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Abstract

We introduce a framework to prove integral rigidity results for the Seiberg—Witten invariants of a closed 4-manifold
X containing a nonseparating hypersurface Y satisfying suitable (chain-level) Floer theoretic conditions. As a
concrete application, we show that if X has the homology of a four-torus, and it contains a nonseparating three-
torus, then the sum of all Seiberg—Witten invariants of X is determined in purely cohomological terms.

Our results can be interpreted as (3 + 1)-dimensional versions of Donaldson’s TQFT approach to the formula of
Meng—Taubes, and build upon a subtle interplay between irreducible solutions to the Seiberg—Witten equations on
X and reducible ones on Y and its complement. Along the way, we provide a concrete description of the associated
graded map (for a suitable filtration) of the map on HM, induced by a negative-definite cobordism between three-
manifolds, which might be of independent interest.
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1. Introduction

Seiberg—Witten invariants [Wit94, Mor96] are a fundamental tool in four-dimensional topology. Given
their versatility, understanding these invariants is an extremely challenging problem that has attracted a
considerable amount of attention in the past 30 years. Despite this, we are currently lacking a framework
to carry out the computation in general examples. Less ambitiously, it is unclear what kind of constraints
such invariants must satisfy.

A very fruitful line of investigation towards such constraints is that of “mod 2 rigidity results” for the
Seiberg—Witten invariants of spin manifolds, which assert that the Seiberg—Witten invariants (mod 2)
depend only on some simpler topological information. This started with Morgan—Szabé’s proof that for
a homotopy K3 the invariant of the trivial spin® structure is odd [MS97]. Ruberman and Strle [RS00]
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proved an interesting rigidity result for homology tori, 4-manifolds X with the integral homology of a
torus. There is a cohomological invariant attached to homology tori, the determinant

det(X) = |[{x1 Uxp Uxz Uxy, [X])| €N, (1.1)

where the x; form an integral basis of H'(X) = Z*. Their main result is then the following.

Theorem [RS00]. Consider a homology 4-torus X which is spin. Then the sum of all (degree zero)
Seiberg—Witten invariants m(X) of X has the same parity as det(X).

The essential point is that on a spin manifold the Seiberg—Witten equations admit a Pin(2)-symmetry.
See [Li06, Bau08, Bar23] for further developments in this direction.

The goal of this article is instead to prove some integral rigidity results for Seiberg—Witten invariants
of aclosed 4-manifold X in the presence of a nonseparating hypersurface Y satisfying suitable conditions.
For simplicity, we will not discuss homology orientations and all the results will be stated up to an
overall sign. Let us begin by focusing on the special case in which ¥ = T? is the three-torus, in which
case we have the following purely cohomological formula for the sum of Seiberg—Witten invariants.

Theorem A. Suppose X is a homology torus which contains a nonseparating 3-torus, and assume that
o (X) =0 ifdet(X) = 0. If X admits a spin® structure restricting to the unique torsion one on T?, then

m(X) = +det(X) - #(HZ(T3)/1m(H2(X) = HZ(T3))‘ ez

If not, all its Seiberg—Witten invariants m(X, sx ) vanish.

Importantly, we do not assume X is spin here, but of course when X is spin there exists a spin®
structure restricting to the torsion one on 73. Furthermore, if det(X) is odd, X is automatically spin. It
is interesting to notice that in this case, the second factor in our formula is independent of the choice of
nonseparating three-torus.

Remark. While it seems plausible that there exist 4-manifolds for which the second clause in Theorem A
applies, the authors do not have concrete examples.

For homology four-tori of the form X = S' x M for some homology three-torus M the work of
Meng—Taubes ([MT96], cf. [RS00]) implies that
m(X) = +det(X)?,

and one readily checks that when M contains a separating torus this coincides with our formula (see
Example 6.1). In Example 6.2 we describe a broad class of homology tori for which m(X) = + det(X)
instead.

Remark. Whether or not an exotic T* exists is an outstanding question in four-dimensional topology.

