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Abstract
We introduce a framework to prove integral rigidity results for the Seiberg–Witten invariants of a closed 4-manifold
X containing a nonseparating hypersurface Y satisfying suitable (chain-level) Floer theoretic conditions. As a
concrete application, we show that if X has the homology of a four-torus, and it contains a nonseparating three-
torus, then the sum of all Seiberg–Witten invariants of X is determined in purely cohomological terms.

Our results can be interpreted as (3 + 1)-dimensional versions of Donaldson’s TQFT approach to the formula of
Meng–Taubes, and build upon a subtle interplay between irreducible solutions to the Seiberg–Witten equations on
X and reducible ones on Y and its complement. Along the way, we provide a concrete description of the associated
graded map (for a suitable filtration) of the map on HM∗ induced by a negative-definite cobordism between three-
manifolds, which might be of independent interest.
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1. Introduction

Seiberg–Witten invariants [Wit94, Mor96] are a fundamental tool in four-dimensional topology. Given
their versatility, understanding these invariants is an extremely challenging problem that has attracted a
considerable amount of attention in the past 30 years. Despite this, we are currently lacking a framework
to carry out the computation in general examples. Less ambitiously, it is unclear what kind of constraints
such invariants must satisfy.

A very fruitful line of investigation towards such constraints is that of “mod 2 rigidity results” for the
Seiberg–Witten invariants of spin manifolds, which assert that the Seiberg–Witten invariants (mod 2)
depend only on some simpler topological information. This started with Morgan–Szabó’s proof that for
a homotopy 𝐾3 the invariant of the trivial spin𝑐 structure is odd [MS97]. Ruberman and Strle [RS00]
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proved an interesting rigidity result for homology tori, 4-manifolds X with the integral homology of a
torus. There is a cohomological invariant attached to homology tori, the determinant

det(𝑋) = |〈𝑥1 ∪ 𝑥2 ∪ 𝑥3 ∪ 𝑥4, [𝑋]〉| ∈ N, (1.1)

where the 𝑥𝑖 form an integral basis of 𝐻1 (𝑋) = Z4. Their main result is then the following.
Theorem [RS00]. Consider a homology 4-torus X which is spin. Then the sum of all (degree zero)
Seiberg–Witten invariants 𝔪(𝑋) of X has the same parity as det(𝑋).

The essential point is that on a spin manifold the Seiberg–Witten equations admit a Pin(2)-symmetry.
See [Li06, Bau08, Bar23] for further developments in this direction.

The goal of this article is instead to prove some integral rigidity results for Seiberg–Witten invariants
of a closed 4-manifold X in the presence of a nonseparating hypersurface Y satisfying suitable conditions.
For simplicity, we will not discuss homology orientations and all the results will be stated up to an
overall sign. Let us begin by focusing on the special case in which 𝑌 = 𝑇3 is the three-torus, in which
case we have the following purely cohomological formula for the sum of Seiberg–Witten invariants.
Theorem A. Suppose X is a homology torus which contains a nonseparating 3-torus, and assume that
𝜎(𝑋) = 0 if det(𝑋) = 0.1 If X admits a spin𝑐 structure restricting to the unique torsion one on 𝑇3, then

𝔪(𝑋) = ± det(𝑋) · #
���𝐻2(𝑇3)/Im

(
𝐻2(𝑋) → 𝐻2 (𝑇3)

)��� ∈ Z.
If not, all its Seiberg–Witten invariants 𝔪(𝑋, 𝔰𝑋 ) vanish.

Importantly, we do not assume X is spin here, but of course when X is spin there exists a spin𝑐
structure restricting to the torsion one on 𝑇3. Furthermore, if det(𝑋) is odd, X is automatically spin. It
is interesting to notice that in this case, the second factor in our formula is independent of the choice of
nonseparating three-torus.
Remark. While it seems plausible that there exist 4-manifolds for which the second clause in Theorem A
applies, the authors do not have concrete examples.

For homology four-tori of the form 𝑋 = 𝑆1 × 𝑀 for some homology three-torus M the work of
Meng–Taubes ([MT96], cf. [RS00]) implies that

𝔪(𝑋) = ±det(𝑋)2,

and one readily checks that when M contains a separating torus this coincides with our formula (see
Example 6.1). In Example 6.2 we describe a broad class of homology tori for which 𝔪(𝑋) = ± det(𝑋)
instead.
Remark. Whether or not an exotic 𝑇4 exists is an outstanding question in four-dimensional topology.

This first result is a direct consequence of much more general rigidity results for 4-manifolds X
containing a nonseparating three-torus 𝑌 = 𝑇3. For the statement, it will be convenient to work with
the complement 𝑊 = 𝑋 \ 𝑌 of the hypersurface; it carries two natural inclusion maps 𝑖, 𝑗 : 𝑌 → 𝑊 ,
corresponding to the two sides of the hypersurface. In the case of most interest, we will have 𝑏1(𝑊) = 3,
so the map

𝑖∗ : 𝐻1 (𝑊) → 𝐻1 (𝑌 )

is a homomorphism of rank 3 free abelian groups. There is a well-defined natural number, the discrim-
inant of W,

disc(𝑊) = | det(𝑖∗) | = #|𝐻1 (𝑌 )/im(𝑖∗) |, (1.2)

1If det(𝑋 ) ≠ 0, the signature 𝜎 (𝑋 ) is automatically zero.
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which is interpreted as zero if the right hand side is infinite. One could also use the map 𝑗∗ for the
definition, cf. Remark 3.4. For 𝔰 a spin𝑐 structure on W which is torsion on the ends, write

𝑑 (𝔰𝑊 ) =
1
4

(
𝑐1 (𝔰𝑊 )

2 − 2𝜒(𝑊) − 3𝜎(𝑊)
)
; (1.3)

see [KM07, Section 28.3] for the definition of 𝑐2
1 in this context. We also record the quantity

𝐷 (𝑊) = #{𝔰𝑊 | 𝑖∗𝔰𝑊 � 𝑗∗𝔰𝑊 are torsion and 𝑑 (𝔰𝑊 ) = 0}. (1.4)

We have 𝐷 (𝑊) ≠ 0 if and only if X supports an almost complex structure J with 𝑐1 (𝐽) |𝑌 torsion, cf.
[GS99, Appendix 1.4].

Theorem B. Suppose X is a closed oriented, connected 4-manifold with 𝑏+(𝑋) ≥ 2. If 𝑇3 ⊂ 𝑋 is a
nonseparating three-torus, the sum of all Seiberg–Witten invariants satisfies

±𝔪(𝑋) =

{
disc(𝑊)𝐷 (𝑊) if 𝑏+(𝑊) = 0 and 𝑏1 (𝑊) = 3,
0 otherwise.

Remark. We will refer to a cobordism W with 𝑏+(𝑊) = 0 as negative-definite. For any cobordism W,
if we consider the cup product restricted to

𝐻̂ (𝑊) = Im
(
𝐻2 (𝑊, 𝜕𝑊)/tors→ 𝐻2(𝑊)/tors

)
the resulting pairing is nondegenerate, and 𝑏+(𝑊) = 0 is equivalent to the pairing on 𝐻̂ (𝑊) being
negative-definite.

Remark. With additional care, this result also applies to the case 𝑏+(𝑋) = 1, cf. the remark after
Theorem C below.

For comparison, if X contains a torus 𝑇3 separating it in two pieces 𝑋1, 𝑋2 with 𝑏+ ≥ 1, then the
sum of all Seiberg–Witten invariants 𝔪(𝑋) vanishes, see [KM07, Corollary 3.11.2]; this is a direct
consequence of the fact that the reduced Floer homology group HM∗(𝑇3) vanishes.

By contrast, the proof of Theorem B is more subtle, and is special to 𝑇3 in three ways:

1. First, 𝑇3 has trivial Thurston norm, which guarantees that all basic classes on X must restrict to the
torsion spin𝑐 structure 𝔰0 on 𝑇3.

2. Even though the reduced Floer homology group HM∗(𝑇3, 𝔰0) vanishes, the Floer homology

HM∗(𝑇3, 𝔰0; Γ𝜂) � R

is nontrivial with respect to an appropriate local coefficient system Γ𝜂 .
3. Finally, there are suitable metrics and perturbations so that the Seiberg–Witten equations have no

irreducible solutions, so that the generators of the Floer chain complex 𝐶̂∗(𝑇
3, 𝔰0) all arise from

unstable reducible critical points; furthermore, the chain complex 𝐶̂∗ is very simple and concretely
understandable.

Given these, the argument roughly proceeds as follows. First of all, a suitable gluing theorem allows to
identify 𝔪(𝑋) as the (super)trace of the cobordism map induced by W (equipped with a suitable local
system morphism). Such a map involves counting irreducible solutions to the Seiberg–Witten equations,
so is usually no easier to compute than 𝔪(𝑋) itself.

On the other hand, we will see that one can obtain a concrete description (at the chain level) of
the associated graded map induced in HM∗ by W. This only counts reducible solutions, and carries
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interesting information related to the maps

𝐻1(𝑌 )
𝑖∗

←− 𝐻1(𝑊)
𝑗∗

−→ 𝐻1 (𝑌 ) (1.5)

induced by inclusion. Because in our situation the Floer chain complex 𝐶̂∗ is closely related to 𝐶̄∗, this
will allow to reconstruct the cobordism map we are actually interested in.

In particular, the fundamental mechanism behind the rigidity result in Theorem B is a subtle interplay
between irreducible solutions to the Seiberg–Witten equations on X and the reducible ones on the
hypersurface 𝑇3 and its complement W.

Our strategy can be in fact interpreted as a (3+1)-dimensional version of Donaldson’s [Don99] (2+1)-
dimensional TQFT approach to the formula of Meng–Taubes [MT96]. There he associates to surfaces
Σ0,Σ1 the cohomology of their symmetric products (the latter being the moduli space of solutions to the
vortex equations), and to a cobordism W between them the cohomology of the moduli space of solutions
to the Seiberg–Witten equations. From the computation of the cohomology of symmetric products and
naturality arguments, the Alexander polynomial arises as the trace for self-cobordisms in the simpler
TQFT associating to a surface Σ the group Λ∗𝐻1(Σ;Z) and to a cobordism the map induced by the
correspondence as in (1.5).

The (3 + 1)-dimensional picture is significantly more subtle: both in that the study of the Seiberg–
Witten equations on three-manifolds is much richer than the case of surfaces, and that the relation with
Donaldson’s TQFT only holds in the negative definite situation. In this case, our results show that in
fact Donaldson’s TQFT determines for a suitable filtration the associated graded of the map in HM∗
induced by W. While this is all we need for our trace computations, the higher order terms are expected
to have a more subtle relationship to the topology of Dirac operators on W.

Given the key properties used in the outline above, it is natural to ask for generalizations of the result
to other types of hypersurfaces. If a 4-manifold X (which we assume to have 𝑏+ ≥ 1 so that one can define
Seiberg–Witten invariants) admits a hypersurface Y with negative definite complement, then 𝑏1 (𝑌 ) ≥ 1,
so we will assume it throughout the paper. From a Floer-theoretic perspective, the most important and
interesting assumption is (3). This leads us to introduce the notion of 𝑅𝑆𝐹-space in Definition 4.1,
where R and 𝑆𝐹 mean reducible and strictly filtered respectively. These are torsion spin𝑐 three-manifolds
(𝑌, 𝔰) with 𝑏1 ≥ 1 satisfying, for suitable metric and perturbations, a condition regarding the complexes
𝐶̂∗(𝑌, 𝔰) and 𝐶̄∗(𝑌, 𝔰) and the map relating them. Being a chain-level condition, it is quite subtle to
check in practice. Other than the three-torus, it also holds in other interesting examples with 𝑏1 ≥ 1:

◦ the flat three-manifolds with 𝑏1 = 1 for any torsion spin𝑐 structure, following [KM07, Section 37.4];
◦ the mapping tori of a finite order mapping class 𝜑 of a surface Σ of genus 𝑔 ≥ 2 with Σ/𝜑 = P1,

equipped with a self-conjugate spin𝑐 structure, following [Lin24a];
◦ the product of a circle with a surface of genus 2 or 3 for the unique torsion spin𝑐 structure, following

[Lin24b].

In this more general situation, we have the following integral rigidity result for the sum of the invariants
corresponding to spin𝑐 structures on X restricting to the given one on Y.

