The state |ã2〉 is obtained from the state |a2〉
by the operation of time reversal.

As seen from the expression for the quasiparticle energy

Ea1 =
√

(εa1 − λ)2 +�2
a1a1
,

the quantity �a1a2 is an energy gap in the spectrum of quasiparticles in the case
of a continuous spectrum. For a discrete spectrum, it is meaningful to speak of
a gap only for values of �a1a2 which are greater than the distances between the
single-particle energies εa1 .

Equations (8.4) and (8.5) always have a trivial solution, namely�a1a2 = 0 and
Ua1 = 1, Va1 = 0 for εa1 > λ and Ua1 = 0, Va1 = 1 for εa1 < λ. However, if the
inequality

−1

2

∑
b1 b2

〈a1ã2|v14|b1b̃2〉√|εb1 − λ||εb2 − λ|
> 1 (8.7)

is fulfilled, then there is also a non-trivial (�a1a1 �= 0) solution of equations (8.4)
and (8.5). This is possible only if the pairing component of the NN potential
has a coherent character for sufficiently many states. In other words, the matrix
elements 〈a1ã2|v14|b1b̃2〉must have the same sign for a sufficiently broad region
of states. If this is not the case cancellations will occur and coherence will be
lost (Belyaev (1959)).
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(a) (b)

(c)

Figure 8.3. (a) NN scattering process through a bare interaction (horizontal dashed line;
nucleons are drawn as arrowed lines). (b) Renormalization of the bare NN interaction due
to core polarization (single particle–hole excitation, bubble). (c) NN interaction arising from
the exchange of a collective vibration (resulting from bubble process summed to all orders
(RPA), see Section 8.3).

Expanding the two-body interaction potential in spherical harmonics (see
Fig. 8.3)

v14(|	r1 − 	r2|) =
∑

L

vL (r1, r2)PL (cos θ12),

helps to understand which parts of the NN interaction contribute to a coherent
pairing interaction (see also Section 2.2). The spherically symmetric or monopole
part of the interparticle interaction contributes to the self-consistent field. The
single-particle levels in this field are degenerate and characterized by the value
of the angular momentum j . Let us consider the particles in the same level j and
neglect the interaction with the particles in other shells. The low-multipolarities
(L � 3–5) are not expected to contribute to the pairing interaction in any sub-
stantial way, because they connect the levels with similar magnetic quantum
numbers |ma1 − mb1 | ≤ L ≈ 3–5 and do not contribute in a significant way to
the inequality equation (8.7). Therefore, the main contribution to the pairing in-
teraction associated with the bare interaction comes from the high harmonics of
the NN potential. This is the standard argument made in connection with pairing
in nuclei (see e.g. Belyaev (1959), Mottelson (1962, 1996)).
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176 Sources of pairing in nuclei

On the other hand, low multipolarities give essential contributions to the mean
field. In particular L = 2, 3 and 4 can lead to spheroidal, octupole and hexade-
capole static or dynamic (surface vibration) distortions. The low multipole com-
ponents of the bare NN interaction give a small contribution to the pairing force,
but the renormalization effects arising from core excitation (polarization) pro-
cesses (Fig. 8.3(b)) are expected to be important (Bohr and Mottelson (1975),
Section 6-5f). This is because such processes receive coherent contributions
from all orders of perturbation (many-bubble processes), leading to collective
surface vibrations of low energy which couple strongly to the nucleons (see
Fig. 8.3(c)).

To obtain convergence of the solutions to equations (8.4) and (8.6), jumps
of pairs of nucleons to single-particle orbitals lying as high as 600 MeV from
εF have to be included in the calculations. For this purpose the continuum is
discretized by placing the nucleus in a box. The size of the box is to be changed
until convergence of the results is obtained. In the case of 120Sn this is achieved
for Rbox ≥ 12 fm.

The large value of the energy associated with the two-particle scattering pro-
cesses contributing to �a1a2 is essentially due to the strong repulsion of the
T = 1, S = 0 central potential (see Fig. 8.2) and not to the fact that the most
important contribution to Cooper pair formation is connected with the high mul-
tipoles of the residual interactions, as discussed in connection with the condition
given in equation (8.7). In fact, as seen from the single-particle valence spec-
trum of 120Sn (see Fig. 8.4), levels with total spin as high as 11/2 and 9/2 are
already present in this subspace, thus allowing the particles to profit from the
v14 pairing correlations within this restricted subspace. This fact can be better
appreciated from Fig. 8.5 where typical examples of the pairing matrix ele-
ments 〈(a1a2)0|v14|(b1b2)0〉 are shown as a function of the energy associated
with the (NN) scattering process. The negative (attractive) matrix elements are
all concentrated at low energies (<20 MeV), associated essentially with scatter-
ing processes among valence single-particle orbits.

In Fig. 8.6 we show the diagonal part of the neutron pairing gap �ak (≡
�akak ) associated with the single-particle states of the system (Barranco et al.
(1997)). The results have been averaged over an energy interval of ≈ 1 MeV to
smooth out fluctuations associated with particular shells. The value of the pairing
gap at the Fermi energy is 2.2+0.4

−0.8 MeV, the ‘errors’ reflecting the conspicuous
state dependence of �. This value is of the same order of magnitude as that
extracted from the odd–even mass difference, namely 1.4 MeV. One would then
be tempted to conclude that the bare NN potential explains, even quantitatively,
the values of the odd–even mass difference observed experimentally, and thus
pairing superfluidity in nuclei. As we shall show below, this conclusion is not
correct.
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Figure 8.4. Valence single-particle levels used in the calculation of the pairing parameters of
120Sn, determined using a Saxon–Woods potential with parameters given in equations (8.13)–
(8.16) (V = V 0 = −55 MeV), and two effective k-masses (see equations (8.19) and (8.20)).
The value of the Fermi energy εF(≡ λ) was obtained by solving the BCS number and gap
equations with N = 70. Also indicated is the energy interval ±ω around the Fermi energy
over which the density of levels N (0) is calculated (see the discussion following equation
(8.20)).

8.2 Mean-field theory

Both in previous chapters as well as in solving the matrix eigenvalue relation
given in equation (8.4), the assumption has been made that nucleons move in a
local single-particle potential. This is, however, not correct. The equations which
have to be solved to determine the single-particle energies and the occupation
amplitudes consistently, are the integro-differential Hartree–Fock–Bogoliubov
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Figure 8.5. Diagonal matrix elements 〈(n1l1 j1, n2l1 j1)0+|v14|(n1l1 j1, n2l1 j1)0+〉 of the v14

NN potential associated with s2(0), p2(0) and d2(0) configurations of 120Sn, as a function of
the energy involved in the scattering process. The negative values are associated with states
involving low relative momentum and thus feeling mainly relative distances r � 0.8 fm. Those
associated with positive values are associated with states involving high relative momenta
and thus probing the repulsive core (see Fig. 8.2(a)) (This figure is due to F. Barranco and E.
Vigezzi).
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Figure 8.6. The state-dependent diagonal pairing gap of 120Sn calculated making use of
equations (8.4) and (8.5) and of the v14 matrix elements of the type shown in Fig. 8.5. The
relation given in equation (8.5) for N = 70 fixes the Fermi energy at εF = −7.2 MeV.
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8.2 Mean-field theory 179

equations, containing both a local (Hartree) and a non-local (Fock) potential. In
other words, equation (8.4) has to be supplemented so as to be able to calculate
self-consistently the single-particle energies εi . In the following we derive the
corresponding equations.