This first result is a direct consequence of much more general rigidity results for 4-manifolds X
containing a nonseparating three-torus ¥ = T3. For the statement, it will be convenient to work with
the complement W = X \ Y of the hypersurface; it carries two natural inclusion maps i,j : ¥ — W,
corresponding to the two sides of the hypersurface. In the case of most interest, we will have b; (W) = 3,
so the map

i H' (W) > H'\(Y)

is a homomorphism of rank 3 free abelian groups. There is a well-defined natural number, the discrim-
inant of W,

disc(W) = | det(i*)| = #|H' (Y) /im(i*)|, (1.2)
1f det(X) # 0, the signature o (X) is automatically zero.
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which is interpreted as zero if the right hand side is infinite. One could also use the map j* for the
definition, cf. Remark 3.4. For s a spin® structure on W which is torsion on the ends, write

1
d(sw) = 7(e1(5w)* = 20(W) =30 (W)): (13)
see [KMO7, Section 28.3] for the definition of cf in this context. We also record the quantity
D(W) =#{sw | i"sw = j"sw are torsion and d(sw ) = 0}. (1.4)

We have D(W) # 0 if and only if X supports an almost complex structure J with ¢ (J)|y torsion, cf.
[GS99, Appendix 1.4].

Theorem B. Suppose X is a closed oriented, connected 4-manifold with b*(X) > 2. If T> ¢ X is a
nonseparating three-torus, the sum of all Seiberg—Witten invariants satisfies

sm(X) = disc(W)D(W) ifb+(W.) =0and by (W) =3,

0 otherwise.
Remark. We will refer to a cobordism W with b*(W) = 0 as negative-definite. For any cobordism W,
if we consider the cup product restricted to

HW) = Im(Hz(W, OW) Jtors — H2(W) /tors)

the resulting pairing is nondegenerate, and b*(W) = 0 is equivalent to the pairing on H(W) being
negative-definite.

Remark. With additional care, this result also applies to the case b*(X) = 1, cf. the remark after
Theorem C below.

For comparison, if X contains a torus T3 separating it in two pieces X1, X, with b* > 1, then the
sum of all Seiberg—Witten invariants m(X) vanishes, see [KMO07, Corollary 3.11.2]; this is a direct
consequence of the fact that the reduced Floer homology group HM,(T3) vanishes.

By contrast, the proof of Theorem B is more subtle, and is special to 7 in three ways:

1. First, 72 has trivial Thurston norm, which guarantees that all basic classes on X must restrict to the
torsion spin¢ structure so on T°>.
2. Even though the reduced Floer homology group HM. (T?, s) vanishes, the Floer homology

HM,(T?,50;T,) = R

is nontrivial with respect to an appropriate local coeflicient system I';;.

3. Finally, there are suitable metrics and perturbations so that the Seiberg—Witten equations have no
irreducible solutions, so that the generators of the Floer chain complex C,(T3,s) all arise from
unstable reducible critical points; furthermore, the chain complex C, is very simple and concretely
understandable.

Given these, the argument roughly proceeds as follows. First of all, a suitable gluing theorem allows to
identify m(X) as the (super)trace of the cobordism map induced by W (equipped with a suitable local
system morphism). Such a map involves counting irreducible solutions to the Seiberg—Witten equations,
so is usually no easier to compute than m(X) itself.

On the other hand, we will see that one can obtain a concrete description (at the chain level) of
the associated graded map induced in HM, by W. This only counts reducible solutions, and carries
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interesting information related to the maps

i

H') & 5wy D H () (1.5)

induced by inclusion. Because in our situation the Floer chain complex C, is closely related to C,, this
will allow to reconstruct the cobordism map we are actually interested in.

In particular, the fundamental mechanism behind the rigidity result in Theorem B is a subtle interplay
between irreducible solutions to the Seiberg—Witten equations on X and the reducible ones on the
hypersurface 73 and its complement W.

Our strategy can be in fact interpreted as a (3+1)-dimensional version of Donaldson’s [Don99] (2+1)-
dimensional TQFT approach to the formula of Meng—Taubes [MT96]. There he associates to surfaces
%0, 21 the cohomology of their symmetric products (the latter being the moduli space of solutions to the
vortex equations), and to a cobordism W between them the cohomology of the moduli space of solutions
to the Seiberg—Witten equations. From the computation of the cohomology of symmetric products and
naturality arguments, the Alexander polynomial arises as the trace for self-cobordisms in the simpler
TQFT associating to a surface ¥ the group A*H'(X;Z) and to a cobordism the map induced by the
correspondence as in (1.5).