Theorem C. Suppose X is a closed, oriented, connected 4-manifold with 𝑏+(𝑋) ≥ 1. Suppose further
that 𝑌 ⊂ 𝑋 is a nonseparating hypersurface equipped with a torsion spin𝑐 structure with (𝑌, 𝔰𝑌 ) an
𝑅𝑆𝐹-space. Then for each spin𝑐 structure 𝔰𝑊 on W with 𝑖∗𝔰𝑊 � 𝑗∗𝔰𝑊 = 𝔰𝑌 the Seiberg–Witten
invariants of X satisfy

∑
𝔰𝑋 |𝑊 =𝔰𝑊

𝔪(𝑋, 𝔰𝑋 ) =

{
𝑐(𝑊,𝑌, 𝔰𝑌 ) if 𝑏+(𝑊) = 0 and 𝑏1 (𝑊) = 𝑏1 (𝑌 ) and 𝑑 (𝔰𝑊 ) = 0
0 otherwise.

where 𝑐(𝑊,𝑌, 𝔰𝑌 ) ∈ Z is a quantity that depends only on the correspondence (1.5) and the spin𝑐
structure 𝔰𝑌 on Y.
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Remark. When 𝑏+ = 1, one in general has two Seiberg–Witten invariants depending on the side of the
wall, but it turns out that in the setup of the theorem they coincide, cf. Lemma 2.2 below. One could get
a statement involving all Seiberg–Witten invariants like Theorem A for homology 𝑆2 × 𝑇2 containing
nonseparating flat submanifolds with 𝑏1 = 1, if one were willing to be somewhat more careful about
the chamber structure in Lemma 6.1 when 𝑏+(𝑋) = 1 (cf. [KM07, Section 27.5]).

The quantity 𝑐(𝑊,𝑌, 𝔰𝑌 ) can be computed explicitly provided one has a concrete understanding of
the Floer theory of (𝑌, 𝔰𝑌 ); this can be done for the examples pointed out above, see Section 5.

It is interesting to compare the notion of 𝑅𝑆𝐹-space, which assumes 𝑏1 (𝑌 ) > 0, to related conditions
for 𝑏1(𝑌 ) = 0. Among manifolds with 𝑏1(𝑌 ) = 0, those which support a metric and with no irreducible
solutions are called minimal L-spaces. The relevant result is then the following: if X has nonvanishing
Seiberg–Witten invariants and it contains a minimal L-space as a separating hypersurface then one of
the two sides must have 𝑏+ = 0. Of course, this result still applies to a much broader class of rational
homology spheres, the L-spaces, which may admit irreducible solutions but still have trivial reduced
Floer homology. It would be interesting if our 𝑅𝑆𝐹-spaces were akin to the minimal L-spaces: members
of a useful family of manifolds defined by a weaker, homology-level condition.

Question D. Is there a more general notion than 𝑅𝑆𝐹-space, defined by a homology-level condition,
which guarantees rigidity results along the lines of Theorem C?

To conclude, the Ozsváth–Szabó mixed invariants [OS06] are conjectured to be equal to the Seiberg–
Witten invariants. Even though the three-manifold invariants in Heegaard and monopole Floer homology
are isomorphic ([CGH11, KLT20] and subsequent papers), the theories contain very different chain-
level information. It would therefore be interesting to reprove some of our results in that context, starting,
for example, from the following.

Question E. Can Theorem B be proved for the Ozsváth–Szabó mixed invariants?

A proof of this might suggest some generalization of our results in the spirit of Question D. Notice
that the Ozsváth–Szabó invariants are currently only known to be well-defined with values in Z/2, but
a positive answer to Question E mod 2 would be interesting nonetheless.

Organization of the paper. In Section 2, we state a self-gluing formula (well-known to experts) for
the Seiberg–Witten invariants of X in terms of the trace of the map induced on the Floer homology of
a separating hypersurface Y by its complement. In Section 3, we give a chain-level description of the
associated graded map in HM∗ induced by a negative definite cobordism. This is a key computation
behind our results, and might be of independent interest. In Section 4, we introduce 𝑅𝑆𝐹-spaces and
prove the general integral rigidity result, Theorem C. In Section 5 we discuss some concrete computations
involving it. In Section 6, we specialize to the case of 𝑌 = 𝑇3 and deduce Theorem B and Theorem A
above.

2. Gluing formulas in the nonseparating case

Suppose X is a closed oriented 4-manifold with 𝑏+(𝑋) ≥ 2, and that 𝑌 ⊂ 𝑋 is a nonseparating
hypersurface; write 𝑊 : 𝑌 → 𝑌 for the complement, considered as a cobordism. Write 𝑖, 𝑗 : 𝑌 ↩→ 𝑊
for the inclusion of the two boundary components. In order to relate the Seiberg–Witten invariants on
a closed 4-manifold X to the induced map of the complementary cobordism W, we need a self-gluing
formula, which we now state. We follow quite closely the discussion of formal properties in [KM07,
Chapter 3], to which we refer for more details.

Consider the Seiberg–Witten generating function

𝔪(𝑋, 𝔰𝑋 , ℎ) = 𝔪(𝑋, 𝔰𝑋 )𝑒
〈𝑐1 (𝔰𝑋 ) ,ℎ〉 for ℎ ∈ 𝐻2 (𝑋;R).

Note that 𝔪(𝑋, 𝔰𝑋 ) is nonzero only when the formal dimension 𝑑 (𝔰𝑋 ) is zero.
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If 𝔰𝑊 is a spin𝑐 structure on W so that 𝑖∗𝔰𝑊 � 𝑗∗𝔰𝑊 , it is isomorphic to the restriction of many spin𝑐
structures 𝔰𝑋 on X. It will be useful to consider sums such as

𝔪(𝑋, 𝔰𝑊 , ℎ)
def
=

∑
𝔰𝑋 |𝑊 �𝔰𝑊

𝔪(𝑋, 𝔰𝑋 , ℎ).

Moving to gluing formulas, let us consider a possibly nontorsion spin𝑐 structure 𝔰𝑌 on Y. Suppose now
that ℎ = [𝜈̄] for a 2-cycle 𝜈̄ ∈ 𝐶2 (𝑋;R), and consider 𝜂 = 𝜈̄∩𝑌 ; for generic choice of 𝜈̄, this is a 1-cycle
in Y. Cutting open, we obtain a 2-chain 𝜈 in W with 𝜕𝜈 = −𝜂 � 𝜂. Assuming [𝜂] ≠ 0 ∈ 𝐻1(𝑌 ;R),
the completed bar Floer homology group with local coefficients HM•(𝑌, 𝔰𝑌 ; Γ𝜂) vanishes, so that the
natural map ̂

HM•(𝑌, 𝔰𝑌 ; Γ𝜂) → ĤM•(𝑌, 𝔰𝑌 ; Γ𝜂)

is an isomorphism and hence both groups are identified with the reduced Floer homology group

HM•(𝑌, 𝔰𝑌 ; Γ𝜂) = Im
( ̂

HM•(𝑌, 𝔰𝑌 ; Γ𝜂) → ĤM•(𝑌, 𝔰𝑌 ; Γ𝜂)
)
.

The chain 𝜈 in W gives rise to the morphism Γ𝜈 of local systems Γ𝜂 → Γ𝜂 , which determines the map
HM•(𝑊, 𝔰𝑊 ; Γ𝜈). Recalling that the Floer homology groups have a canonical Z/2Z-grading, we can
state the self-gluing equation as follows.

Proposition 2.1. With notation as above, assuming [𝜂] ≠ 0, we have an equality

𝔪(𝑋, 𝔰𝑊 , [𝜈̄]) = Tr(HM•(𝑊, 𝔰𝑊 ; Γ𝜈)) = Tr
(
ĤM•(𝑊, 𝔰𝑊 ; Γ𝜈)

)
where Tr denotes the supertrace (or “alternating trace”).

One should compare this with the case of a separating hypersurface treated in the [KM07, Propo-
sition 3.9.3]; in particular, in the same way that result allows the pieces to have 𝑏+ = 0, our proposi-
tion also holds when W is negative definite. The proof of this self-gluing result very closely follows
the separating case discussed in [KM07, Chapter 32], and involves comparing the isomorphism be-
tween HM•(𝑌, 𝔰𝑌 ; Γ𝜂) and some corresponding Floer homology groups with nonbalanced perturbations
(which only involves irreducible solutions) introduced in [KM07, Chapter 30]. Regarding the analytical
aspects of the proof, even though [KM07] only deals with gluing results for moduli spaces under neck-
stretching along separating hypersurfaces (see Chapters 26 and 31), the proofs of the relevant statements
carry over to the nonseparating setup without significant difficulties.

Remark 2.1. We will be only considering spin𝑐 structures which are torsion in the rest of the paper, so
we can equivalently work with the uncompleted version of the groups HM∗(𝑌, 𝔰𝑌 ; Γ𝜂).

A similar gluing formula holds in the case of a 4-manifold X with 𝑏+ = 1 containing a nonseparating
hypersurface Y. In this setup one needs to be careful because there are two (usually distinct) invariants
depending on the side of the wall one is looking at. On the other hand, in the situation of torsion spin𝑐
structures which is of interest to us, we have the following.

Lemma 2.2. Suppose X has 𝑏+ = 1 and contains a nonseparating hypersurface Y. If 𝔰𝑋 is a spin𝑐
structure such that 𝔰𝑋 |𝑌 is torsion, the Seiberg–Witten invariant 𝔪(𝑋, 𝔰𝑋 ) is independent of the side of
the wall.

Proof. This follows from the general wall-crossing formula [LL95, Corollary 1.3]. The dimension of
the Seiberg–Witten moduli space has the same parity as 1 − 𝑏1 + 𝑏+ ≡ 𝑏1, so one can assume 𝑏1 (𝑋) is
even. Then, for any basis {𝑦𝑖} of 𝐻1(𝑋;Z) the authors show for the spin𝑐 structure 𝔰𝑋 the difference
between the two invariants is the Pfaffian of the (𝑏1 × 𝑏1)-dimensional skew-symmetric matrix with
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(𝑖, 𝑗)-th entry

〈𝑦𝑖 ∪ 𝑦 𝑗 ∪ 𝑐1 (𝔰𝑋 ), [𝑋]〉/2. (2.1)

Now consider the Mayer-Vietoris type exact sequence

0→ Z→ 𝐻1(𝑋) → 𝐻1(𝑊)
𝑖∗− 𝑗∗

−→ 𝐻1(𝑌 ).

Because the groups involved are free abelian, we can choose a basis of 𝐻1(𝑋) for which 𝑦1 corresponds
to Z and 𝑦𝑘 corresponds to the kernel of 𝑖∗ − 𝑗∗ for 𝑘 ≥ 2. Then Y is Poincaré dual to 𝑦1, and we can
represent 𝑦𝑘 by smooth 3-manifolds 𝑌𝑘 transverse to Y. When one of 𝑖, 𝑗 is one, the quantity in (2.1) can
be interpreted as the evaluation of 𝑐1 (𝔰𝑋 )/2 on 𝑌 ∩𝑌𝑘 , which is zero because the restriction of 𝔰𝑋 to Y
is torsion. Hence the matrix has first row and column zero, so that its Pfaffian is zero. �

Hence for a spin𝑐 structure restricting to a torsion one on Y we can refer unambiguously to its
Seiberg–Witten invariant 𝔪(𝑋, 𝔰𝑋 ) even when 𝑏+(𝑋) = 1; because this will be the case concerning us
in the paper, we will state the self-gluing formula in this context. As before we will consider, for a spin𝑐
structure 𝔰𝑊 on W restricting to 𝔰 on both ends, the quantity 𝔪(𝑋, 𝔰𝑊 , [𝜈]). We then have the following.

Proposition 2.3. Proposition 2.1 continues to hold when 𝑏+(𝑋) = 1 and 𝔰𝑊 restricts to a torsion spin𝑐
structure on Y.

This follows as in the case of 𝑏+ ≥ 2; the corresponding result for separating hypersurfaces is [KM07,
Proposition 27.5.1].

Remark 2.2. The analogue of Proposition 2.1 for the four-manifold invariants in Heegaard Floer
homology (with values in Z/2) can be found in [Zem21, Theorem 1.5(2)].

3. The map induced by a negative definite cobordism

Given a spin𝑐 cobordism (𝑊, 𝔰𝑊 ) between torsion spin𝑐 three-manifolds (𝑌±, 𝔰±), in this section we are
concerned with the induced map

HM∗(𝑊, 𝔰𝑊 ) : HM∗(𝑌−, 𝔰−) → HM∗(𝑌+, 𝔰+).