Mean-field theory is a very useful approximation in the study of the many-
particle system. In the mean-field method one replaces the many-particle
Schrödinger equation,(
−

A∑
i=1

�
2

2m
∇2

i +
A∑

i< j=1

v(|	ri − 	r j |)
)
�n(	r1 . . . 	rA) = En�n(	r1 . . . 	rA), (8.8)

by a single-particle Schrödinger equation,(
− �

2

2m
∇2 +U (r )

)
ϕν j (	r )+

∫
d3 	r ′Ux (	r , 	r ′)ϕν j (	r ′) = εν jϕν j (	r ) (8.9)

and the total wavefunction �n(	r1 . . . 	rA) by the normalized determinant con-
structed out of the single-particle wavefunctions ϕi (	r ).

The two potentials appearing in equation (8.9) are the Hartree (direct) poten-
tial,

U (	r ) =
∫

d3 	r ′�(	r ′)v(|	r − 	r ′|), (8.10)

where

�(	r ) =
∑
νi≤νF

|ϕνi (	r )|2

is the total density of the system, and the Fock (exchange) potential

Ux (	r , 	r ′) = −
∑
νi≤νF

ϕ∗νi
(	r ′)v(|	r − 	r ′|)ϕνi (	r ). (8.11)

This last term is directly connected with the fact that nucleons are fermions and
thus satisfy the Pauli principle. In particular, the exchange potential ensures that
nucleons do not interact with themselves (see Appendix A).

The total energy of the system in the Hartree–Fock ground state |0〉HF =
1√
A!

det(ϕν1 (	r1) . . . ϕνA (	rA)) is given by

E = HF〈0|H |0〉HF =
∑
νi≤νF

〈νi |T |νi 〉 + 1

2

∑
νi ,νi ′≤νF

〈νiνi ′ |v|νiνi ′ 〉a

=
∑
νi≤νF

εi − 1

2

∑
νi ,νi ′≤νF

〈νiνi ′ |v|νiνi ′ 〉a, (8.12)

where νF labels the Fermi level lying, by definition (zero temperature situation),
halfway between the last occupied and the first unoccupied orbitals. In writing
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180 Sources of pairing in nuclei

up the last term of the above equation the self-consistency relation

〈ν2|T |ν1〉 +
∑
νi≤νF

〈νiν2|v|νiν1〉a = 〈ν2|T +U +Ux |ν1〉 = εν1δ(ν1, ν2),

i.e. the matrix expression of equation (8.9), has been used. Note that the
subindex a in the matrix element indicates the antisymmetrized matrix element,
i.e. 〈νiνk |v|νiνk〉a = 〈νiνk |v|νiνk〉 − 〈νiνk |v|νkνi 〉, and thus gives rise to both the
direct and exchange potentials (see equation (A.16)). The factor 1

2 in the last term
of equation (8.12) reflects the fact that the two-particle interaction contributes
to the average potential for both of the interacting particles and is thus counted
twice, if one sums the single-particle energies for the filled orbitals (see equation
(3.50)).

8.2.1 Effective mass (k-mass)

There is extensive experimental evidence showing that single-particle motion in
nuclei is well described by a potential of Saxon–Woods type,

U (r, E) = V0(E) f (r ), (8.13)

where

f (r ) = 1

1+ exp( r−R0
a )

, (8.14)

to which a spin-orbit potential, proportional to ∂ f (r )
∂r , is added (see Bohr and

Mottelson (1969)). The radius and the diffuseness parameters have the values

R = r0 A
1
3 fm, r0 = 1.2 fm, a = 0.65 fm, (8.15)

and, for levels around the Fermi energy (valence orbitals), the strength V0(E)
is a constant. On the other hand, the differential elastic scattering cross-section
and the total nucleon–nucleus cross-section can be accurately described by

V = V0(E) = V 0 + V1
N − Z

A
+ γ E, (8.16)

with V 0 = −55 MeV, γ = 0.3−0.4 and V1 ≈ 30 MeV, provided that one adds to
the potential given in equation (8.13) an imaginary component (see Appendix B).
The same parametrization describes the deeply bound states as shown in
Fig. 8.7.

The relation given in equation (8.16) is valid for |E | > 10 MeV, where the
single-particle energy E (= ε − εF) is measured from the Fermi energy. The va-
lence orbitals (|E | ≤ 5 MeV) of nuclei around closed shells are well reproduced
by the Saxon–Woods potential defined by equations (8.13)–(8.15) but in this
case with V ≈ −55 MeV, independent of energy.
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Figure 8.7. Dependence upon proton-bombarding energy of the depth V0 of the potential well
(defined in equation (8.13)) which reproduces the 40Ca(p, p) differential cross-section for
E > 10 MeV, and the experimental single-proton energies for E < 0 MeV. The full straight
line corresponds (in MeV) to V = V0(E) = −55 MeV+ 0.3E , and the dashed straight line
to V = V0(E) = −55 MeV+ 0.4E (adapted from Bauer et al. (1982)).

The Schrödinger equation (8.9) can, for many purposes, be rewritten to a good
approximation as (Mahaux et al. (1985))(

− �
2

2mk
∇2 + Ũ (r )

)
ϕ j (	r ) = ε jϕ j (	r ) , (8.17)

where the k-effective mass mk , which takes into account many of the effects
associated with the non-local Hartree–Fock potential, has been introduced, and
where the depth of the potential Ũ (r ) is

Ṽ 0 = m

mk
V 0. (8.18)

As shown in Appendix B (note that mk may depend on r ),

mk = m

(
1+ m

�2k

∂V (k)

∂k

)−1

, (8.19)

where V (k) is the Fourier transform of the Fock potential given in equation (8.11).
In Hartree–Fock theory, contributing to the energy dependence of the single-

particle potential are the non-locality of Ux (	r , 	r ′), equivalent to a dependence on
the linear momentum of the particle, and, in many cases, the genuine velocity-
dependence of the two-body interaction. Equation (8.19) with the parametriza-
tion given in equation (8.16) leads to an effective mass m∗ = mk , known as the
k-mass, which is considerably smaller than the bare nuclear mass. In fact,

mk ≈ 0.6m → 0.7m. (8.20)

Consequently, Hartree–Fock theory is able to accurately predict the sequence of
the single-particle levels around the Fermi energy (i.e. |E | ≤ 10 MeV), but not its
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Figure 8.8. Comparison between the experimental single-neutron energies in the valence
shells of 208Pb and the values calculated in the Hartree–Fock approximation with a Skyrme
III (SIII, middle) and a Skyrme V (SV, right) interaction (taken from Quentin and Flocard
(1978)).

density. This is exemplified in Fig. 8.8 (see also Fig. 8.4), where the experimental
values of the single-particle neutron energies of the valence orbitals of 208Pb are
compared with Hartree–Fock results calculated by making use of a particular
parametrization of the effective two-body interaction (all displaying an effective
k-mass smaller than the bare mass).