The (3 + 1)-dimensional picture is significantly more subtle: both in that the study of the Seiberg—
Witten equations on three-manifolds is much richer than the case of surfaces, and that the relation with
Donaldson’s TQFT only holds in the negative definite situation. In this case, our results show that in
fact Donaldson’s TQFT determines for a suitable filtration the associated graded of the map in HM.,,
induced by W. While this is all we need for our trace computations, the higher order terms are expected
to have a more subtle relationship to the topology of Dirac operators on W.

Given the key properties used in the outline above, it is natural to ask for generalizations of the result
to other types of hypersurfaces. If a4-manifold X (which we assume to have b* > 1 so that one can define
Seiberg—Witten invariants) admits a hypersurface Y with negative definite complement, then b (Y) > 1,
so we will assume it throughout the paper. From a Floer-theoretic perspective, the most important and
interesting assumption is (3). This leads us to introduce the notion of RSF-space in Definition 4.1,
where R and SF mean reducible and strictly filtered respectively. These are torsion spin® three-manifolds
(Y, s) with b; > 1 satistying, for suitable metric and perturbations, a condition regarding the complexes
C.(Y,s) and C.(Y,s) and the map relating them. Being a chain-level condition, it is quite subtle to
check in practice. Other than the three-torus, it also holds in other interesting examples with b; > 1:

o the flat three-manifolds with b; = 1 for any torsion spin¢ structure, following [KMO7, Section 37.4];

o the mapping tori of a finite order mapping class ¢ of a surface X of genus g > 2 with /¢ = P!,
equipped with a self-conjugate spin® structure, following [Lin24a];

o the product of a circle with a surface of genus 2 or 3 for the unique torsion spin® structure, following
[Lin24b].

In this more general situation, we have the following integral rigidity result for the sum of the invariants
corresponding to spin® structures on X restricting to the given one on Y.

Theorem C. Suppose X is a closed, oriented, connected 4-manifold with b*(X) > 1. Suppose further
that Y C X is a nonseparating hypersurface equipped with a torsion spin® structure with (Y,sy) an
RSF-space. Then for each spin® structure sy on W with i*sw = j*sw = sy the Seiberg—Witten
invariants of X satisfy

c(W,Y,sy) ifb*(W)=0and by(W)=b(Y)and d(sw) =0

Z m(X,sx) = .
-4 0 otherwise.

sx lw=sw

where ¢c(W,Y,sy) € Z is a quantity that depends only on the correspondence (1.5) and the spin®
structure sy on Y.
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Remark. When b* = 1, one in general has two Seiberg—Witten invariants depending on the side of the
wall, but it turns out that in the setup of the theorem they coincide, cf. Lemma 2.2 below. One could get
a statement involving all Seiberg—Witten invariants like Theorem A for homology S x T2 containing
nonseparating flat submanifolds with b; = 1, if one were willing to be somewhat more careful about
the chamber structure in Lemma 6.1 when b*(X) = 1 (cf. [KMO07, Section 27.5]).

The quantity ¢(W, Y, sy) can be computed explicitly provided one has a concrete understanding of
the Floer theory of (Y, sy); this can be done for the examples pointed out above, see Section 5.

It is interesting to compare the notion of RS F-space, which assumes b, (Y) > 0, to related conditions
for b1 (Y) = 0. Among manifolds with b (Y) = 0, those which support a metric and with no irreducible
solutions are called minimal L-spaces. The relevant result is then the following: if X has nonvanishing
Seiberg—Witten invariants and it contains a minimal L-space as a separating hypersurface then one of
the two sides must have b* = 0. Of course, this result still applies to a much broader class of rational
homology spheres, the L-spaces, which may admit irreducible solutions but still have trivial reduced
Floer homology. It would be interesting if our RSF-spaces were akin to the minimal L-spaces: members
of a useful family of manifolds defined by a weaker, homology-level condition.

Question D. Is there a more general notion than RSF-space, defined by a homology-level condition,
which guarantees rigidity results along the lines of Theorem C?