When 𝑏+(𝑊) > 0, this vanishes [KM07, Proposition 27.2.4], so we will always assume that W is
negative definite. More generally, we will be interested in the case of Floer homology groups equipped
with local systems Γ𝜂± .

The simplest case, in which both 𝑌± are rational homology spheres and 𝑏1(𝑊) = 0, is discussed in
[KM07, Proposition 39.1.2]. In this situation, we have the natural identification

HM∗(𝑌±, 𝔰±) � Z[𝑈,𝑈−1]

of absolutely graded Z[𝑈]-modules (up to an overall grading shift, where U has grading −2), and the
map HM∗(𝑊, 𝔰𝑊 ) is an isomorphism. This computation is the key result underlying the topological
applications of the Frøyshov invariant (see also [Frø10]).

Remark 3.1. In the Heegaard Floer setting, the analogue of this computation can be found in [OS03].
Some special cases of the map induced by a negative definite cobordism can be found in [BG18, LR14,
LR19] with applications to generalized correction terms. For the monopole counterparts of the latter,
see [Kru20].
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We will consider the general case in which 𝑏1(𝑌±) and 𝑏1(𝑊) are arbitrary. Associated to each of
these manifolds are the tori

T𝑌± = 𝐻1(𝑌±; 𝑖R)/𝐻1(𝑌±; 2𝜋𝑖Z)
T𝑊 = 𝐻1(𝑊 ; 𝑖R)/𝐻1(𝑊 ; 2𝜋𝑖Z).

By Hodge theory we can identify the former (after choosing a basepoint) as the space of gauge
equivalence classes of flat spin𝑐 connections on (𝑌±, 𝔰±); we will discuss an analogous interpretation of
the latter later. The diagram of maps

T𝑌−
𝑖∗−
←− T𝑊

𝑖∗+
−→ T𝑌+

induced by the inclusion maps 𝑖± will play a crucial role in our calculation.
Finally, our discussion will also apply to more general local systems and morphisms between them,

but for simplicity we will focus on the local systems of the form Γ𝜂 for a real 1-cycle 𝜂 ∈ 𝐶1 (𝑌 ;R)
introduced in [KM07, Section 3.7]; these suffice for the cases of interest to us.

3.1. Review of the three-manifold case

Let Y be a three-manifold. As in [KM07, Section 35.1], given a metric on T𝑌 and a Morse function
𝑓 : T𝑌 → R, one may choose an appropriate perturbation of the Seiberg–Witten equations so that
all reducible critical points and trajectories are cut out transversely. In this situation, Kronheimer and
Mrowka give a description of 𝐶̄∗(𝑌, 𝔰) in terms of “coupled Morse theory”. The structure of this complex
is determined in [KM07, Section 33.3], which we record.

Lemma 3.1. In the situation above, one has an isomorphism of relativelyZ-graded complexes overZ[𝑈]

𝐶̄∗(𝑌, 𝔰; Γ𝜂) � 𝐶∗(T𝑌 , 𝑓 ; Γ𝜂) [𝑈,𝑈−1] .

With respect to this isomorphism, the differential 𝜕 is sent to

𝜕 𝑓 + 𝜕3𝑈
−1 + 𝜕5𝑈

−2 + . . .

with 𝜕 𝑓 the Morse differential on 𝐶∗(T𝑌 , 𝑓 ; Γ𝜂).

In [KM07, Section 34.2] the authors further show that one can deform the family of operators (in
a suitable space of operators on a Hilbert space) so that the for the resulting coupled Morse complex
the terms 𝜕2𝑖+1 with 𝑖 ≥ 2 are zero. On the other hand, in the present paper we will work with small
perturbations of the family (of geometric nature) so in general one should expect the higher terms to be
nonvanishing.

It is worth being more precise about the identifications in this isomorphism. For each critical point
𝑞 ∈ Crit( 𝑓 ), choose a labeling of the eigenvalues of the Dirac operator 𝐷𝑞 by

· · · < 𝜆−1(𝑞) < 𝜆0(𝑞) < 𝜆1(𝑞) < · · ·

For some i we have 𝜆𝑖−1(𝑞) < 0 < 𝜆𝑖 (𝑞); we record 𝑑 (𝑞) = 𝑖 as the shift of this labeling from the
natural labeling. Finally, we demand that these labelings respect the spectral flow, in the sense that

sf(𝑞1, 𝑞2) = 𝑑 (𝑞2) − 𝑑 (𝑞1);

this is possible because 𝑐1 (𝔰) torsion implies that there is no spectral flow around loops. Writing

𝑢̃2 : 𝐶̄ (𝑌, 𝔰; Γ𝜂) → 𝐶̄ (𝑌, 𝔰; Γ𝜂)
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for the chain map whose induced map on homology is the U-action, [KM07, Lemma 33.3.9] guarantees
𝑢̃2 is an isomorphism. The inverse of our identification sends 𝑞𝑈𝑖 to 𝑢̃𝑖2(𝑞, 𝜆0(𝑞)), which is equal to the
sum of (𝑞, 𝜆−𝑖 (𝑞)) and critical points of strictly smaller Morse index.

For the purposes of the paper, we will not be interested in the actual U-action on 𝐶̄∗(𝑌, 𝔰; Γ𝜂), but
only on the natural filtration by powers of U, with

F𝑘𝐶̄∗ � 𝐶∗(T𝑌 , 𝑓 ) ⊗ 𝑈 �𝑘/2�Z[𝑈−1], (3.1)

that is, the terms with U-power ≤ 𝑘/2. While this is not a filtration of U-modules, multiplication by U
sends each F𝑘 isomorphically onto F𝑘+2, and does induce the structure of a Z[𝑈,𝑈−1]-module on the
pages of the associated spectral sequence. The 𝐸1 page of the associated spectral sequence is precisely
the Laurent polynomial ring over the Morse complex 𝐶∗(T𝑌 , 𝑓 ; Γ𝜂) [𝑈,𝑈−1].

Remark 3.2. The U-filtration is seen to be essentially equivalent to the filtration by Morse index,

F𝑀𝑜𝑟𝑠𝑒
𝑘 = 𝐶∗≤𝑘 (T𝑌 , 𝑓 ) ⊗ Z[𝑈,𝑈−1];

we have F𝑘𝐶̄𝑑 = F𝑀𝑜𝑟𝑠𝑒
𝑑+𝑘 𝐶̄𝑑 .

In [KM07, Section 35], the authors determine the differential 𝜕3 on the 𝐸3 page of this spectral
sequence in terms of the triple cup product

∪𝑌 : Λ3𝐻1 (𝑌 ;Z) → Z
𝛼 ∧ 𝛽 ∧ 𝛾 → 〈𝛼 ∪ 𝛽 ∪ 𝛾, [𝑌 ]〉

and show that the higher differentials in this spectral sequence vanish over Q. As a consequence, they
establish a canonical isomorphism

gr HM∗(𝑌, 𝔰;Q) � 𝐻𝐶∗(𝑌 ;Q) (3.2)

where the former is the associated graded group of the U-filtration on homology, and the latter is the
cup homology [Mar08]. The cup homology is the homology of the chain complex whose underlying
module is

𝐶𝐶∗(𝑌 ) = Λ∗𝐻1(𝑌 ;Z) ⊗ Z[𝑈−1,𝑈]

and whose differential is given by

𝑑3(𝜔 ⊗ 𝑈𝑛) = 𝜄∪3
𝑌
𝜔 ⊗ 𝑈𝑛−1, (3.3)

where 𝜄∪3
𝑌

is the contraction with the triple cup product ∪3
𝑌 sending 𝛼1 ∧ · · · ∧ 𝛼𝑘 to∑

𝑖1<𝑖2<𝑖3

(−1)𝑖1+𝑖2+𝑖3 〈𝛼𝑖1 ∪ 𝛼𝑖2 ∪ 𝛼𝑖3 , [𝑌 ]〉 · 𝛼1 ∧ · · · ∧ 𝛼̂𝑖1 ∧ · · · ∧ 𝛼̂𝑖2 ∧ · · · ∧ 𝛼̂𝑖3 ∧ · · · ∧ 𝛼𝑘 .

Remark 3.3. In [LM21], the authors give a combinatorial chain-level model for 𝐶𝑀∗(𝑌, 𝔰; Γ𝜂) over the
integers, but it remains open whether or not the higher differentials in the associated spectral sequence
vanish when taken with integer coefficients. We will not need so refined of an analysis in this paper.

3.2. The formula

Whereas [KM07, Section 35] determined the homology groups HM, we will now identify the cobordism
maps (up to filtration).
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In the present situation, we have a correspondence

(T𝑌− , 𝑓−)
𝑖∗−
←− T𝑊

𝑖∗+
−→ (T𝑌+ , 𝑓+),

with 𝑓± Morse functions on the tori T𝑌± , and the maps 𝑖∗± affine. So long as the maps 𝑖∗± are generic with
respect to the Morse functions 𝑓± – which can achieved by a translation – there is a well-defined induced
map on Morse complexes, given by counting intersection points of T𝑊 with 𝑈𝑎 × 𝑆𝑏 in T𝑌− × T𝑌+
[KM07, Section 2.8]. This map will be denoted 𝑚𝑊 .

In the case that𝑌− and𝑌+ are equipped with real 1-cycles 𝜂± ∈ 𝐶1 (𝑌±;R), a real 2-chain 𝜈 ∈ 𝐶2 (𝑊 ;R)
whose boundary is 𝜕𝜈 = 𝑖+𝜂+ − 𝑖−𝜂− provides an isomorphism of local systems

Γ𝜈 : 𝑖∗−Γ𝜂− � 𝑖∗+Γ𝜂+ .

In this situation, we have an induced map on Morse complexes

𝑚𝑊 ,𝜈 : 𝐶∗(𝑌−, 𝑓−; Γ𝜂−) → 𝐶∗(𝑌+, 𝑓+; Γ𝜂+ ),

also described in [KM07, Section 2.8], and defined in a similar fashion.

Theorem 3.2. Suppose (𝑊, 𝔰𝑊 ) : (𝑌−, 𝔰−) → (𝑌+, 𝔰+) is a cobordism with 𝑏+(𝑊) = 0 and 𝔰± torsion.
With respect to the isomorphisms of Lemma 3.1, the map 𝑚̄∗ inducing HM∗(𝑊, 𝔰𝑊 ; Γ𝜈) is filtered, and
takes the form

𝑚̄∗ = 𝑚𝑊 ,𝜈𝑈
𝑑 + 𝑚2𝑈

𝑑−1 + 𝑚4𝑈
𝑑−2 + · · ·

for an appropriate integer d and appropriate maps 𝑚2𝑖 for 𝑖 > 0.

That is, if we consider the filtration F𝑘𝐶̄∗ in (3.1), the map 𝑚∗(𝑊, 𝔰𝑊 ; Γ𝜈) is a filtered map with asso-
ciated graded map equal to the induced map on the associated Morse complex. As a direct consequence,
we obtain the following computation, which might be of independent interest.

Corollary 3.3. Under the identification with cup homology in (3.2), the associated graded map of
HM∗(𝑊, 𝔰𝑊 ;Q) is the map in homology induced by the map (𝑚𝑊 )∗ on the cup chain complex.

Remark 3.4. Notice that the latter is actually a chain map on the cup chain complex; this follows because
𝑖∗+(∪𝑌+ ) is the same as 𝑖∗−(∪𝑌−) as maps from Λ3𝐻1 (𝑊) to Z. More generally, for a manifold W with
possibly disconnected boundary 𝜕𝑊 , let

𝑟 : 𝐻1(𝑊) → 𝐻1(𝜕𝑊)

denote the restriction map; we denote the induced map on the exterior algebras by r as well. Then the
pullback of the triple cup product of 𝜕𝑊 under r vanishes. This can be seen geometrically as follows:
the map r corresponds via Poincaré duality to the boundary map

𝜕 : 𝐻3(𝑊, 𝜕𝑊) → 𝐻2 (𝜕𝑊).

Given three elements 𝛼𝑖 in 𝐻1(𝜕𝑊), represent their duals by surfaces 𝑆𝑖 in 𝜕𝑊 . If the 𝛼𝑖 are in the
image of r, then 𝑆𝑖 is the boundary of three-manifolds 𝑇𝑖 in W. After moving everything to a transverse
position, 𝑆1∩𝑆2∩𝑆3 (which is dual to 𝛼1∧𝛼2∧𝛼3) is a 0-manifold which is the boundary of𝑇1∩𝑇2∩𝑇3,
hence is zero in homology.