Making use of the k-mass given in equation (8.20) to calculate the single-
particle energies appearing in equations (8.4), i.e. the solution of equation (8.17)
with mk ≈ 0.7m and with Ũ (r ) = Ṽ 0 f (r ), one obtains �a1 ≈ 0.5 MeV (Bar-
ranco et al. (2004); see Fig. 8.9). This result, compared with the result shown in
Fig. 8.6, can be understood by studying the dependence of the gap on the density
of levels. For this purpose we make use of the results of the single j-shell. In
this case the pairing gap has a simple expression in term of the pairing coupling
constant G, the number of particles N and the pair dependency� = (2 j + 1)/2.
For a half-filled shell (N = �) (see Appendix H)

� = 1

2
G� ≈ G

2
N (0)ω, (8.21)

where N (0) = 2�/2ω is the density of levels at the Fermi energy, and where
2ω is the range of energy around the Fermi energy where pairs of particles
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Figure 8.9. The state-dependent pairing gap of 120Sn for the levels close to the Fermi energy
obtained using BCS theory with the v14 Argonne potential (after Barranco et al. (2004)).

coupled to angular momentum zero are allowed to correlate through the pairing
interaction. In the case under discussion and making use of a typical value of
ω = 8 MeV (see Fig. 8.4), the density of levels (for one spin orientation) changes
from N (0) = 3.4 MeV−1 (m∗ = m) to N (0) = 1.6 MeV−1 (m∗ = mk = 0.7m)
(see (3.61) and (3.62)). Thus, the simple relation given in equation (8.21) predicts
a decrease of a factor of 2 in the pairing gap. Among the limitations of Hartree–
Fock theory to describe the nuclear structure one can mention: low density
of levels, unrealistic occupation factors with values of either 1 or 0, single-
particle states with infinite lifetimes (neglecting electromagnetic decay). These
limitations are connected with the fact that HF is a static approximation to the
many-body problem. That is, an approximation where fluctuations of the different
(order) parameters characterizing the mean field are neglected (see e.g. equation
(4.8) and subsequent discussion).

The presence of a mean field defines a surface which can vibrate. The vibra-
tions renormalize (by coupling to the nucleons) their properties, giving rise to
an effective mass (so-called ω-mass mω), to occupation factors Zω = (m/mω)
as well as to a splitting of the single-particle strength. The corresponding energy
spread �ω determines the lifetime (�/�ω) of the single-particle levels. These
phenomena affect pairing correlations in an important, and sometimes opposite
way. In particular, particles which have to carry a phonon for part of the time
become effectively heavier than free particles. This leads to levels which are
closer to the Fermi energy, and to an increase of the level density over that of HF
theory (see Chapter 9 and Appendix B). The increase of the level density leads
to an increase of the pairing gap. On the other hand, the fact that nucleons are
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for part of the time in configurations containing a phonon means that the bare
nucleon–nucleon interaction is less effective, leading to a decrease of the pairing
correlations. This decrease is accentuated due to the fact that single-particle levels
acquire an effective width due to the coupling to phonons (see equation (9.41)).

A phonon need not be reabsorbed by the same nucleon which has virtually
excited it, but can be exchanged between pairs of nucleons. If these two nucleons
move in time-reversal states, this exchange leads to an effective pairing interac-
tion and thus to an increase of the pairing gap, because the degrees of freedom
of the nucleons and of the collective vibrations overlap to some extent and one
has to eliminate processes which are due to overcompleteness of the basis (see
e.g. Appendix F).

Summing up, the interweaving of particles and vibrations affects pairing cor-
relations in nuclei in a subtle way. This subject is discussed in Chapters 10
and 11.

In what follows we develop the tools to carry out this discussion. That is, we
work out the particle-vibration coupling Hamiltonian. The general rules needed
to calculate the variety of processes arising from the interweaving of nucleons
and vibrations are discussed in Chapter 9 and Appendix D.

8.3 Random phase approximation

In solving the Hartree–Fock equations one has to specify the shape of the nucleus.
The absolute minimum of the energy of a closed-shell system is associated with
a spherical configuration. For nuclei with a number of nucleons outside the
closed shell, or a number of holes in the closed shell, the absolute minimum may
correspond to a deformed configuration. In either case there can be vibrations
about the equilibrium shape which couple to the single-particle motion. The
present section introduces the theory of particle-vibration coupling when the
mean field is spherical. This leads to a microscopic description of the low-
energy surface vibrations in the random phase approximation. The approach in
this section is based on the one developed by Bohr and Mottelson (1975).

There is a simple parametrization of the nuclear radius which can account for
the variety of situations. It is given by

R = R0

(
1+

∑
λμ

αλμY ∗λμ(r̂ )

)
, (8.22)

with the multipolarity λ ≥ 2 and where αλμ are deformation parameters while
Yλμ are spherical harmonics. An adequate parametrization of the potential is still
provided by equation (8.14), but with R0 replaced by R. In the case of axially
symmetric quadrupole deformations, the only deformation parameter different
from zero is α20. The Nilsson model used to describe the single-particle motion
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in quadrupole deformed nuclei is closely related to this potential (see Nilsson
(1955) and Nilsson and Ragnarsson (1995)).

Let us now expand the single-particle potential to first order in the deformation
parameters (α2 � α). One obtains

U (r, R) = U (r, R0)+ δU (r ), (8.23)

where

δU (r ) = −R0
∂U

∂r

∑
λμ

αλμY ∗λμ(r̂ ). (8.24)

It is well established that the nuclear surface can vibrate in certain normal
modes. In this case the quantities αλμ can be viewed as the coordinates of the
harmonic oscillator Hamiltonian associated with the normal modes, i.e.

Hα = �̂2
α

2Dα
+ Cα

2
α̂2, (8.25)

where

α̂ =
√

�ωα

2Cα
(�̂†
α + �α), (8.26)

and �̂α is the momentum variable conjugate to α̂. The quantities �†
α and �α

are boson creation and annihilation operators (Dirac (1935)) of the vibrational
modes. Hereωα =

√
Cα/Dα and the quantity

√
�ωα/2Cα is the amplitude of the

zero-point fluctuations in the ground state (the boson vacuum state |0〉B). The
one-phonon state is

|α〉 = �†
α|0〉B, (8.27)

(see Appendix A). Consequently, the term δU leads to a coupling between the
single-particle motion described in terms of the coordinate 	r , and the collective
vibrations, described in terms of the collective coordinates α̂, which we write as

δU = −κα̂ F̂, (8.28)

where κ is a coupling strength,

F̂ =
∑
ν1ν2

〈ν1|F |ν2〉a†
ν1

aν2, (8.29)

and a†
ν1

and aν2 are creation and annihilation operators of single-particle states.
The dimensionless quantity

F = R0

κ

∂U

∂r
Y ∗λμ(r̂ ) (8.30)
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k

Figure 8.10. Graphical representation of the process by which a fermion, bouncing inelas-
tically off the surface, sets it into vibration. Particles are represented by an arrowed line,
while the vibration is shown by a wavy line. The black dot represents a nucleon moving in a
spherical mean field of which it excites an octupole vibration after bouncing inelastically off
the surface.

is a single-particle field peaked at the nuclear surface. In a normal self-sustained
mode, there should be a consistency between variations of the density and of
the potential. This is a generalization of the self-consistent condition existing
between potential and density in the static case (see equation (8.10)) As we shall
see in Sections 8.3.1 and 8.3.3, the quantity κ is the proportionality constant
between these two variations.