To conclude, the Ozsvath—Szabé mixed invariants [OS06] are conjectured to be equal to the Seiberg—
Witten invariants. Even though the three-manifold invariants in Heegaard and monopole Floer homology
are isomorphic ([CGH11, KLT20] and subsequent papers), the theories contain very different chain-
level information. It would therefore be interesting to reprove some of our results in that context, starting,
for example, from the following.

Question E. Can Theorem B be proved for the Ozsvath—Szabé mixed invariants?

A proof of this might suggest some generalization of our results in the spirit of Question D. Notice
that the Ozsvath—Szabé invariants are currently only known to be well-defined with values in Z/2, but
a positive answer to Question E mod 2 would be interesting nonetheless.

Organization of the paper. In Section 2, we state a self-gluing formula (well-known to experts) for
the Seiberg—Witten invariants of X in terms of the trace of the map induced on the Floer homology of
a separating hypersurface Y by its complement. In Section 3, we give a chain-level description of the
associated graded map in HM, induced by a negative definite cobordism. This is a key computation
behind our results, and might be of independent interest. In Section 4, we introduce RSF-spaces and
prove the general integral rigidity result, Theorem C. In Section 5 we discuss some concrete computations
involving it. In Section 6, we specialize to the case of ¥ = T and deduce Theorem B and Theorem A
above.

2. Gluing formulas in the nonseparating case

Suppose X is a closed oriented 4-manifold with b*(X) > 2, and that Y c X is a nonseparating
hypersurface; write W : Y — Y for the complement, considered as a cobordism. Write i,j : ¥ — W
for the inclusion of the two boundary components. In order to relate the Seiberg—Witten invariants on
a closed 4-manifold X to the induced map of the complementary cobordism W, we need a self-gluing
formula, which we now state. We follow quite closely the discussion of formal properties in [KMO07,
Chapter 3], to which we refer for more details.

Consider the Seiberg—Witten generating function

m(X, sx, h) = m(X,sx)e' XM for h € Hy(X;R).

Note that m(X, sx) is nonzero only when the formal dimension d(sy) is zero.
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If sy is a spin€ structure on W so that i*sy = j*syy, it is isomorphic to the restriction of many spin®
structures sy on X. It will be useful to consider sums such as

def

m(X,sw,h) = Z m(X,sx, h).

sx lw =sw

Moving to gluing formulas, let us consider a possibly nontorsion spin® structure sy on Y. Suppose now
that 2 = [¥] for a2-cycle ¥ € C,(X;R), and consider 7 = ¥ NY; for generic choice of 7, this is a 1-cycle
in Y. Cutting open, we obtain a 2-chain v in W with dv = —p U . Assuming [n] # 0 € H(Y;R),
the completed bar Floer homology group with local coefficients HM. (Y, sy ; I';;) vanishes, so that the
natural map

HM(Y,sy;T,) — HMJ(Y,sy;T,)
is an isomorphism and hence both groups are identified with the reduced Floer homology group
HMJ(Y,5y:T,) = Im(ﬁzﬁ.(y, sy:T)) — HM.(Y, sy F,,)).

The chain v in W gives rise to the morphism I',, of local systems I';, — I';;, which determines the map
HM.(W,sw;T,). Recalling that the Floer homology groups have a canonical Z/2Z-grading, we can
state the self-gluing equation as follows.

Proposition 2.1. With notation as above, assuming [n] # 0, we have an equality
m(X.sw, [7]) = Te(HMu (W, sw:T) = Te(HMa (W, sw:T)))

where Tr denotes the supertrace (or “alternating trace”).

One should compare this with the case of a separating hypersurface treated in the [KMO7, Propo-
sition 3.9.3]; in particular, in the same way that result allows the pieces to have b* = 0, our proposi-
tion also holds when W is negative definite. The proof of this self-gluing result very closely follows
the separating case discussed in [KMO07, Chapter 32], and involves comparing the isomorphism be-
tween HM, (Y, sy;I';;) and some corresponding Floer homology groups with nonbalanced perturbations
(which only involves irreducible solutions) introduced in [KMO07, Chapter 30]. Regarding the analytical
aspects of the proof, even though [KMO07] only deals with gluing results for moduli spaces under neck-
stretching along separating hypersurfaces (see Chapters 26 and 31), the proofs of the relevant statements
carry over to the nonseparating setup without significant difficulties.