Remark 3.5. A version of Theorem 3.2 with more general local systems proves a weaker version of
[Kru20, Conjecture 7.3], and gives a gauge-theoretic proof of [Kru20, Theorem 7.4].
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These results deserve some further comment. First of all, the isomorphism in Lemma 3.1 is only
defined up to multiplication by powers of U. This can be pinned down by using the absolute Q-grading
of [KM07, Section 28.3], according to which the degree of HM∗(𝑊 ;𝔰𝑊 ) is given by

1
4
𝑐2

1 (𝔰𝑊 ) − 𝜄(𝑊) −
1
4
𝜎(𝑊) = 𝑑 (𝔰𝑊 ) −

1
2
(
𝑏1(𝑌−) − 𝑏1(𝑌+)

)
(3.4)

where 𝑑 (𝔰𝑊 ) is the expression (1.3) and

𝜄(𝑊) =
1
2
(
𝜒(𝑊) + 𝜎(𝑊) + 𝑏1 (𝑌−) − 𝑏1 (𝑌+)

)
.

As U has grading −2, and the degree of 𝑚𝑊 ,𝜈 is 𝑏1(𝑊) − 𝑏1(𝑌−), we may thus compute the integer d
from Theorem 3.2 as

𝑑 = −
1
2
𝑑 (𝔰𝑊 ) −

1
4
(2𝑏1 (𝑊) − 𝑏1(𝑌−) − 𝑏1 (𝑌+)).

In the case of most interest to us in the current paper, we have 𝑌− = 𝑌+ and 𝑏1(𝑊) = 𝑏1(𝑌−) so
𝑑 = − 1

2𝑑 (𝔰𝑊 ).
Secondly, even though it will not be needed for this paper, for some applications one would like to

compute the map itself rather than the associated graded map. One might hope to compute the higher
terms up to (filtered) homotopy, and expect them to be related to the kernel of the Dirac operators on
W coupled to the spectral decomposition associated to 𝐷𝑌± . An important technical complication when
trying to write down an explicit formula in homology is that while there is a canonical identification of
the associated graded module of HM∗ (3.2), there is no known canonical lift to HM∗ itself.

3.3. Proof of Theorem 3.2

Recall from [KM07, Chapter 25] that the map induced by a cobordism (𝑊, 𝔰𝑊 ) on HM∗ (possibly
with local coefficient systems) is obtained by counting solely reducible solutions to the Seiberg–Witten
equations in the blow-up on the cobordism𝑊∗ with cylindrical ends attached. The unperturbed equations
for a reducible configuration (𝐴, 0, 𝜑) in the blow-up are{

𝐷+𝐴𝜑 = 0
𝐹+
𝐴𝑡 = 0,

which one needs to study with the right asymptotic growth conditions for 𝜑 on the cylindrical ends;
different asymptotic conditions change the index of the Dirac operator 𝐷+𝐴. We are counting solutions
to this equation of index zero. We may break this count up into a sum

𝑚̄∗ = 𝑚0 + 𝑚2 + · · ·

as follows. The map𝑚2𝑖 , by definition, counts solutions (𝐴, 0, 𝜙) to a perturbed version of these equations
for which A lies in a 2𝑖-dimensional moduli space (or equivalently, is asymptotic to flat connections
whose Morse index has difference 2𝑖 − (𝑏1(𝑊) − 𝑏1(𝑌+)), see the formula on p. 47 of [KM07, Section
2.8]) and the asymptotic conditions are chosen so that indC(𝐷+𝐴) = 1 − 𝑖; after projectivizing one
obtains a finite number of points. The highest-filtration term in 𝑚0 then corresponds to the count of
index-zero solutions to a perturbed version of the second equation and asymptotic conditions for which
indC(𝐷+𝐴) = 1.

The second equation is simply the ASD equation, and its solutions up to gauge with 𝐿2-curvature
form the 𝑏1 (𝑊)-dimensional torus
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T𝑊 = 𝐻1(𝑊 ; 𝑖R)/𝐻1(𝑊 ; 2𝜋𝑖Z).

Here, following [APS75, Proposition 4.9], we can interpret the numerator as a space 𝐿2
ext of extended

𝐿2-harmonic 1-forms 𝛼, that is, the harmonic 1-forms that exponentially decay on each end to a time-
independent harmonic 1-form 𝛼±. Sending each such form to the limiting value is the Hodge theoretic
incarnation of the maps

𝑖∗± : 𝐻1(𝑊) → 𝐻1(𝑌±).

In the isomorphism of Lemma 3.1, we use a perturbation of the form 𝑓± ◦ 𝑝± where 𝑓± are our chosen
Morse functions and

𝑝± : B(𝑌±, 𝔰) → T𝑌±

is the retraction obtained by mapping (𝐵,Ψ) via the 𝐿2-orthogonal projection of the 1-form 𝐵 − 𝐵0
to its harmonic part (𝐵 − 𝐵0)

harm given by the Hodge decomposition2. We use these to perturb the
Seiberg–Witten equations as in [KM07, Chapter 24], using on [0,∞) × 𝑌+ a smooth cutoff function

𝛽 : [0,∞) → [0, 1]

which is nondecreasing, equal to zero near zero and equal to 1 for 𝑡 ≥ 1, and similarly on the other end.
We then consider solutions (𝐴, 𝜑) to a perturbed Seiberg–Witten equation for which the gauge

equivalence classes 𝐴|(−∞,0]×𝑌− and 𝐴|[0,+∞)×𝑌+ converge to limits 𝑞±, reducible solutions on 𝑌± which
are critical points of 𝑓±. We demand 𝜑 satisfies some asymptotic growth conditions at ±∞ in terms of
the eigenvalues and eigenspinors of the limit Dirac operators 𝐷𝑞± (which can also be rephrased in terms
of convergence in the 𝜏-model).

Again let us focus on the perturbed ASD equation. The torus T𝑊 is equipped with a map to T𝑌− ×T𝑌+ ,
and inside the latter we can consider the unstable and stable submanifolds 𝑈𝑞− , 𝑆𝑞+ of critical points 𝑞±
of 𝑓±.
Lemma 3.4. The moduli space of 𝐿2

ext connections satisfying the perturbed ASD equations above on W
asymptotic to 𝑞± is oriented diffeomorphic to T𝑊 ∩ (𝑈𝑞− × 𝑆𝑞+ ) by a diffeomorphism preserving the
local sytem Γ𝜈 .
Proof. Identifying 1-forms on the end [0,∞) × 𝑌+ with time-dependent elements 𝜔(𝑡) ∈ Ω0(𝑌+) ⊕
Ω1(𝑌+), the unperturbed ASD equation together with the Coulomb gauge fixing condition

(−𝑑∗) ⊕ 𝑑+ : Ω1 → Ω0 ⊕ Ω+

on the cylinder can be written as

𝑑

𝑑𝑡
𝜔(𝑡) + 𝐿𝜔(𝑡) = 0

where

𝐿 =

(
0 −𝑑∗
−𝑑 ∗𝑑

)
.

The perturbations we consider are defined via the 𝐿2-orthogonal projection to harmonic 1-forms, and
the corresponding perturbed ASD equations together with Coulomb gauge fixing then take the form

𝑑

𝑑𝑡
𝜔(𝑡) + 𝐿𝜔(𝑡) + 𝛽(𝑡) (grad 𝑓+)(𝜔

harm(𝑡)) = 0,

2We have fixed a reference flat spin𝑐 connection 𝐵0 here.
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where 𝑓+ : 𝐻1(𝑌+; 𝑖R) → R is the periodic lift of the chosen Morse function on T𝑌± , which is then
applied to the harmonic part of the time-dependent form in Ω1(𝑌+).

The torus T𝑊 can be understood as the space of unperturbed ASD connections in 𝐿2
𝑘 modulo gauge

on the compact manifold W such that the coclosed parts of the boundary values

Π : 𝐿2
𝑘 (Ω

1 (𝑊)) → ker(𝑑∗𝑌−) ⊕ ker(𝑑∗𝑌+ ) ⊂ 𝐿2
𝑘−1/2(Ω

1(𝑌−)) ⊕ 𝐿2
𝑘−1/2(Ω

1(𝑌+))

lie in the spectral subspace

𝐻≤0
− ⊕ 𝐻≥0

+ ⊂ ker(𝑑∗𝑌−) ⊕ ker(𝑑∗𝑌+ )

spanned by nonnegative (respectively nonpositive) eigenspaces of the signature operator ∗𝑑𝑌± . Because
the unperturbed ASD connections solves a first-order ODE on the ends, each boundary value lying
in this subspace extends to a unique solution to the ASD equation on the cylinder (up to gauge); the
spectral condition guarantees that the solution is in 𝐿2

ext up to gauge. Notice that 𝐻≥0
+ splits into the

sum 𝐻1 (𝑌+) ⊕ 𝐻>0
+ of the space of harmonic forms and the span of strictly positive eigenspaces, and

similarly for 𝐻≥0
− .

Because a perturbed ASD connection on [0,∞) ×𝑌+ again solves a first-order ODE, it is determined
by its boundary value in ker(𝑑∗𝑌+ ) (up to gauge). Further, because the operator is only perturbed on the
harmonic part, it is still true that for the ASD connection to be 𝐿2

ext this boundary value must lie in the
spectral subspace 𝐻≥0

+ . A similar argument applies for 𝑌−. Because the equation is unchanged on W,
the perturbed ASD solutions are identified with a subset of T𝑊 , which was earlier identified with ASD
solutions on W whose boundary values lie in 𝐻≤0

− × 𝐻≥0
+ .

Finally, examining the harmonic part, we see that a boundary value extends to a solution to the
perturbed equation with the correct asymptotics if and only if the harmonic part [𝜔harm] |{0}×𝑌± ∈ T𝑌±
lies in the unstable and stable manifold of 𝑞− and 𝑞+, respectively.

The claim about orientations follows from compatibility between orientations and gluing, as in
[KM07, Section 20.3]. The claim about the local system follows immediately from the definition: both
maps are weighted by a factor of 𝑒

∫
𝜈
𝐹+
𝐴𝑡 , the only difference being that in the Morse theory case we

integrate over the intersection of 𝜈 with the compact part W of the cobordism while in the gauge theory
case we integrate over the noncompact surface 𝜈∗ ⊂ 𝑊∗. However, because 𝐴𝑡 is flat on the ends, the
additional contribution is zero. �

This identifies the “top-degree term” in 𝑚̄∗, which corresponds to the case where the relevant Dirac
operator has index 1: the kernel of this operator is a one-dimensional complex vector space, so that after
projectivizing it contributes a single positively oriented point, up to gauge. Hence the relevant moduli
spaces of solutions simply count solutions to the perturbed ASD equations.

To conclude the proof, following [KM07, Section 2.8] (and dropping local systems for simplicity),
the map induced on the Morse complexes

𝑚𝑊 : 𝐶∗(T𝑌−) → 𝐶∗(T𝑌+ ) (3.5)

by the correspondence T𝑊 → T𝑌− × T𝑌+ is obtained (under suitable transversality conditions) by
considering triples (𝛾−, 𝛾+, 𝑤) where

◦ 𝛾− : (−∞, 0] → T𝑌− is a finite-energy half trajectory with 𝛾−(−∞) = 𝑞−
◦ 𝛾+ : [0,∞) → T𝑌+ is a finite-energy half trajectory with 𝛾+(+∞) = 𝑞+
◦ 𝑤 ∈ T𝑊 and 𝑖∗±(𝑤) = (𝛾−(0), 𝛾+(0)).

Because the space of such half-trajectories can be identified with the unstable and stable manifolds 𝑈𝑞−

and 𝑆𝑞+ , we see that 𝑚𝑊 is defined by exactly the same counts as the top-filtration term of 𝑚̄∗.
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4. 𝑅𝑆𝐹-spaces

We want to take advantage of our description of 𝑚̄∗ in the preceding section, where we determined
the associated graded map with respect to an appropriate filtration. To use this to get information
about the map 𝑚̂, we need to make further assumptions about the torsion spin𝑐3-manifold (𝑌, 𝔰) under
consideration.