Here we are treating angular momentum in a very cavalier way. This is done
in order to be able to discuss the main physical consequences of the particle-
vibration coupling Hamiltonian defined in equation (8.28) in simple terms. We
refer the reader to Bohr and Mottelson (1975) and Bortignon et al. (1977) for
the detailed expressions containing the proper angular momentum coupling co-
efficients (see also Chapter 10 and Appendix D).

The basic process described by the particle-vibration coupling Hamiltonian
δU is that of a particle scattering inelastically off the surface and setting it into
vibration, as shown in Fig. 8.10. The ease with which the process takes place
is measured by the matrix element between the single-particle state |νk〉 and the
state |ανk ′ 〉 representing a single particle coupled to a phonon

V (νk, νk ′ ;α) = 〈ανk ′ |δU |νk〉 = �α〈ν ′k |F̂ |νk〉. (8.31)

Here

�α = −κ
√

�ωα

2Cα
= −κβλα√

2λα + 1
(8.32)

is the strength with which the particle couples to the vibration, and

〈ν ′k |F̂ |νk〉 =
∫

d3r ϕ∗ν ′k (	r )F(	r )ϕνk (	r ), (8.33)
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Figure 8.11. Graphical representation of two matrix elements of δU .

where ϕνk (	r ) and ϕν ′k (	r ) are the single-particle wavefunctions, solutions of equa-
tions (8.17)–(8.20).

The quantity βλα is associated with the deformation parameters introduced in
equation (8.22). In particular, for λ = 2 and μ = 0, we have α20 = β2/

√
5. A

similar matrix element can be obtained when the fermion, instead of a particle
above the Fermi surface, is a hole in the Fermi sea (see Appendix A, equations
(A.47), (A.48), for a discussion of the relation between the corresponding matrix
element and the matrix element (8.31)). Aside from these matrix elements, the
particle-vibration coupling Hamiltonian allows for two other matrix elements
(see Fig. 8.11)

〈α|δU |νk(νi )
−1〉 = �α〈ν̃i |F̂ |νk〉, (8.34)

and

〈ανk(νi )
−1|δU |0〉 = �α〈ν̃i |F̂ |νk〉∗, (8.35)

where the symbol |ν−1
i 〉 denotes a hole state while |ν̃i 〉 is the state time-reversed to

the state |νi 〉 (equation (A.41)). The first matrix element corresponds to the pro-
cess in which a particle falls into a hole giving its energy and angular momentum
to a vibrational state |α〉. The matrix element (8.35) is associated with the pro-
cess by which the vacuum becomes virtually excited through the simultaneous
presence of a particle, a hole and a vibration.

8.3.1 RPA dispersion relation

Equation (8.28) for δU describes the coupling of single-particle motion to a
vibrational mode with collective coordinate α. In the random phase approxi-
mation (RPA) a collective vibration can be viewed as a correlated particle–hole
excitation, which, in the independent particle basis, corresponds to a linear com-
bination of particle–hole excitations. A separable version of the RPA can be
derived by recognizing the dual character of equation (8.28) for δU in the sense
that the collective mode can be excited through the field α̂ as well as through the
field F̂ (see Fig. 8.12 and Appendix C, Section C.2). More explicitly we impose
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Figure 8.12. Excitation of the collective vibration in terms of the operators α̂ and F̂ . After
Bohr and Mottelson (1975).

a self-consistency condition that the transition amplitude,

〈α|α̂|0〉 =
√

�ωα

2Cα
, (8.36)

should be equal to (see Fig. 8.12)

〈α|F̂ |0〉 =
∑
νk ,νi

{
〈α|δU |νkν

−1
i 〉〈νkν

−1
i |F̂ |0〉

�ωα − (ενk − ενi )

+ 〈α|F̂ |νkν
−1
i ;α〉〈νkν

−1
i ;α|δU |0〉

−(�ωα + (ενk − ενi ))

}
. (8.37)

This expression for the transition matrix element can be expressed in terms of
RPA amplitudes as

〈α|F̂ |0〉 = −
∑
νk ,νi

(Xα(νkνi )+ Yα(νkνi ))〈ν̃i |F̂ |νk〉,

where

Xα(νkνi )
Yα(νkνi )

}
= ± �α〈ν̃i |F̂ |νk〉

(ενk − ενi )∓ �ωα
. (8.38)

For simplicity, the matrix element 〈ν̃i |F̂ |νk〉 has been assumed to be real. Equat-
ing the relations given in equations (8.36) and (8.37) one obtains the RPA dis-
persion relation

W (�ωα) =
∑
νk ,νi

2(ενk − ενi )|〈ν̃i |F̂ |νk〉|2
(ενk − ενi )2 − (�ωα)2

= 1

κ
. (8.39)

Equation (8.39) can be solved numerically for values of �ωα as illustrated in
Fig. 8.13.
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Figure 8.13. Graphical solution of the RPA dispersion relation, equation (8.39).

In keeping with the relation given in equation (8.37) one can write the phonon
creation operator as

�†
α =

∑
νk ,νi

Xα(νk, νi )�
†
νkνi
+ Yα(νk, νi )�νkνi , (8.40)

where�†
νkνi
= a†

νk
aνi and�νkνi = (a†

νk
aνi )

† are creation and annihilation operators
of pairs of fermions which are assumed to display boson commutation relations
as �†

α and �α do (see Appendix A, Section A.4). This is the essence of the
so-called random phase approximation (RPA). Consequently,

1 = [�α, �
†
α] =

∑
νk ,νi

(X2
α(νk, νi )− Y 2

α (νk, νi )), (8.41)

a relation which ensures that the one-phonon state |α〉 = �†
α|0〉B is normalized.

Equation (8.41) provides the following microscopic expression for the square of
the particle-vibration coupling strength

�2
α =

{
2�ωα

∑
νk ,νi

2(ενk − ενi )|〈ν̃i |F̂ |νk〉|2
[(ενk − ενi )2 − (�ωα)2]2

}−1

= (∂W (E)

∂E

∣∣
E=�ωα

)−1
. (8.42)

Because (�α/κ)2 = (�ωα/2Cα), the above relation also provides the value of
the transition probability 〈α|F̂ |0〉2.