Remark 2.1. We will be only considering spin® structures which are torsion in the rest of the paper, so
we can equivalently work with the uncompleted version of the groups HM. (Y, sy;I';;).

A similar gluing formula holds in the case of a 4-manifold X with b* = 1 containing a nonseparating
hypersurface Y. In this setup one needs to be careful because there are two (usually distinct) invariants
depending on the side of the wall one is looking at. On the other hand, in the situation of torsion spin®
structures which is of interest to us, we have the following.

Lemma 2.2. Suppose X has b* = 1 and contains a nonseparating hypersurface Y. If sx is a spin©
structure such that sx |y is torsion, the Seiberg—Witten invariant m(X, sx) is independent of the side of
the wall.

Proof. This follows from the general wall-crossing formula [LLL.95, Corollary 1.3]. The dimension of
the Seiberg—Witten moduli space has the same parity as 1 — by + b* = by, so one can assume b (X) is
even. Then, for any basis {y;} of H'(X;Z) the authors show for the spin® structure sy the difference
between the two invariants is the Pfaffian of the (b; X b{)-dimensional skew-symmetric matrix with
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(i, j)-th entry
(yiVy;Uci(sx), [X])/2. (2.1)

Now consider the Mayer-Vietoris type exact sequence

07— H'(X) - H' (W) =5 H' (7).

Because the groups involved are free abelian, we can choose a basis of H'(X) for which y; corresponds
to Z and yj corresponds to the kernel of i* — j* for k > 2. Then Y is Poincaré dual to y;, and we can
represent y; by smooth 3-manifolds Y transverse to Y. When one of 7, j is one, the quantity in (2.1) can
be interpreted as the evaluation of ¢;(sx)/2 on Y N Yy, which is zero because the restriction of sx to Y
is torsion. Hence the matrix has first row and column zero, so that its Pfaffian is zero. O

Hence for a spin® structure restricting to a torsion one on Y we can refer unambiguously to its
Seiberg—Witten invariant m(X, sx) even when b*(X) = 1; because this will be the case concerning us
in the paper, we will state the self-gluing formula in this context. As before we will consider, for a spin®
structure sy on W restricting to s on both ends, the quantity m(X, sy, [v]). We then have the following.

Proposition 2.3. Proposition 2.1 continues to hold when b*(X) = 1 and sw restricts to a torsion spin©
structure on Y.

This follows as in the case of b* > 2; the corresponding result for separating hypersurfaces is [KMO07,
Proposition 27.5.1].

Remark 2.2. The analogue of Proposition 2.1 for the four-manifold invariants in Heegaard Floer
homology (with values in Z/2) can be found in [Zem21, Theorem 1.5(2)].

3. The map induced by a negative definite cobordism

Given a spin© cobordism (W, sy ) between torsion spin® three-manifolds (Y., s..), in this section we are
concerned with the induced map

HM.(W,sw) : HM.(Y_,s_) — HM,(Y,,5,).

When b* (W) > 0, this vanishes [KMO7, Proposition 27.2.4], so we will always assume that W is
negative definite. More generally, we will be interested in the case of Floer homology groups equipped
with local systems I, .

The simplest case, in which both Y. are rational homology spheres and b, (W) = 0, is discussed in
[KMO7, Proposition 39.1.2]. In this situation, we have the natural identification

HM,(Ys,s:) = Z[U, U™

of absolutely graded Z[U]-modules (up to an overall grading shift, where U has grading —2), and the
map HM . (W, sy ) is an isomorphism. This computation is the key result underlying the topological
applications of the Frgyshov invariant (see also [Frg10]).

Remark 3.1. In the Heegaard Floer setting, the analogue of this computation can be found in [OSO03].
Some special cases of the map induced by a negative definite cobordism can be found in [BG18, LR 14,
LR 19] with applications to generalized correction terms. For the monopole counterparts of the latter,
see [Kru20].
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We will consider the general case in which b (Y.) and b (W) are arbitrary. Associated to each of
these manifolds are the tori

Ty, = H' (Yy;iR)/H" (Y.; 27iZ)
Tw = H' (W;iR)/H" (W;2niZ).
By Hodge theory we can identify the former (after choosing a basepoint) as the space of gauge

equivalence classes of flat spin© connections on (Y, s.); we will discuss an analogous interpretation of
the latter later. The diagram of maps

* i
Tyi — TW g TY+

induced by the inclusion maps i, will play a crucial role in our calculation.