4.1. Definitions.

To proceed, suppose we have a metric and perturbation on Y (for the spin𝑐 structure 𝔰) such that there
are no irreducible solutions, transversality is achieved in the sense of [KM07], and the bar complex is
computed by coupled Morse theory as in the previous section. The relatively graded Q-vector space
𝐶̂∗(𝑌, 𝔰) can then be identified as a subspace

𝐶̂∗(𝑌, 𝔰) =
⊕

𝑞∈Crit( 𝑓 )
𝑈𝑑 (𝑞)Q[𝑈] ⊂

⊕
𝑞∈Crit( 𝑓 )

Q[𝑈,𝑈−1] = 𝐶̄∗(𝑌, 𝔰), (4.1)

where the shift 𝑑 (𝑞) ∈ Z and the identification of 𝐶̄∗(𝑌, 𝔰) (as a Q[𝑈]-module) are discussed after
Lemma 3.1. It is often convenient to normalize d so that 𝑑 (𝑞) ≤ 0, with largest value equal to zero, and
we will do so in what follows.

There are four closely related subtleties. The first is that 𝐶̂ is generally not a subcomplex: the
differential on 𝐶̂ is

𝜕 = −𝜕
𝑢

𝑢 − 𝜕
𝑠

𝑢𝜕
𝑢
𝑠 ,

where the term 𝜕𝑢𝑠 is defined in terms of irreducible Seiberg–Witten solutions on R×𝑌 . Secondly, even
though 𝐶̂ (𝑌, 𝔰) is naturally a filtered module, with filtration given by (3.1), the differential 𝜕 does not
necessarily preserve it. Thirdly, the comparison (anti-)chain map

𝑝 = 1 + 𝜕𝑢𝑠 : 𝐶̂∗(𝑌, 𝔰) → 𝐶̄∗(𝑌, 𝔰) (4.2)

also involves this term and is not necessarily filtration-preserving. Finally, 𝐶̂ is generally not a U-
submodule, because p only commutes with the action of U up to homotopy.3

Because of this, we make the following definition.

Definition 4.1. We say a torsion spin𝑐 three-manifold (𝑌, 𝔰𝑌 ), where 𝑏1(𝑌 ) ≥ 1, is an RSF-space if Y
admits a regular choice of metric and perturbations such that:

(a) there are only reducible solutions to the Seiberg–Witten equations;
(b) the map 𝜕𝑢𝑠 is strictly filtered with respect to the U-filtration on 𝐶̂∗(𝑌, 𝔰) and 𝐶̄∗(𝑌, 𝔰). By strictly

filtered we mean that

𝜕𝑢𝑠 (F𝑘𝐶̂) ⊂ F𝑘−2𝐶̄

for the filtration (3.1).
(c) the complex 𝐶̄∗(𝑌, 𝔰) coincides with the coupled Morse complex associated to a Morse function

𝑓 : T𝑌 → R and the corresponding family of (perturbed) Dirac operators as in Section 3.

In this case, 𝐶̂∗(𝑌, 𝔰) is a filtered complex for which p is a filtered map with associated graded map
the natural inclusion; the associated graded complexes are

3Notice that the claim in the proof of [KM07, Proposition 25.1.1] that the equalities hold at the chain level is incorrect. In our
situation with no irreducible critical points, up to overall signs the chain homotopy between 𝑚̄(𝑈, −) ◦ 𝑝 and 𝑝 ◦ 𝑚̂(𝑈, −) is
simply given by 𝑚𝑢

𝑠 (𝑈, −); this readily follows from identity (iv) in [KM07, Lemma 25.3.6].
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gr2𝑖+1𝐶̂ = 0,
gr2𝑖𝐶̂ = span{𝑞 ∈ Crit( 𝑓 ) | 𝑑 (𝑞) ≤ 𝑖} ⊂ 𝐶∗(T, 𝑓 ; Γ𝜂).

Moving to the cobordism maps, there are two distinct cases to analyze:
◦ if 𝑏+(𝑊) > 0, after choosing a perturbation by a self-dual form as in [KM07, Section 27.2], there are

no reducible solutions on the cobordism so that 𝑚̄∗(𝑊) vanishes and therefore 𝑚̂∗(𝑊) vanishes as
well because p is injective.

◦ if 𝑏+(𝑊) = 0, working in the setup of Section 3 it follows from the equation (4.2) that the associated
graded map of 𝑚̄∗(𝑊) determines the associated graded map of 𝑚̂∗(𝑊), and we determined the
former in Theorem 3.2.

We record these observations as a lemma in the specific case of interest, where the two ends coincide.
Lemma 4.2. If (𝑌, 𝔰) is an 𝑅𝑆𝐹-space, the complex 𝐶̂∗(𝑌, 𝔰𝑌 ; Γ𝜂) is a filtered complex. If (𝑊, 𝔰𝑊 , 𝜈)
is a cobordism from (𝑌, 𝔰, 𝜂) to itself, the map 𝑚̂∗(𝑊) satisfies

gr 𝑚̂∗(𝑊, 𝔰𝑊 , 𝜈) = 𝑈𝑑𝑚𝑊 ,𝜈

for 𝑏+(𝑊) = 0, and is zero on the nose otherwise.

4.2. Examples of 𝑅𝑆𝐹-spaces

The simplest example of an 𝑅𝑆𝐹-space is given by a torsion spin𝑐 three-manifold (𝑌, 𝔰) admitting
a metric of positive scalar curvature, as follows from the discussion in [KM07, Chapter 36]. These
examples are somewhat trivial because the family of Dirac operators parametrized by T𝑌 never has
kernel; in the setup of Theorem C, which we prove below, this leads to vanishing results. We now
discuss some nontrivial examples where we obtain instead rigidity results.

All of our nontrivial examples come from the following procedure:
(i) Find a metric g so that (𝑌, 𝔰) supports no irreducible Seiberg–Witten solutions, so that the critical

locus of the Chern–Simons–Dirac functional L is exactly T. Notice that L fails to be Morse–Bott
exactly along the locus K where the corresponding Dirac operator has kernel.

(ii) After a suitable perturbation without introducing irreducible solutions, choose an additional Morse
function 𝑓 : T𝑌 → R so that the critical points of f are Dirac operators with no kernel. Labeling
the eigenvalues of the Dirac operator at each critical point q as following Lemma 3.1 and writing
𝑑 (𝑞) for the index of the first positive eigenvalue, we demand that for each pair of critical points
𝑥, 𝑦 with 𝑑 (𝑥) > 𝑑 (𝑦), we have 𝑓 (𝑥) < 𝑓 (𝑦). (This includes as a special case the “A-adapted
perturbations” of [Lin24b]).

(iii) Even if the unperturbed equations did not admit irreducible solutions, it is challenging to carry out
the perturbation process without introducing such solutions. One uses the geometry at hand to argue
that the perturbed Seiberg–Witten equations are now regular, but still have no irreducible solutions.
After this, one can add additional perturbations as in [KM07, Ch. 12] to achieve transversality (in
particular by making the spectrum of the perturbed Dirac operators at reducible critical points
simple).

Lemma 4.3. For any metric and perturbation on (𝑌, 𝔰) constructed as in the above procedure, the map
𝜕𝑢𝑠 is strictly filtered.
Proof. The unstable critical points (𝑥, 𝜆𝑖 (𝑥)) have 𝑖 < 𝑑 (𝑥), while the stable critical points (𝑦, 𝜆 𝑗 (𝑦))
have 𝑑 (𝑦) ≤ 𝑗 . Suppose 〈𝜕𝑢𝑠 (𝑥, 𝜆𝑖 (𝑥)), (𝑦, 𝜆 𝑗 (𝑦))〉 ≠ 0, so there exists an irreducible flowline from the
stable critical point (𝑥, 𝜆𝑖 (𝑥)) and flowing to the unstable critical point (𝑦, 𝜆 𝑗 (𝑦)).

The perturbed Chern–Simons–Dirac functional coincides with 𝜀 𝑓 on the reducible critical set, so we
must have 𝑓 (𝑥) > 𝑓 (𝑦) and therefore 𝑑 (𝑥) ≤ 𝑑 (𝑦). Therefore 𝑖 < 𝑑 (𝑥) ≤ 𝑑 (𝑦) ≤ 𝑗 and we see that 𝜕𝑢𝑠
is strictly filtered. �

We now list some examples of 𝑅𝑆𝐹-spaces obtained from this procedure.
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Example 4.1. The simplest nontrivial example is that of the torus endowed with a flat metric as discussed
[KM07, Section 38]. In this setup, the quantity 𝑑 (𝑥) in (4.1) is given by

𝑑 (𝑥) =

{
0 ind(𝑥) > 0
−1 ind(𝑥) = 0,

and the complex 𝐶̂∗(𝑇
3, 𝔰0) is given by

Z[𝑈]

Z[𝑈] ⊕3 𝑈−1Z[𝑈]

Z[𝑈] ⊕3

𝑈−1

where the ith column corresponds to the points with Morse index 3− 𝑖, and the arrow is an isomorphism.

Example 4.2. In [KM07, Section 37.4] the authors show also that the flat three-manifolds Y with 𝑏1 = 1
are 𝑅𝑆𝐹-spaces. For all but one spin𝑐 structure on Y, the Morse function can be chosen perfect with
𝑑 (𝑥1) = 𝑑 (𝑥0) = 0. For one spin𝑐 structure 𝔰0, the Morse function can be chosen to have four critical
points (𝑥0, 𝑥1 of index 0 and 𝑦0, 𝑦1 of index 1) and 𝑑 (𝑥0) = 𝑑 (𝑥1) = 𝑑 (𝑦0) = −1 while 𝑑 (𝑦1) = 0. Notice
that the flat 3-manifolds are precisely the mapping tori of finite-order diffeomorphisms of 𝑇2.

Example 4.3. In [Lin24b] it is shown that for 𝑔 = 2, 3, 𝑆1 × Σ𝑔 is an 𝑅𝑆𝐹-space (for the unique torsion
spin𝑐 structure).

The proof uses ideas from spectral geometry. We say that a Riemannian 3-manifold Y is spectrally
large if the first eigenvalue of the Hodge Laplacian on coexact 1-forms is large compared to the curvature
(in a suitable quantitative sense). Under this hypothesis, one can then add perturbations of spinorial
type so that the equations do not have irreducible solutions, and the hypersurface K ⊂ T𝑌 consisting of
the locus where the Dirac operator has kernel is transversely cut out in the space of operators. Notice
that the latter does not imply that K is smooth when 𝑏1 ≥ 4. Now, under the technical assumption that
for the spin𝑐 structure 𝔰 the hypersurface K is smooth, one can find a Morse perturbation satisfying the
conditions of Definition 4.1; in particular (𝑌, 𝔰) is an 𝑅𝑆𝐹-space.

For a handful of g including 𝑔 = 2, 3, the manifold 𝑆1 × Σ𝑔 can be shown to admit a spectrally large
metric. For 𝑔 ≤ 3 the hypersurface K can be taken to be smooth after perturbation; for 𝑔 ≥ 4, however,
this cannot be done.

Example 4.4. In [Lin24a] it is shown that if Y is the mapping torus of a finite order diffeomorphism 𝜑
of a surface Σ of genus ≥ 2 with Σ/𝜑 = P1, and 𝔰 is self-conjugate, then (𝑌, 𝔰) is an 𝑅𝑆𝐹-space. In this
context, 𝑏1 = 1 and the locus K ⊂ T𝑌 where the Dirac operator has kernel is an arbitrary conjugation-
symmetric set of points (with multiplicity). So the critical set will be an even set of points and 𝑑 (𝑥)
will increase by the multiplicity of K as we pass between adjacent degree zero and degree 1 critical
points. As a consequence, one can obtain concrete examples for which the reduced Floer homology
HM∗(𝑌, 𝔰; Γ𝜂) has arbitrarily many U-torsion summands, with arbitrarily large length.

4.3. Proof of Theorem C

In this section and what follows, we will frequently use the Mayer–Vietoris type sequence

0→ 𝐻3 (𝑊)
𝑝3
−−→ 𝐻3 (𝑋)

𝛿3
−−→ 𝐻2 (𝑌 )

𝑖2− 𝑗2
−−−−→ 𝐻2 (𝑊)

𝑝2
−−→ 𝐻2(𝑋)

𝛿2
−−→ · · · (4.3)
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as well as the sequences which are related to this one by Poincaré duality and chain-level duality

· · · → 𝐻3(𝑊, 𝜕𝑊) → 𝐻2 (𝑌 ) → 𝐻2(𝑋) → 𝐻2(𝑊, 𝜕𝑊) → 𝐻1 (𝑌 ) → · · ·

0→ 𝐻1(𝑊, 𝜕𝑊) → 𝐻1 (𝑋) → 𝐻1 (𝑌 ) → 𝐻2 (𝑊, 𝜕𝑊) → 𝐻2(𝑋) → · · ·

Z→ 𝐻1(𝑋) → 𝐻1(𝑊) → 𝐻1 (𝑌 ) → 𝐻2(𝑋) → 𝐻2(𝑊) → · · · .