Making use of the relation given in equation (8.41) and of the corresponding
relations obtained from [�α, �α] = [�†

α, �
†
α] = 0, one can invert the equation

(8.40) obtaining

�†
νkνi
=

∑
α

Xα(νk, νi )�
†
α − Yα(νk, νi )�α. (8.43)
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The dispersion relation (8.39) and the expression (8.42) for the normalization
constant �α can also be obtained with a separable interaction

δUs = −κ F̂ F̂+, (8.44)

with

F̂ =
∑
νk ,νi

〈νk |F |νi 〉�†
νkνi
+ 〈ν̃i |F |νk〉�νkνi . (8.45)

Let us comment on the general features of the graphical solutions of equation
(8.39), as schematically displayed in Fig. 8.13. The poles of the dispersion re-
lation W (E) correspond to the values of the particle–hole excitation energies.
Each root �ωα is, in general, bound by two poles and there are as many states
|α〉 as particle–hole states |νkν

−1
i 〉. The collectivity of a state |α〉 is measured

by the normalization constant �2
α given in equation (8.42) which is equal to

the inverse of the derivative of the dispersion relation W (E) with respect to E
at the value E = �ωα. Consequently, roots which are bound by two poles with
similar energies will display little collectivity, as the associated derivative at the
corresponding root is very large. Because of this, a single amplitude Xα(νk, νi )
will dominate the microscopic structure of the associated wavefunction (see
equations (8.27), (8.38) and (8.40)). Collective modes are possible when there
is a gap in the particle–hole excitation spectrum. This can happen either at low
excitation energies (≤ 3–4 MeV), in connection with the spin–orbit splitting of
single-particle levels in medium-heavy nuclei, or at high excitation energies in
connection with the energy separation between major shells.

From equation (8.36) and the RPA self-consistency condition (see Appendix
C, equation (C.5)), the transition amplitude is given by the relation

〈α|F̂ |0〉 = (�ωα/2Cα)1/2 = βα√
(2λα + 1)

. (8.46)

Typical values ofβα associated with these collective states areβα≈0.08–0.1. The
corresponding excitation energies are 1–2 MeV for low-lying surface vibrational
states, and 10–15 MeV for high-lying states (giant resonances).

An interesting feature of the spectrum emerging from the dispersion relation
given in equation (8.39) is the fact that the nucleus displays collective states
with low and high frequencies, compared with the energy difference �ω0(≈
41A−1/3 MeV) between major shells. The low-frequency modes are intimately
connected with deformations (plastic behaviour, Chapter 7). High-frequency
giant resonances are, on the other hand, related to the small amplitude oscillations
(elastic behaviour, see Section 8.3).

To study giant resonances in nuclei lying along the valley of stability, the
independent particle model is quite adequate. For a description of the low part
of the spectrum, the independent particle model breaks down completely. One
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must at least include the pairing interaction in the dynamics of the system (the
same seems to be true in the case of giant resonances in exotic (halo) nuclei,
in connection with the so-called ‘pygmy’ resonances (see, e.g. Frascaria et al.
(2004)). The corresponding theory is called quasiparticle random phase approx-
imation (QRPA, see Section 3.9 and Appendix J), The QRPA dispersion relation
corresponding to equation (8.39) is∑

ν̄ν ′

2(Eν + Eν ′)|〈ν ′ν̄|F̂ |0〉|2
(Eν + Eν ′)2 − (�ωα)2

= 1

κ
, (8.47)

where 〈ν ′ν̄|F̂ |0〉 is the matrix element of the interaction operator between the
BCS vacuum state |0〉 and the two-quasiparticle state

∣∣ν ′ν̄〉. The solutions of the
QRPA dispersion relation associated with the high-lying part of the spectrum
(giant resonances) essentially coincide with those of equation (8.39). The low-
energy part is, however, strongly modified. This is because for levels ν and ν ′

lying close to the Fermi energy the matrix element 〈ν ′ν̄|F̂ |0〉 contains U ,V -
factors which differ strongly from the independent particle model values of 0
or 1. The two-quasiparticle energy Eν + Eν ′ depends on the pairing gap and is
larger than the particle–hole excitation energy ενk − ενi . For simple estimates
one can use the liquid drop model to calculated the restoring force and the pair
hopping model to work out the inertia of the system, as already explained in
Section 7.3.

8.3.2 Sum rules

The random phase approximation provides a diagonalization of the particle-
vibration coupling Hamiltonian within the harmonic approximation. It is then
natural that, as stated before, the number of states |α〉 is equal to the number
of particle–hole states |νkν

−1
i 〉 coupled to the quantum numbers of the vibration

which form the basis states. Provided that the interaction among the fermions
is velocity independent, the product of the energy of these states and the square
of matrix elements between a particle and a hole state of any one-body operator
which only depends on the spatial coordinate is a model-independent quantity,
reflecting very general properties of the system as a whole. This result is known
as an energy weighted sum rule (EWSR). In the case of dipole excitations it is
proportional to the total number of charged particles of the system, being also
proportional to the photoabsorption cross-section. One of the basic conditions
to be fulfilled by any theoretical treatment used to diagonalize the residual in-
teraction between particle–hole states should be to conserve the corresponding
sum rule.

The importance of sum rules in the study of vibrational motion is that they are
connected to basic operator identities which restrict the possible matrix elements
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in a physical system. Also, through the use of sum rules it is possible to assess
the collectivity of a given excitation. Furthermore, sum rules provide an upper
limit to the energy that can be transferred to a nucleus under the action of an
external field (Broglia and Winther (1991)). The subject of sum rules is quite
general and in what follows we will only touch upon it. In particular we will
discuss sum rules associated with spatially dependent single-particle fields.

It is simple to prove the EWSR in the form∑
n

|〈0|F̂ |n〉|2(En − E0) = 1
2〈0|[F̂, [H, F̂]]|0〉, (8.48)

where n labels the complete set of eigenstates of the Hamiltonian H , En are the
corresponding eigenvalues and |0〉 is the exact ground-state wavefunction. An
extension of the energy weighted sum rule to the RPA was proved by Thouless
(1961a). It has the same form as equation (8.48), but the meaning of the terms
is different. The operator F̂ is restricted to be a single-particle operator and the
factors (En − E0) and 〈0|F̂ |n〉 are RPA excitation energies and transition ampli-
tudes. The matrix element on the right-hand side should be evaluated with the
Hartree–Fock self-consistent ground-state wavefunction. There is an analogous
generalization to the quasiparticle RPA. The proof of the RPA sum rule (8.48)
in Thouless (1961a) holds when the potential V is a sum of two-body density-
independent interactions. Problems which arise with density dependent forces
have been discussed by Blaizot and Gogny (1977).

The right-hand side of eq.(8.48) can be simplified if F̂ =  k F(	rk) is a one-
particle operator, depending only on the spatial coordinates, and the potential
energy terms in the Hamiltonian H = T + V are local functions of the coor-
dinates. Then [V, F] = 0 and the double commutator has contributions only
from the kinetic energy part of the Hamiltonian. The double commutator can be
expressed in terms of derivatives of F so that

1
2〈0|[F̂, [H, F̂]]|0〉 = 1

2〈0|[F̂, [T, F̂]]|0〉

= 〈0|
∑

k

�
2

2m
( 	∇k F̂(	rk))2|0〉, (8.49)

where the last term implies the diagonal matrix element in the ground state. The
average in equation (8.49) can be replaced by an integral over the density ρ (r )∑

n

|〈0|F̂ |n〉|2(En − E0) = �
2

2m

∫
d3r | 	∇ F̂ |2�(	r ). (8.50)

There is an analogous classical result for the reaction of a system in equilibrium
to an impulsive field which gives each particle a momentum 	∇ F̂ . On average,
the particles start at rest so their average energy after the sudden impulse is
�

2| 	∇ F̂ |2/2m. This result is consistent with the fact that the energy weighted sum
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rule does not depend on the interactions acting among the nucleons, because the
energy is absorbed in a very short time. On the other hand the nuclear forces
accelerate the nucleons, and a longer time is required to produce a change in
their velocities. Equation (8.48) also holds in the RPA provided that the factors
on the left-hand side are interpreted as RPA energies and transition amplitudes
(see, e.g. Bortignon et al. (1998)).