Finally, our discussion will also apply to more general local systems and morphisms between them,
but for simplicity we will focus on the local systems of the form I';, for a real 1-cycle n € C1(Y;R)
introduced in [KMO07, Section 3.7]; these suffice for the cases of interest to us.

3.1. Review of the three-manifold case

Let Y be a three-manifold. As in [KMO7, Section 35.1], given a metric on Ty and a Morse function
f : Ty — R, one may choose an appropriate perturbation of the Seiberg—Witten equations so that
all reducible critical points and trajectories are cut out transversely. In this situation, Kronheimer and
Mrowka give a description of C, (Y, s) in terms of “coupled Morse theory”. The structure of this complex
is determined in [KMO7, Section 33.3], which we record.

Lemma 3.1. In the situation above, one has an isomorphism of relatively Z-graded complexes over Z| U]
C.(Y,s:T,)) = C(Ty, ;7)) [U,U"].
With respect to this isomorphism, the differential  is sent to
A +03U + 05U +. ..

with Oy the Morse differential on C.(Ty, f;1'y).

In [KMO7, Section 34.2] the authors further show that one can deform the family of operators (in
a suitable space of operators on a Hilbert space) so that the for the resulting coupled Morse complex
the terms d;+1 with i > 2 are zero. On the other hand, in the present paper we will work with small
perturbations of the family (of geometric nature) so in general one should expect the higher terms to be
nonvanishing.

It is worth being more precise about the identifications in this isomorphism. For each critical point
q € Crit(f), choose a labeling of the eigenvalues of the Dirac operator D, by

< Aoi(g) < Ao(g) < Ai(g) < ---

For some i we have 1;_1(¢g) < 0 < 2;(gq); we record d(q) = i as the shift of this labeling from the
natural labeling. Finally, we demand that these labelings respect the spectral flow, in the sense that

sf(q1,q2) = d(q2) — d(q1);

this is possible because ¢ (s) torsion implies that there is no spectral flow around loops. Writing

i : C(Y,5:T,) - C(¥,s:T,)
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for the chain map whose induced map on homology is the U-action, [KM07, Lemma 33.3.9] guarantees
il is an isomorphism. The inverse of our identification sends gU’ to ﬁ;(q, A0(q)), which is equal to the
sum of (¢, A_;(q)) and critical points of strictly smaller Morse index.

For the purposes of the paper, we will not be interested in the actual U-action on C,(Y,s; I';), but
only on the natural filtration by powers of U, with

FiC. = C(Ty, f) @ UKIZ[U™], (3.1)

that is, the terms with U-power < k/2. While this is not a filtration of U-modules, multiplication by U
sends each Fj isomorphically onto Fi.,, and does induce the structure of a Z[U, U ‘1]-m0dule on the
pages of the associated spectral sequence. The E' page of the associated spectral sequence is precisely
the Laurent polynomial ring over the Morse complex C. (Ty, f;I°;,)[U, U -1.

Remark 3.2. The U-filtration is seen to be essentially equivalent to the filtration by Morse index,
FHorse = Coar(Ty, ) ® ZIU U]

we have ]:kéd = f%_zrseéd.

In [KMO7, Section 35], the authors determine the differential 3 on the E3 page of this spectral
sequence in terms of the triple cup product

Uy : NHY\(Y;2) - Z
aABAy = (aUBUY,[Y])

and show that the higher differentials in this spectral sequence vanish over Q. As a consequence, they
establish a canonical isomorphism

gr HM..(Y,s;Q) = HC.(Y;Q) (3.2

where the former is the associated graded group of the U-filtration on homology, and the latter is the
cup homology [Mar08]. The cup homology is the homology of the chain complex whose underlying
module is

CC.(Y)=ANH'(Y;Z)®Z[U ', U]
and whose differential is given by
P(weU") = Ly w® U, (3.3)

where w3, is the contraction with the triple cup product U% sending a; A - -+ A @ to

Z (D)2 0 Uay, Uag, [Y]) @i Acos A Ao s Ay Ao Ay Ao+ A a.

i] <i2<i3

Remark 3.3. In [LMZ21], the authors give a combinatorial chain-level model for CM. (Y, s;I";) over the
integers, but it remains open whether or not the higher differentials in the associated spectral sequence
vanish when taken with integer coefficients. We will not need so refined of an analysis in this paper.