It is useful to keep in mind the intersection-theoretic definition of 𝛿𝑘 : one takes a generic k-cycle in X
and intersects it with Y to give a (𝑘 − 1)-cycle in Y. This is Poincaré dual to the map

𝑓 ∗4−𝑘 : 𝐻4−𝑘 (𝑋) → 𝐻4−𝑘 (𝑌 )

given by pullback along the inclusion.
Observe now that because 𝑏+(𝑋) > 0 and 𝑏+(𝑊) = 0, the map 𝑝2 : 𝐻2 (𝑊) → 𝐻2(𝑋) is not

surjective, so the exactness of (4.3) implies that there exists some [𝜈̄] ∈ 𝐻2(𝑋;R) for which

[𝜂] = [𝜈̄ ∩ 𝑌 ] ≠ 0 ∈ 𝐻1 (𝑌 ;R),

and we choose chain-level representatives for these classes. Applying Proposition 2.1, we find

𝔪(𝑋, 𝔰𝑊 ) = lim
𝑡→0

𝔪(𝑋, 𝔰𝑊 , 𝑡 [𝜈̄]) = lim
𝑡→0

Tr
(
HM∗(𝑊, 𝔰𝑊 ; Γ𝑡𝜈)

)
.

If 𝑏+(𝑊) > 0 it follows from Lemma 4.2 that this quantity is zero. When 𝑏+(𝑊) = 0, we will relate this
to the associated graded map discussed above by way of the classic Hopf trace formula: if C is a finite-
dimensional Z/2-graded chain complex, then the alternating trace of a map 𝜙 : 𝐶 → 𝐶 coincides with
the alternating trace of the induced map on homology 𝜙∗. We will also use the elementary observation
that the trace of a filtered map is the same as the trace of its associated graded map, because the trace
of an upper-triangular matrix is independent of the entries above the diagonal.

Proof of Theorem C. In our setting the differential 𝜕 and the map p are filtered by definition, and this can
be applied as follows. Observe that when 𝑡𝜂 ≠ 0, the Morse homology 𝐻∗(T𝑌 , 𝑓 ; Γ𝑡 𝜂) is trivial. Recall
that we normalize the quantity 𝑑 (𝑞) from (4.1) so that 𝑑 (𝑞) ≤ 0; say 𝑑 (𝑞) = 𝑘 ≤ 0 is the minimum
value. To have a concrete example in mind, in the case of the torus 𝑇3 in Example 4.1, we have

gr𝑖𝐶̂ (𝑇3, 𝔰0; Γ𝜂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶∗(𝑇

3, 𝑓 ; Γ𝜂) 𝑖 ≥ 0 and is even
〈𝑥0〉 𝑖 = −2
0 otherwise

Here 𝑘 = 𝑑 (𝑥0) = −1 is the minimum value.
In particular, the associated graded complex is 𝐶∗(T𝑌 , 𝑓 ; Γ𝑡 𝜂) for 𝑖 ≥ 0 and zero for 𝑖 < 2𝑘 , so we

have 𝐸2
𝑖 = 0 in the associated spectral sequence converging to HM∗(𝑌, 𝔰; Γ𝑡 𝜂) = ĤM∗(𝑌, 𝔰; Γ𝑡 𝜂) except

possibly when i is an even integer satisfying 2𝑘 ≤ 𝑖 ≤ −2. In particular, 𝐸2 and all successive pages of
the associated spectral sequence are finite-dimensional. Applying Hopf’s trace formula to the successive
pages of the spectral sequence, we find

𝔪(𝑋, 𝔰𝑊 ) = lim
𝑡→0

Tr(𝐻𝑀∗(𝑊, 𝔰𝑊 ; Γ𝑡𝜈)) = lim
𝑡→0

−1∑
𝑖=𝑘

Tr(𝐸∞2𝑖 (𝑚̂(𝑊, 𝔰𝑊 ; Γ𝑡𝜈)
)

= lim
𝑡→0

−1∑
𝑖=𝑘

Tr(𝐸𝑟
2𝑖 (𝑚̂(𝑊, 𝔰𝑊 ; Γ𝑡𝜈)

)
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for all 𝑟 ≥ 2, where

𝐸𝑟
2𝑖 (𝑚̂(𝑊, 𝔰𝑊 ; Γ𝑡𝜈)) : 𝐸𝑟

2𝑖 (𝐶̂ (𝑌, 𝔰; Γ𝑡 𝜂)) → 𝐸𝑟
2𝑖 (𝐶̂ (𝑌, 𝔰; Γ𝑡 𝜂))

is the map induced on the 𝐸𝑟 page of the spectral sequence.
The 𝐸2 page of the spectral sequence coincides with the homology of the associated graded com-

plex gr2𝑖𝐶̂ (𝑌, 𝔰𝑊 ; Γ𝑡 𝜂); notice that for each i this can be naturally identified with a subcomplex of
𝐶∗(T𝑌 , 𝑓 ; Γ𝑡 𝜂) which, as an R-module, is independent of t. Applying Hopf’s formula once more, we see

𝔪(𝑋, 𝔰𝑊 ) = lim
𝑡→0

−1∑
𝑖=𝑘

Tr
(
𝑈𝑑𝑚𝑊 ,𝑡𝜈 |gr2𝑖𝐶̂ (𝑌 ,𝔰;Γ𝑡 𝜂 )

)
for d as in Theorem 3.2. Because the domain is independent of t and the map is continuous in t, taking
the limit as 𝑡 → 0 gives

𝔪(𝑋, 𝔰𝑊 ) =
−1∑
𝑖=𝑘

Tr
(
𝑈𝑑𝑚𝑊 |gr2𝑖𝐶̂ (𝑌 ,𝔰)

)
. (4.4)

From this we immediately conclude our rigidity result that 𝔪(𝑋, 𝔰𝑊 ) depends only on 𝑚𝑊 , 𝑑, and
gr2𝑖𝐶̂ (𝑌, 𝔰), because the map 𝑚𝑊 depends only on the diagram (1.5), the integer d depends only on the
characteristic numbers of W and the spin𝑐 structure 𝔰𝑊 , and the complex depends only on (𝑌, 𝔰).

We have proved much of Theorem C; all that remains is to show that this trace vanishes when the
three listed conditions are not met. That the Seiberg–Witten invariant 𝔪(𝑋, 𝔰𝑊 ) vanishes for 𝑏+(𝑊) > 0
was discussed above. Because 𝑚𝑊 has degree 𝑏1 (𝑊) − 𝑏1(𝑌 ), we see that even when 𝑏+(𝑊) = 0 the
trace can only be nonzero if 𝑏1(𝑊) = 𝑏1 (𝑌 ). Similarly, this trace can only be nonzero if 𝑑 = 0, which
when 𝑏1(𝑊) = 𝑏1(𝑌 ) is equivalent to 𝑑 (𝔰𝑊 ) = 0. �

It is worth naming the dependency of the constant in (4.4).

Definition 4.4. Suppose (𝑋,𝑌, 𝔰𝑌 ) satisfy the hypotheses of Theorem C. We write

𝑐(𝑊,𝑌, 𝔰𝑌 ) =
−1∑
𝑖=𝑘

Tr
(
𝑚𝑊 |gr2𝑖𝐶̂ (𝑌 ,𝔰)

)
for the quantity arising in (4.4) when 𝑑 = 0.

Remark 4.1. There is a sign ambiguity in the definition of 𝑐(𝑊,𝑌, 𝔰𝑌 ), as the map 𝑚𝑊 depends on a
choice of a homology orientation for W. In particular, the sign ambiguity is independent of 𝔰𝑌 ; summing
𝑐(𝑊,𝑌, 𝔰𝑌 ) over all 𝔰𝑌 gives an integer, well-defined up to sign.

5. Examples

Theorem C is useful if we can actually compute this quantity 𝑐(𝑊,𝑌, 𝔰). We do this in several examples.
Throughout this section, we suppose (𝑌, 𝔰) is an RSF-space and 𝑊 : 𝑌 → 𝑌 is a cobordism with
𝑏+(𝑊) = 0 and 𝑏1(𝑊) = 𝑏1(𝑌 ). Notice that the latter condition allows us to define the discriminant as
in (1.2)

When Y has positive scalar curvature and 𝑏1 (𝑌 ) > 0, the family of Dirac operators on T𝑌 has no
kernel, so 𝑑 (𝑞) = 0 for all critical points q and therefore 𝐻𝑀∗(𝑌, 𝔰; Γ𝜂) is zero for any spin𝑐 structure
on Y. Of course, it follows that 𝑐(𝑊,𝑌, 𝔰) = 0.

As a less tautological example, we compute the quantity 𝑐(𝑊,𝑌, 𝔰0) in Theorem C for 𝔰0 the torsion
spin𝑐 structure on 𝑇3.
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Proposition 5.1. For 𝑌 = 𝑇3, the quantity 𝑐(𝑊,𝑌, 𝔰0) in Theorem C is equal up to sign to the natural
number disc(𝑊) in (1.2).
Proof. It was established in the proof of Theorem C that the quantity 𝑐(𝑊,𝑌, 𝔰0) is equal to

Tr(𝑚𝑊 |〈𝑥0〉).

Because the Morse function is perfect, the map 𝑚𝑊 is the same as the map it induces on homology,
which is computed in [KM07, Section 2.8] to be the composition

(𝑟+)∗ ◦ 𝑃𝐷−1
T𝑊
◦ 𝑟∗− ◦ 𝑃𝐷T𝑌 ,

where

𝑇3 𝑟−
←− 𝑇3 𝑟+

−→ 𝑇3

is the diagram induced by the pair of inclusions 𝑖, 𝑗 : 𝑌 → 𝑊 . Generally, if 𝑓 : 𝑇3 → 𝑇3 is any linear
map, we have

𝑓∗(𝑥) =

{
𝑥 |𝑥 | = 0
det( 𝑓 )𝑥 |𝑥 | = 3,

and similarly for 𝑓 ∗(𝑥). The computation in middle degrees is somewhat more subtle; the map in degree
k can be computed in terms of the matrix of 𝑘 × 𝑘 minors of f.

Thus, we have

𝑚𝑊 (𝑥0) = ±(𝑟+)∗ (𝑃𝐷−1
T𝑊
) (𝑟∗−)(𝑥3) = ±(𝑟+)∗ (𝑃𝐷−1

T𝑊
) (det(𝑖)𝑥3)

= ±(𝑟+)∗ (det(𝑖)𝑥0) = ± det(𝑖)𝑥0.

The discriminant in (1.2) is, by definition, det(𝑖). �

Remark 5.1. This argument is where the sign ambiguity in Theorem B appears. Homology orientations
on Y and W are used to pin down the sign on the Poincaré duality maps above, which pins down the sign
in the definition of 𝔪(𝑋) as well. We do not see the appeal in working out the homology orientations
in detail, so we choose to record the result up to sign. The sign ambiguity is the same as in Remark 4.1.

This argument goes through with minimal change for the other flat 3-manifolds with 𝑏1 (𝑌 ) = 1. For
all but one spin𝑐 structure 𝔰𝑌 , the Dirac operator on Y has no kernel, and hence like in the example
of PSC manifolds, spin𝑐 classes on X restricting to something other than 𝔰𝑌 contribute nothing to the
computation of 𝔪(𝑋). For the following proposition, write 𝔰0 for the unique spin𝑐 structure which
admits spin𝑐 connections with parallel spinors.
Proposition 5.2. If (𝑌, 𝔰0) is a flat 3-manifold with 𝑏1 (𝑌 ) = 1 equipped with its canonical spin𝑐
structure, then the quantity 𝑐(𝑊,𝑌, 𝔰0) in Theorem C is equal up to sign to the natural number disc(𝑊)
defined as in (1.2).

Notice that by (4.3) in order for the glued up manifold X to have 𝑏+ ≥ 1 we have to assume that the
maps (1.5) coincide or, equivalently, that 𝐻2 (𝑌 ) → 𝐻2(𝑋) is injective.