The energy weighted sum rule most often used for finite systems is associated
with multipole fields, F(	r ) = r LYL M (r̂ ). When the density ρ (r ) is spherically
symmetrical the integral on the right-hand side of equation (8.50) can be simpli-
fied and∑

n

|〈0|r LYL M |n〉|2(En − E0) = �
2

2m

(2L + 1)L

4π

∫
d3r r2L−2�

= �
2

2m
L(2L + 1)

A

4π
〈r2L−2〉. (8.51)

8.3.3 Frequency of the giant quadrupole resonance

The mean energy of the giant quadrupole resonance in a spherical nucleus can be
calculated from the dispersion relation (8.39). In a self-sustained vibration the
changes in the density should be proportional to the changes in the potential. The
coupling constant κ in equation (8.28) provides this proportionality factor. As
discussed in Section 8.3.1 (see Fig. 8.12) and also in Appendix C, the operators
α̂ and F̂ can be viewed as the collective and the single-particle representation of
the same field. In other words, equation (8.28) can also be thought of in terms
of a separable two-body residual interaction (see equation (8.44))

v(	r , 	r ′) = −κ F̂(	r )F̂+(	r ′). (8.52)

The appropriate choice of F̂(	r ) for a quadrupole resonance is the quadrupole
field

F̂(	r ) ≡ F2M (	r ) = r2Y2M (r̂ ).

In the case of an isoscalar giant resonance the coupling constant κ can be
estimated by an argument which has two parts (Bertsch and Broglia (1994)).
The first is the assumption that the time-dependent displacements associated
with this field are those of an irrotational incompressible fluid with a velocity
potential F2M (	r )

	u(	r , t) = α(t)	u0(	r ),

with

	u0(	r ) = 	∇F2M (	r ).
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The time-dependence of 	u(	r , t) is carried by the collective coordinate α(t). The
incompressibility follows from the relation

	∇ · 	u = α∇2 F2M (	r ) = 0. (8.53)

The second assumption is that the transition potential must be consistent with
the change in the single-particle density, i.e. they should be generated by the
same velocity field 	u(	r , t). This requirement is an extension to the dynamical
case of the self-consistent relation between mean field and ground-state density
in Hartree–Fock theory.

Let us carry out the calculations for a generic field FL M = r LYL M and then
particularize it for L = 2. The transition density and potential associated with
the velocity field 	u are

δ� = �(	r + 	u)− �(	r ) = α(t)	u0(	r ) · 	∇� = α(t) 	∇FL M · 	∇�, (8.54)

δU = 	u · 	∇U = α(t) 	∇FL M · mω2
0	r = α(t)mω2

0 L FL M . (8.55)

In this estimate, the harmonic oscillator potential has been used to describe the
static field, i.e. U(r ) = 1

2 mω2
0r2. The transition potential can also be calculated

in terms of the convolution of the transition density and the two-body interaction
using equation (8.10),

δU = −κL FL M (	r )
∫

d3r ′ F∗L M (	r ′)δ�. (8.56)

Equating the results of equations (8.55) and (8.56) one obtains

κL = − Lα(t)mω2
0∫

d3r ′F∗L M (	r ′)δ� . (8.57)

The integral in this equation can be simplified using Gauss’ theorem and the
incompressibility condition equation (8.53)

α(t)
∫

d3r ′ F∗L M
	∇F · 	∇� = −α(t)

∫
d3r ′ |∇F |2�

= −L(2L + 1)α(t)
∫

dr r2L−2�

= −L(2L + 1)α(t)
A

4π
〈r2L−2〉

Inserting the result into equation (8.57) the factor α(t) cancels and the coupling
parameter κL is

κL = 4πmω2
0

(2L + 1)A〈r2L−2〉 . (8.58)
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For L = 2 the coupling parameter is

κ2 = 4πmω2
0

5A〈r2〉 .

Giant quadrupole excitations are produced by promoting particles from an
occupied shell with principal quantum number N (harmonic oscillator) to unoc-
cupied shells with principal quantum numbers N + 2, N + 4, etc. This is because
the parity of the single-particle states is (−1)N . Because in the harmonic oscil-
lator the only non-diagonal matrix elements of the field r2Y2M are

〈N ′|r2|N 〉 ∝ δ(N ′, N ± 2),

the particle–hole excitation energy associated with quadrupole modes is
ενk − ενi = 2�ω0. The dispersion relation given in equation (8.39) can be written
as ∑

νk ,νi
2(ενk − ενi )|〈ν̃i |r2Y2|νk〉|2
(2�ω0)2 − (�ωQ)2

= 1

κ2
.

Making use of the quadrupole energy weighted sum rule (see equation (8.51))∑
νk ,νi

(ενk − ενi )|〈ν̃i |r2Y2|νk〉|2 = 5

4π

�
2

m
A〈r2〉, (8.59)

the factor
〈
r2

〉
cancels and one obtains

�ωQ =
√

(2�ω0)2 − 2(�ω0)2 =
√

2�ω0 = 58

A
1
3

MeV. (8.60)

In Fig. 8.14 we display the systematics of centroids of the giant quadrupole
as a function of mass number. The results are well parametrized by the function

�ωQ ≈ 63

A
1
3

MeV, (8.61)

which is quite close to the theoretical result given in equation (8.60).

8.3.4 Damping of giant vibrations

One can view giant vibrations as a correlated particle–hole excitation built out
of a particle above the Fermi surface and a hole in the Fermi sea. A first estimate
of the damping width of giant vibrations can be obtained by assuming that the
particle and the hole couple to a more complicated configuration acquiring a
width. Then the total width is the sum of individual widths. Because in the
damping process we deal with real processes, i.e. processes where the energy is
conserved, the energy of the resonance has to be shared between the particle and
the hole. The simplest expression one can write for the giant resonance damping
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196 Sources of pairing in nuclei

Figure 8.14. Energy systematics of the giant quadrupole resonance (GQR). (from Bertsch
and Broglia (1994))

width is then

�
↓
GR(�ωGR) = �↓p

(
�ωGR

2

)
+ �↓h

(
�ωGR

2

)
≈ 0.5�ωGR,

(8.62)

where the expressions for �↓p and �↓h given in equation (9.15) have been used.
Making use of the expression �ωQ ≈ 63A−1/3 MeV, the above equation

leads to

�
↓
Q ≈

30

A
1
3

MeV (8.63)

for the damping width of the giant quadrupole resonance. This expression is
shown in Fig. 8.15 compared with the experimental findings. The simple estimate
overpredicts the experimental findings by roughly 50%.

As will be shown below, the relation given by equation (8.62) neglects impor-
tant correlation effects between the particle and the hole (Bortignon and Broglia
(1981), Bortignon et al. (1983), Bertsch et al. (1983)). In fact, this relation im-
plies that either the particle or the hole of the correlated particle–hole pair which
constitutes a resonance can not only excite a surface vibration, which is true,
but also reabsorb the phonon they have excited. This of course is not correct,
in that a surface vibration excited by the inelastic scattering of the particles
off the nuclear surface can be absorbed at a later time by the hole, and vice
versa. In other words, the expression (8.62) takes care only of the (self-energy)
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Figure 8.15. Damping width of the giant quadrupole vibration (see Satchler (1977)). The
continuous curve corresponds to the estimate given in equation (8.63). Copyright © Società
italiana di Fisica.

Figure 8.16. Lowest-order processes by which a resonance (GR) couples to a two-particle–
two-hole intermediate state (doorway state) containing an uncorrelated particle–hole excita-
tion and a surface vibration.

processes (a) and (b) of Fig. 8.16. We shall see that (vertex correction) processes
(c) and (d), where a phonon is exchanged between the fermions, act as a glue
between the particle and the hole, preventing, to a large extent, the decay of the
resonance, and reducing the contributions (a) and (b) to the damping width. In
fact, the self-energy correction to the giant vibration implied by the process of
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198 Sources of pairing in nuclei

Fig. 8.16(a) is

 
p
self-en(GR, ω) =

∑
νk ,νi ,νk′ ,λ

X2
GR(νk, νi )

V 2(νk, νk ′ ; λ)

�ω − ((eνk′ − eνi )+ �ωλ)

=
∑
νk ,νi

X2
GR(νk, νi ) (νk, ω + eνi ), (8.64)

i.e. it is the sum of the contributions of the self-energy of each particle par-
ticipating in the linear combination of particle–hole excitations describing the
resonance. In other words, it is the weighted average of the single-particle self-
energies of all the particle–hole configurations. The weighting factor is the prob-
ability that the giant vibration will be in a given configuration. The particle
self-energies are calculated at an energy (�ω + eνi ), i.e. at an energy lower than
the energy of the giant resonance by the amount eνi (= ενi − εF < 0), which
is the energy taken up by the hole of the different particle–hole excitations. A
similar expression is obtained for the decay of the hole (see Fig. 8.16(b)), i.e.

 �

self-en(GR, ω) =
∑
νk ,νi

X2
GR(νk, νi ) (νi , ω − eνk ) (8.65)

where now eνk = ενk − εF > 0.
Making the ansatz that (a) the giant resonance is a very correlated state such

that one can approximate the amplitudes by |X | ∼ 1√
N

, N being the dimension
of the particle–hole basis where the RPA solution of the giant vibration has been
calculated, and (b) the particle-vibration coupling matrix elements are indepen-
dent of the configuration, one can write, for both of the expressions given in
equations (8.64) and (8.65),

 νself-en(GR, ω) ≈  (ν, ω − |eν ′ |), (8.66)

where ν is either a particle or a hole and ν ′ a hole or a particle respectively. The
imaginary part of the above equation leads to the relation (8.62).

The self-energy associated with the process (d) of Fig. 8.16 is

 vertex(GR, ω) =
∑

νk ,νi ,νk′ ,νi ′
XGR(νkνi )XGR(νk ′νi ′)

× 〈ν
−1
i ′ |F̂ |ν−1

i 〉〈νk ′ |F̂ |νk〉2�2
λ

�ω − ((eνk′ − eνi )+ �ωλ)
, (8.67)

where |ν−1
i 〉 represents a state of a hole and |νi 〉 that of a particle moving in the

same single-particle state. The matrix elements between hole states are related
to those between particle states according to

〈ν−1
i ′ |F̂ |ν−1

i 〉 = c〈νi ′ |F̂ |νi 〉, (8.68)
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8.4 Correlation energy contribution to nuclear masses 199

where c is a phase (i.e. c2 = 1) defined through the relation (see equation (A.49))

(τ F̂τ−1)† = −cF̂ . (8.69)

Here τ stands for the time-reversal operator and the dagger identifies Hermitian
conjugation. Because an average 〈νi ′ |F |νi 〉 and 〈νk ′ |F |νk〉 have the same order
of magnitude one can approximate the last expression by

 vertex(GR, ω)

≈ c
∑
νk ,νi ,νk′

(XGR(νkνi )
2 V 2(νk ′, νk ; λ)

�ω − ((eνk′ − eνi )+ �ωλ)
. (8.70)

A similar expression is obtained for the process depicted in Fig. 8.16(c).
Consequently,

 vertex

 self-en
≈ c . (8.71)

Because the single-particle field F̂ is a spin-isospin independent field, c = −1.
The physical reason for the minus sign in the phase relating processes (a) and (d)
of Fig. 8.16 is associated with the fact that the multipole moments of a particle
and a hole have different sign, in keeping with the fact that closed-shell systems
are spherical.

Under the approximation leading to equation (8.70), there would be a com-
plete cancellation between the different processes contributing to the self-energy
operator of the giant resonance, and eventually to its damping width. This re-
sult is intimately connected with Furry’s theorem of quantum electrodynamics
(Furry (1937)), as well as with general arguments on particle conservation (Ward
(1950), Takahashi (1957), see also Bortignon et al. (1983)). The fact that the sub-
spaces available to the particles (νk) and to the holes (νi ) are different makes the
approximations used above not quantitatively accurate although they are qualita-
tively sound. The cancellation implied by equation (8.71), although conspicuous,
is not complete (see also discussion following equation (3.90)).

Numerical calculations indicate that the cancellation discussed above implies
a reduction of the contributions stemming from particle- and hole-decay of the
order of 30–50%, bringing theory into overall agreement with the experimental
findings.

8.4 Correlation energy contribution to nuclear masses

In the present section we discuss some of the consequences that the zero-point
fluctuations associated with pairing and surface vibrations have in the nuclear
binding energies. Let us start by briefly commenting on the accuracy modern
mass formulae have in accounting for the experimental findings.
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200 Sources of pairing in nuclei

The best account of the experimental data based on mean-field theory
provides a fitting to the 2135 measured masses with N , Z > 8 with a r.m.s. (root
mean square) error of 0.674 MeV (Goriely et al. (2002)). This has been achieved
by means of Hartree–Fock–Bardeen–Cooper–Schrieffer (HFBCS) calculations
which employ a Skyrme-type zero-range effective force in the mean-field
channel, supplemented by a zero-range pairing interaction. The 14-parameter
set is named BSk2. As a reference point for the work of Baroni et al. (2004)
we discuss below, they have considered a parameter set of almost equal quality,
denoted by MSk7, where the r.m.s. error is 0.738 MeV (see also Goriely et al.
(2001)).

Nuclei display both single-particle and collective degrees of freedom. Conse-
quently, the corresponding ground states and associated nuclear masses reflect
the effect of the zero-point fluctuations (ZPF) associated with these modes. While
mean-field theory includes fluctuations associated with quasiparticles, it is only
time-dependent mean-field theory which takes into account the zero-point fluc-
tuations associated with collective vibrations. The need to consider their effect
was put forward by Bertsch and Hagino (2001). Realistic calculations for the
quadrupole degree of freedom have been performed for light nuclei (Stetcu and
Johnson (2002)) and for a few selected isotopes within the so-called generator
coordinate method (GCM) (Bender et al. (2004)).