Proof. As discussed above, the Morse function 𝑓 : 𝑆1 → R has four critical points 𝑥0, 𝑥1, 𝑦0, 𝑦1 with
𝑑 (𝑥0) = 𝑑 (𝑥1) = 𝑑 (𝑦0) = −1 and |𝑥𝑖 | = 0 while |𝑦𝑖 | = 1; the associated graded complex is only relevant
for 𝑖 = −1, in which case we obtain 〈𝑥0, 𝑥1, 𝑦0〉. The trace of 𝑚𝑊 on this subcomplex is the negative of
the trace of 𝑚𝑊 on the quotient complex 〈𝑦1〉, where it can be computed as in Proposition 5.1 to equal
± det(𝑖∗). (In fact, the map 𝑚̄∗ must be given by scaling by det(𝑖∗) on every generator.) �

More generally, we have the following.
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Proposition 5.3. Suppose the maps in (1.5) coincide. Then

𝑐(𝑊,𝑌, 𝔰) = ±disc(𝑊) · 𝜒(𝐻𝑀∗(𝑌, 𝔰; Γ𝜂)),

where again disc(𝑊) is defined as in (1.2).

Proof. Recall that we defined

𝑐(𝑊,𝑌, 𝔰) =
−1∑
𝑖=𝑘

Tr
(
𝑈𝑑𝑚𝑊 |gr2𝑖𝐶̂ (𝑌 ,𝔰)

)
,

summing only over those indices for which gr2𝑖𝐶̂ (𝑌, 𝔰, Γ𝑡 𝜂) is not acyclic. Because the associated graded
complex of 𝐶̂ (𝑌, 𝔰, Γ𝑡 𝜂) is independent of t, the Euler characteristic of each summand is independent
of 𝑡 ∈ R; summing from k to −1, the result is equal to 𝜒(𝐻𝑀∗(𝑌, 𝔰; Γ𝜂)). We will prove that the map
𝑚𝑊 : 𝐶∗(T, 𝑓 ) → 𝐶∗(T, 𝑓 ) is scalar multiplication by ± det(𝑖∗) = disc(𝑊), so the same is true of the
restriction to each gr2𝑖𝐶̂, giving the stated result.

Because both endpoint maps in the correspondence

T𝑌 ← T𝑊 → T𝑌

are the same (say, 𝑖 : T𝑊 → T𝑌 ) by assumption, in the equation

𝑟 (𝑤) = (𝛾−(0), 𝛾+(0))

we are counting Morse trajectories together with an element 𝑤 ∈ T𝑊 mapping to 𝛾−(0) = 𝛾+(0).
Because we are counting trajectories between points of the same Morse index, we must have that 𝛾± are
constant trajectories at the same critical point 𝑞 ∈ Crit( 𝑓 ). Thus we are computing the signed number
of 𝑤 ∈ T𝑊 which map to 𝑞 ∈ T𝑌 , which coincides with det(𝑖∗) up to sign. �

Looking back at Section 4.2, for 𝑌 = 𝑇3 the Euler characteristic term is ±1, while the Euler
characteristic term for 𝑆1 × Σ𝑔 is ±2 for 𝑔 = 2 and ±6 for 𝑔 = 3. The mapping tori of Example 4.4
provide examples of manifolds for which the Euler characteristic term is arbitrarily large.

A particularly interesting example is the case of 𝑌 = 𝑆1 × Σ2. Write 𝜑 : 𝑆1 × Σ2 → 𝑆1 × Σ2 for a
diffeomorphism of the form id𝑆1 × 𝜙Σ2 .

Proposition 5.4. Suppose (𝑌, 𝔰0) is 𝑆1 × Σ2 with its unique torsion spin𝑐 structure. If (𝑊, 𝔰𝑊 ) is a
self-cobordism of (𝑌, 𝔰0) for which 𝑖∗ = 𝑗∗ and X is obtained by gluing the ends together using 𝜑, then

𝔪(𝑋, 𝔰𝑊 ) = ±disc(𝑊) · (Tr(𝜙∗) − 2)

where 𝜙∗ denotes the action on 𝐻1 (Σ2).

Proof. Choose 𝜂 to be a nonzero multiple of 𝑆1. We have 𝑖∗ [𝜂] = 𝜑∗ 𝑗∗ [𝜂] so 𝜂 extends to a 2-chain 𝜈̄
on X as in Proposition 2.1. For this 𝜂 we have

HM∗(𝑆1 × Σ2, 𝔰0; Γ𝜂) � 𝐻∗(Σ2;R)

as Z2-graded vector spaces. Explicitly, following [Lin24b, Corollary 4.5], we consider the Abel–Jacobi
map 𝐴𝐽 : Σ2 → Jac(Σ2), which is an embedding. Identifying T𝑌 � 𝑆1 × Jac(Σ2), there exists a perfect
Morse function 𝑓 : T𝑌 → R as in Section 4.2, for which K is a sphere bundle around the image of
𝐴𝐽. We have 𝑑 (𝑥) = 0 for critical points in one component of the complement and 𝑑 (𝑥) = −1 in the
other. The latter component is diffeomorphic to Σ2 ×𝐷3, and the Morse function may be chosen to have
exactly six critical points in this component. The isomorphism

HM∗(𝑆1 × Σ2, 𝔰0; Γ𝜂) � 𝐻∗gr(𝐶𝑀∗(𝑆
1 × Σ2, 𝔰0; Γ𝜂)) � 𝐻∗(Σ2;R)
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then arises because the associated graded complex gr−2 is equal to 𝐶∗(Σ2;R), while all other associated
graded terms are acyclic.

Because the Morse function f is perfect, the cobordism map induced by the pair (1, 𝜑∗) on the chain
level coincides with the map the correspondence of tori induces on homology, which coincides with 𝜑∗.
Because the map induced by AJ on homology commutes with the action of the mapping class group, we
see the restriction to 𝐶∗(Σ2;R) also coincides with 𝜑∗. The map induced by the pair (𝑖∗, 𝑗∗) is disc(𝑊)
by Proposition 5.3, so the pair (𝑖∗, 𝜑∗ 𝑗∗) induces 𝜑∗ scaled by disc(𝑊). The stated formula follows. �

As a concrete example, consider the mapping class of Σ2 obtained as the connect sum of the identity
on 𝑇2 and the Anosov map induced by the matrix[

2 1
1 1

]
.

Then X is a homology four-torus with determinant 1, and we obtain that∑
𝔰 |𝑌 =𝔰0

𝔪(𝑋, 𝔰) = ±3.

In fact, X is obtained from 𝑇4 by doing knot surgery [FS98] along a standard 𝑇2 using the figure eight
knot, and the value of 3 we found corresponds to the constant term in its Alexander polynomial. The
nonconstant terms correspond to spin𝑐 structures which are nontorsion over Y, which our techniques do
not have access to.

6. Nonseparating three-tori

The main goal of this section is to prove Theorem B and Theorem A, and discuss some concrete
examples.

6.1. Proof of Theorem B

Our first observation restricts attention to the case we can actually calculate, namely that of spin𝑐
structures on X which are torsion on Y.

Lemma 6.1. Suppose X is a closed, oriented, connected 4-manifold with 𝑏+(𝑋) ≥ 2, and that X contains
a nonseparating hypersurface Y with trivial Thurston norm. If 𝔪(𝑋, 𝔰𝑋 ) ≠ 0, then the restriction 𝔰𝑋 |𝑌
is torsion.

Proof. Let Σ ⊂ 𝑌 be a torus, so in particular [Σ] · [Σ] = 0 and 𝑔(Σ) = 1. First, the adjunction inequality
[KM07, Theorem 40.2.3] implies that if 𝔪(𝑋, 𝔰𝑋 ) ≠ 0, we have

0 = 2𝑔 − 2 ≥ |〈𝑐1 (𝔰𝑋 ), [Σ]〉| + [Σ] · [Σ] = |〈𝑐1 (𝔰𝑋 ), [Σ]〉|.

It follows that

0 = 〈𝑐1 (𝔰𝑋 ), [Σ]〉 = 〈𝑐1 (𝔰𝑋 ) |𝑌 , [Σ]〉

for all tori Σ in Y. Because Y has trivial Thurston norm, the real homology 𝐻2 (𝑌 ;R) is generated by
embedded tori, and it follows that 𝑐1(𝔰𝑋 ) |𝑌 pairs trivially with every real homology class. By Poincaré
duality, 𝑐1 (𝔰𝑋 ) |𝑌 is torsion. �

Now to prove Theorem B, assume 𝑌 = 𝑇3. For a spin𝑐 structure on W with 𝑖∗𝔰𝑊 � 𝑗∗𝔰𝑊 � 𝔰0 the
torsion spin𝑐 structure on Y, we established in Proposition 5.1 that
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𝑐(𝑊,𝑌, 𝔰0) =

{
±disc(𝑊) if 𝑏+(𝑊) = 0, 𝑏1 (𝑊) = 𝑏1(𝑌 ), and 𝑑 (𝔰𝑊 ) = 0,
0 otherwise.

Applying Lemma 6.1, reindexing the sum, and applying Theorem C gives

𝔪(𝑋) =
∑
𝔰𝑋

𝔪(𝑋, 𝔰𝑋 ) =
∑
𝔰𝑋

𝔰𝑋 |𝑌 torsion

𝔪(𝑋, 𝔰𝑋 ) =
∑
𝔰𝑊

𝑖∗𝔰𝑊 � 𝑗∗𝔰𝑊
𝑖∗𝔰𝑊 �𝔰0

∑
𝔰𝑋

𝑝∗𝔰𝑋�𝔰𝑊

𝔪(𝑋, 𝔰𝑋 )

=
∑
𝔰𝑊

𝑖∗𝔰𝑊 � 𝑗∗𝔰𝑊
𝑖∗𝔰𝑊 torsion
𝑑 (𝔰𝑊 )=0

𝑐(𝑊,𝑌, 𝔰0).

By Proposition 5.1, these summands simplify to ±𝐷 (𝑊)disc(𝑊) when 𝑏+(𝑊) = 𝑏1(𝑊) − 𝑏1(𝑌 ) = 0,
and is otherwise zero; further, as discussed in Remark 4.1, the equality 𝑐(𝑊,𝑌, 𝔰𝑌 ) = 𝐷 (𝑊)disc(𝑊)
holds up to an overall sign ambiguity.

Remark 6.1. More generally, if (𝑌, 𝔰) is an 𝑅𝑆𝐹-space with trivial Thurston norm, the combination of
Lemma 6.1 and Theorem C allow to completely determine 𝔪(𝑋) if one could compute the quantities
𝑐(𝑊,𝑌, 𝔰) in the case of interest.

6.2. Homology 4-tori

Let X be a homology 4-torus. The goal of this subsection is to deduce Theorem A from Theorem B via
computations in algebraic topology. Recall the definition of the determinant of X in (1.1); this is the
class of the 4-form ∪4

𝑋 ∈ Λ
4𝐻1 (𝑋;Z) � Z up to sign. We begin with the following lemma.

Lemma 6.2. Suppose X is a rational homology 4-torus and 𝑌 ⊂ 𝑋 is a nonseparating 3-torus. Then we
have det(𝑋) ≠ 0 if and only if the intersection map

𝛿3 : 𝐻3(𝑋) → 𝐻2(𝑌 )

has rank three, in which case det(𝑋) is the index of im(𝛿3) in 𝐻2(𝑌 ).

Proof. Because the map 𝛿3 is given by intersection with Y, if we choose a basis for 𝐻3 (𝑋) given by
[𝑌 ], Σ1, Σ2, Σ3, then

det(𝑋) = [𝑌 ] ∩ Σ1 ∩ Σ2 ∩ Σ3 = 𝛿3 (Σ1) ∩ 𝛿3 (Σ2) ∩ 𝛿3 (Σ3).

Choose Σ1, Σ2, Σ3, and basis vectors 𝑆𝑖 of 𝐻2 (𝑌 ) so that the map 𝛿3 : 𝐻3(𝑋) → 𝐻2(𝑌 ) is in Smith
normal form, with 𝛿3(Σ𝑖) = 𝑎𝑖𝑆𝑖 . Then because det(𝑇3) = 1 we have det(𝑋) = 𝑎1𝑎2𝑎3. This is zero if
and only if rank(𝛿3) < 3; if rank(𝛿3) = 3, this quantity coincides with the index of the image of 𝛿3. �

We will also be interested in the behavior of 𝛿2 : 𝐻2(𝑋) → 𝐻1 (𝑌 ). Write 𝑐𝑖 = 3 − rank(𝛿𝑖). It is
straightforward to verify using the Mayer–Vietoris type sequence (4.3), Poincaré duality, and the fact
that the rank of homology and cohomology coincide, that

𝑏4 (𝑊) = 0, 𝑏3(𝑊) = 1 + 𝑐3, 𝑏2(𝑊) = 3 + 𝑐2 + 𝑐3, 𝑏1(𝑊) = 3 + 𝑐2, 𝑏0 (𝑊) = 1.