Making use of random phase approximation (RPA) Baroni et al. (2004)
calculated the ground-state correlation energies associated with both surface
(quadrupole and octupole modes) and pairing vibrations for the Ca and Pb
isotopes. Because pairing vibrations have a collective character only around
closed-shell nuclei (being essentially pure two-quasiparticle states lying on top
of twice the pairing gap in superfluid systems, see Section 5.2), one expects
the associated ZPF (see e.g. Fig. 5.3, (right)) to lead to important corrections to
the mass formula of Goriely et al. (2002). This is in keeping with the fact that the
largest deviations from experiment found in this mass formula are observed in
closed-shell systems.

To derive the particle–hole RPA equations, use can be made of the quasi-boson
approximation where the RPA ground-state energy is given by (see e.g. Ring and
Schuck (1980) see also Sections 6.3 and 6.6)

ERPA = EHF − (2λ+ 1)
∑
α,n

�ωα(n)
∑

ki

∣∣Y αki (n)
∣∣2
, (8.72)

This relation reflects the fact that the amplitudes Y αki (n) are directly related to the
ground-state correlations induced by the corresponding vibrational modes. The
second term of the right-hand side is called the correlation energy.

We now proceed to discuss the expected contributions to the nuclear mass
arising from monopole and multipole pairing vibrations in Pb isotopes. Let us
start by discussing the monopole pairing-vibration contributions.
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− − − −−
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Figure 8.17. Monopole pairing–vibration dispersion relation for (a) neutrons and (b) protons
for the nucleus 208Pb. This figure is due to S. Baroni.

Fig. 8.17 shows the dispersion relations given in equation (5.50) calculated
for 208Pb for both protons and neutrons (see Section 5.2.1), making use of the
valence orbitals of this nucleus. Making use of the fact that the sum of the pairing
binding energies of 206Pb and 210Pb (see equations (5.45) and (5.46)) as well as
in 206Hg and 210Po are≈ 2 MeV (in this last case one has to take into account the
Coulomb repulsion between the two protons, see e.g. Bortignon et al. (1977)),
one obtains the values of 2.7 MeV and 2.2 MeV for the neutron pair-addition and
pair-removal energies,∗ the corresponding values for the proton channel being
3.5 MeV and 3.1 MeV respectively. The contributions of the lowest (n = 1) pair-
addition and pair-subtraction modes have been considered in the calculations
because, as a rule, the n �= 1 modes are much less collective.

Inserting the results mentioned above in equation (8.72) and the correspond-
ing Y amplitudes (= a1(ω) for 208Pb and r1(ω) for 206Pb; see Table 5.1, and
equations (6.34)–(6.37)), one obtains the ground-state correlation energy val-
ues −0.399 MeV (neutrons) and −0.449 MeV (protons) respectively. Making
use of similar quantities associated with pairing vibrations with multipolarity
λ �= 0 (see Section 5.3.1), in particular quadrupole and hexadecapole pairing
vibrations, the corresponding contributions have also been calculated.

In Table 8.1 we show these contributions to the ground-state energy (i.e. ERPA

as defined in equation (8.72)) associated with the monopole, quadrupole and

∗ Note that the condition introduced in equation (5.41) (and corresponding to the situation x = 0.5 in the
two-level model of Fig. 5.1, see Section 5.2) to simplify the discussion of the energy spectrum is here not
applicable.
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Table 8.1. Ground-state correlation energies, arising from the neutron (n) and
proton (p) monopole, quadrupole and hexadecapole pairing vibrations in 208Pb.

0+ 2+ 4+

n p n p n p

−0.399 −0.449 −0.609 −0.244 −0.189 −0.092

Table 8.2. Ground-state correlation energies for the Pb isotopes.

204Pb 206Pb 208Pb 210Pb 212Pb

p–h vibrations −2.793 −2.709 −2.237 −2.801 −3.173
Pairing vibrations −0.785 −0.785 −1.981 −0.785 −0.785

hexadecapole pair-addition and pair-removal modes for both neutrons and pro-
tons associated with 208Pb, the summed contribution amounting to−1.981 MeV
(≈ −1.196 MeV −0.785 MeV).

In Table 8.2 we collect the corresponding contribution for a number of Pb iso-
topes. As mentioned above, pairing vibrations are collective modes only around
closed-shell nuclei, where particles and holes can be clearly distinguished. Con-
sequently (see Chapter 5) we have considered the contribution of neutron pairing
vibrations only for the closed-shell system (while the proton pairing vibrations
were taken into account for all isotopes). Also shown in Table 8.2 are the con-
tribution to ERPA arising from the low-lying collective particle–hole vibrations
calculated by making use of the MSk7 interaction to determine the single-particle
states and the particle–hole correlated modes. Quadrupole and octupole vibra-
tions with energy <7 MeV, and exhausting ≥2% of the non-energy weighted
sum rule were included in the calculation of ERPA. These conditions essentially
select the lowest (one or two) states displaying correlated wavefunctions (see
Section 7.3).

Similar calculations were repeated for the calcium isotopes 40−48Ca. In
Table 8.3 the corresponding results are shown, together with the contribution
of the particle–hole vibrational modes. When adding the results of Tables 8.2
and 8.3 to the HFBCS MSk7 mass formula of Goriely et al. (2001), the param-
eters of the Skyrme interaction should be refitted in order to provide the best
reproduction of experimental masses. This should be done on a large sample of
isotopes, a scope which was beyond the purpose of the paper of Baroni et al.
(2004). If one restricts oneself to Ca isotopes (Pb isotopes) the results in Table 8.4
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Table 8.3. Ground-state correlation energies for the Ca isotopes.

40Ca 42Ca 44Ca 46Ca 48Ca

p–h vibrations −0.886 −1.418 −1.606 −1.391 −0.547
pairing vibrations −4.761 −2.978 −3.239 −3.500 −5.823

Table 8.4. (first column) Root mean square error
associated with the HFBCS MSk7 mass formula of
Goriely et al. (2001) and (second column) r.m.s.e.
associated with HFBCS MSk7 mass formula (with
sligthly adjusted parameters) plus the correlation
contributions associated with surface and pair-
ing vibrations calculated in the RPA. The quantity

σ̄ =
(
σ 2

Ca+σ 2
Pb

2

)1/2
is shown in the last line.

σ (MeV)

Pb 0.646 0.543
Ca 1.200 0.466
σ̄ 0.964 0.505

are obtained. Averaging the r.m.s. deviations associated with Ca and Pb isotopes
leads to a value of 0.505 MeV compared with the value of 0.964 MeV obtained
by making use of the results of Goriely et al. (2002). Although a global readjust-
ment of the mean-field parameters should be envisaged, the fact that the locally
extracted r.m.s. deviations have been reduced by a factor of approximately 2 can
be considered meaningful, highlighting the important role that pairing vibrations
play in the ground-state nuclear energies.
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