We also have 𝑏𝑖 (𝑊, 𝜕𝑊) = 𝑏4−𝑖 (𝑊).

Lemma 6.3. If X is a rational homology torus with 𝑌 ⊂ 𝑋 a nonseparating 3-torus, then 𝑏+(𝑊) = 𝑐2.
In particular, 𝑏+(𝑊) = 0 if and only if 𝑏1 (𝑊) = 3.
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Proof. Consider the relative long exact sequence of the pair (𝑊, 𝜕𝑊), we have

0→ Z→ 𝐻3(𝑊) → 𝐻3(𝑊, 𝜕𝑊) → 𝐻2 (𝑌 ) ⊕ 𝐻2(𝑌 ) → 𝐻2 (𝑊)
𝜑
−→ 𝐻2(𝑊, 𝜕𝑊).

We computed the rank of each group in the sequence above in terms of 𝑐2 and 𝑐3; starting on the left,
we can compute the rank of each map in the sequence, concluding that rank(𝜑) = 2𝑐2.

As remarked in the introduction, the intersection form on 𝐻̂ (𝑊) � im(𝜑)/tors is well-defined and
nondegenerate, and is the intersection form associated to W. On the other hand, by additivity of signature
under boundary-gluing, we have 𝜎(𝑊) = 𝜎(𝑋) = 0. Because 𝑏+(𝑊) = 𝑏−(𝑊) it follows that

𝑏+(𝑊) =
1
2

dim 𝐻̂ (𝑊) =
1
2

rank(𝜑) = 𝑐2. �

Recall the definition of discriminant in (1.2).

Lemma 6.4. If X is a rational homology torus with 𝑌 ⊂ 𝑋 a nonseparating 3-torus and 𝑊 = 𝑋 − 𝑌 its
complement, then det(𝑋) ≠ 0 if and only if 𝑏1 (𝑊) = 3 and disc(𝑊) ≠ 0. In this case, W is a rational
homology cobordism from Y to itself, the maps (1.5) are equal, and det(𝑋) = disc(𝑊).

Proof. Suppose first that det(𝑋) ≠ 0. Then 𝛿3 has rank three. Using the commutative diagram

Λ2𝐻3 (𝑋) Λ2𝐻2(𝑌 )

𝐻2(𝑋) 𝐻1 (𝑌 )

Λ2 (𝛿3)

∪2
𝑋 �

𝛿2

and the fact that Λ2(𝛿3) also has rank three, it follows that 𝛿2 has rank three as well, so that 𝑏1(𝑊) = 3.
Next, suppose 𝑏1 (𝑊) = 3 and consider the composition

𝐻1 (𝑋)
𝑝∗

−−→ 𝐻1 (𝑊)
𝑖∗

−→ 𝐻1(𝑌 ).

The composite (𝑝𝑖)∗ = 𝑓 ∗ is Poincaré dual to the map 𝛿3. The first map has rank three, as

0→ Z→ 𝐻1(𝑋)
𝑝∗

−−→ 𝐻1(𝑊) → 𝐻1 (𝑌 ) → · · ·

is exact and 𝑏1(𝑋) = 4, so the composite 𝑃𝐷 (𝛿3) = 𝑖∗𝑝∗ has rank three if and only if 𝑖∗ has rank three.
This establishes the claim that det(𝑋) ≠ 0 if and only if 𝑏1 (𝑊) = 3 and det(𝑖∗) ≠ 0.

Supposing now that 𝑏1 (𝑊) = 3 and det(𝑖∗) ≠ 0, because det(𝑋) ≠ 0 we find that W has the Betti
numbers of the 3-torus; as 𝑖∗ : 𝐻1(𝑊 ;Q) → 𝐻1(𝑌 ;Q) is an isomorphism on rational cohomology,
taking the cup-square and cup-cube of this map we find the natural map 𝑖∗ : 𝐻𝑘 (𝑊 ;Q) → 𝐻𝑘 (𝑌 ;Q) is
an isomorphism for all k. The same argument holds for 𝑗∗.

For the final claim, observe that exactness of

0→ Z→ 𝐻1 (𝑋) → 𝐻1(𝑊)
𝑖∗− 𝑗∗

−−−−→ 𝐻1(𝑌 ) → · · ·

implies by rank considerations that 𝑖∗ − 𝑗∗ has rank zero, hence (being a map between free abelian
groups) 𝑖∗ = 𝑗∗, and in particular the map 𝑝∗ : 𝐻1 (𝑋) → 𝐻1 (𝑊) is surjective. It now follows from the
equation 𝛿3 = 𝑖∗𝑝∗ that the index of im(𝛿3) coincides with det(𝑖∗) = disc(𝑊). �

We will now prove Theorem A. This is the first place we use that X is an integer homology torus;
one can extend the result to rational homology tori, with det(𝑋) replaced by det(𝑋) |𝐻1 (𝑋) |.

Proof of Theorem A. If det(𝑋) = 0, then by Lemma 6.4 we have either 𝑏1 (𝑊) ≠ 3 or 𝑏1 (𝑊) = 3 but
disc(𝑊) = 0. In either case, Theorem B gives 𝔪(𝑋) = 0, as desired.
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More interestingly, if det(𝑋) ≠ 0, then by Lemma 6.4 we have 𝑏1 (𝑊) = 3, 𝑏+(𝑊) = 0, and
disc(𝑊) = det(𝑋). What remains is to show that

𝐷 (𝑊) =

{
|𝐻2 (𝑌 )/ 𝑓 ∗𝐻2(𝑋) | if 𝑊 supports a torsion spin𝑐 structure
0 otherwise.

By rank considerations and the fact that 𝐻1(𝑌 ) is torsion-free, in the long exact sequence

· · · → 𝐻2 (𝑌 ) → 𝐻2(𝑋) → 𝐻2 (𝑊, 𝜕𝑊) → 𝐻1 (𝑌 )

the last map is zero. Thus we have an isomorphism

𝐻2(𝑊) � 𝐻2(𝑊, 𝜕𝑊) � 𝐻2 (𝑋)/ 𝑓∗𝐻2 (𝑌 ).

This group is of the form Z3 ⊕ 𝑇 for a torsion abelian group T; using that 𝐻𝑖 (𝑋) is torsion-free and
appealing to Smith normal form, one finds that 𝐻2 (𝑌 )/ 𝑓 ∗𝐻2(𝑋) � 𝑇 , so |𝐻2 (𝑌 )/ 𝑓 ∗𝐻2 (𝑋) | coincides
with the number of elements in Tors𝐻2(𝑊); and so long as one exists, this set is in bijection with the set
of torsion spin𝑐 structures on W. Thus Theorem A is reduced to showing that 𝐷 (𝑊) counts the number
of torsion spin𝑐 structures on W.

𝐷 (𝑊) counts spin𝑐 structures with 𝑖∗𝔰𝑊 � 𝑗∗𝔰𝑊 torsion and 𝑑 (𝔰𝑊 ) = 0. Because 𝑇3 carries a
unique torsion spin𝑐 structure, the first condition is equivalent to 𝔰𝑊 being torsion on the ends (so that
in particular 𝑑 (𝔰𝑊 ) is defined). Because X is a homology torus we have 𝜒(𝑊) = 𝜎(𝑊) = 0 and thus
𝑑 (𝔰𝑊 ) = 1

4𝑐1 (𝔰𝑊 )2. Because W is negative-definite and

[𝑐1 (𝔰𝑊 )] ∈ 𝐻̂ (𝑊) = im(𝐻2 (𝑊, 𝜕𝑊 ;R) → 𝐻2 (𝑊 ;R)),

we see that 𝑑 (𝔰𝑊 ) = 0 is equivalent to [𝑐1 (𝔰𝑊 )] = 0 in real cohomology, which is equivalent to 𝔰𝑊
being torsion. Thus 𝐷 (𝑊) counts torsion spin𝑐 structures. �

6.3. Some examples

Write 𝑡𝑖 (𝑊) = |Tors𝐻𝑖 (𝑊) | and similarly for variations, so that our formula can be rewritten 𝔪(𝑋) =
± det(𝑋)𝑡2(𝑊). It follows from the universal coefficient theorem and Poincaré duality that there are
essentially two torsion coefficients associated to W:

𝑡1(𝑊) = 𝑡2(𝑊) = 𝑡2(𝑊, 𝜕𝑊) = 𝑡3(𝑊, 𝜕𝑊),

𝑡1(𝑊, 𝜕𝑊) = 𝑡2(𝑊, 𝜕𝑊) = 𝑡2(𝑊) = 𝑡3(𝑊).

Lemma 6.2 computes that 𝑡2(𝑊) = det(𝑋), when X is an integer homology torus (and more generally
for rational homology tori, 𝑡2(𝑊) = det(𝑋)𝑡1(𝑋)). It is interesting that 𝑡2(𝑊) = 𝑡1(𝑊) does not seem to
have such a simple description. In this section we will discuss two concrete examples.
Remark 6.2. Combining our result with Ruberman–Strle’s, we see that if det(𝑋) is odd, then 𝑡2(𝑊) is
odd. It is not hard to show this by purely algebraic arguments; more generally, if det(𝑋) is nonzero mod
p, then 𝑡2(𝑊) is also nonzero mod p.
Example 6.1. Suppose M is a rational homology 3-torus containing a nonseparating two-torus𝑇 ↩→ 𝑀 ,
and let 𝑋 = 𝑆1 × 𝑀; notice that X is spin and det(𝑋) = det(𝑀). Denoting by C the complement, we
have 𝑊 � 𝑆1 × 𝐶. Now by the Künneth theorem 𝑡1(𝑊) = 𝑡1(𝐶) = 𝑡2(𝑊), and as discussed above
𝑡2(𝑊) = det(𝑋)𝑡1(𝑋) = det(𝑀)𝑡1(𝑀). Therefore

±𝔪(𝑋) = det(𝑋)𝑡2(𝑊) = det(𝑀)2𝑡1(𝑀).

When M is an integer homology torus, this is consistent with the result of Meng-Taubes [RS00, Section 5].
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Example 6.2. Fix nonzero integers 𝑛1, 𝑛2, 𝑛3. Consider the cobordism Z obtained from 𝐼 × 𝑇3 first by
adding three 1-handles, so that the resulting boundary is 𝑇3#(𝑆1 × 𝑆2)3, and then three 2-handles along
curves with homology class

(1, 0, 0, 𝑛1, 0, 0), (0, 1, 0, 0, 𝑛2, 0), (0, 0, 1, 0, 0, 𝑛3).

By choosing the framings appropriately, we can arrange that Z is spin. Call Y the other boundary
component. Cellular homology computations give that 𝐻1(𝑍) = Z3, that the image of

𝐻1(𝑇
3) → 𝐻1 (𝑍)

is a sublattice of index 𝑛1𝑛2𝑛3, and that

𝐻1 (𝑍,𝑇
3) = Z/𝑛1 ⊕ Z/𝑛2 ⊕ Z/𝑛3

𝐻2 (𝑍,𝑇
3) = 𝐻3(𝑍, 𝑇

3) = 0.

By Poincaré–Lefschetz duality

𝐻1(𝑍,𝑌 ) = 𝐻2(𝑍,𝑌 ) = 0

so that

𝐻1 (𝑍) → 𝐻1(𝑌 )

is an isomophism. We now take 𝑊 = 𝑍 ∪𝑌 𝑍̃ , the double of Z along Y. The isomorphism just mentioned
implies that the map in the Mayer-Vietoris sequence

𝐻2 (𝑊) → 𝐻2(𝑍) ⊕ 𝐻2(𝑍̃)

is injective, hence 𝐻2(𝑊) is torsion-free.
To sum up, W is a cobordism from𝑇3 to itself such that the two inclusion map are the same map in 𝐻1;

gluing together the boundary components we obtain an integral homology torus which has determinant
𝑛1𝑛2𝑛3 by Lemma 6.2, but 𝐻2(𝑊) is torsion-free. Therefore, for this family of spin integer homology
tori X, we have ±𝔪(𝑋) = det(𝑋).
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