3.2. The formula

Whereas [KM07, Section 35] determined the homology groups HM, we will now identify the cobordism
maps (up to filtration).
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In the present situation, we have a correspondence

(Ty.. f) &= Tw = (Ty,. f2).

with f. Morse functions on the tori Ty, , and the maps i, affine. So long as the maps i} are generic with
respect to the Morse functions f; — which can achieved by a translation — there is a well-defined induced
map on Morse complexes, given by counting intersection points of Ty with U, X Sp, in Ty X Ty,
[KMO7, Section 2.8]. This map will be denoted myy .

In the case that Y_ and Y, are equipped with real 1-cycles . € C;(Y+;R), areal 2-chainv € C,(W;R)
whose boundary is v = i,n, —i_n_ provides an isomorphism of local systems

Iy il =i,
In this situation, we have an induced map on Morse complexes
mwy .y - C*(Y_, f—; FI],) - C*(Y+7 f+; F7]+),

also described in [KMO7, Section 2.8], and defined in a similar fashion.

Theorem 3.2. Suppose (W,sw) : (Y-,5-) — (Y4,54) is a cobordism with b*(W) = 0 and s torsion.
With respect to the isomorphisms of Lemma 3.1, the map m. inducing HM .(W, sy ;T),) is filtered, and
takes the form

m, = mw,de + szd_] + m4U”l_2 +--

for an appropriate integer d and appropriate maps my; for i > 0.

That is, if we consider the filtration F; C, in (3.1), the map m. (W, sw ; T, is a filtered map with asso-
ciated graded map equal to the induced map on the associated Morse complex. As a direct consequence,
we obtain the following computation, which might be of independent interest.

Corollary 3.3. Under the identification with cup homology in (3.2), the associated graded map of
HM,.(W,sw; Q) is the map in homology induced by the map (my ). on the cup chain complex.

Remark 3.4. Notice that the latter is actually a chain map on the cup chain complex; this follows because
i*(Uy,) is the same as i* (Uy_) as maps from A3H'(W) to Z. More generally, for a manifold W with
possibly disconnected boundary 0W, let

r:H' (W) —» H' (dW)

denote the restriction map; we denote the induced map on the exterior algebras by r as well. Then the
pullback of the triple cup product of W under r vanishes. This can be seen geometrically as follows:
the map r corresponds via Poincaré duality to the boundary map

0 : H3(W,0W) — Hy(0W).

Given three elements ; in H'(0W), represent their duals by surfaces S; in OW. If the a; are in the
image of r, then S; is the boundary of three-manifolds 7; in W. After moving everything to a transverse
position, §1 NS> N S3 (which is dual to @) A @y A @3) is a 0-manifold which is the boundary of 71 N T, N T3,
hence is zero in homology.

Remark 3.5. A version of Theorem 3.2 with more general local systems proves a weaker version of
[Kru20, Conjecture 7.3], and gives a gauge-theoretic proof of [Kru20, Theorem 7.4].

https://doi.org/10.1017/fms.2025.10133 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10133

Forum of Mathematics, Sigma 11

These results deserve some further comment. First of all, the isomorphism in Lemma 3.1 is only
defined up to multiplication by powers of U. This can be pinned down by using the absolute Q-grading
of [KMO7, Section 28.3], according to which the degree of HM .. (W; sy ) is given by

363 6w) W) = 70 (W) = d(sw) = 3 (b1 (V) = by (12) G4

where d(sw ) is the expression (1.3) and

W) = 5 (x (W) + (W) + by (Y-) = by (Y.)).

N =

As U has grading —2, and the degree of my ,, is b1(W) — b (Y-), we may thus compute the integer d
from Theorem 3.2 as

d= —%d(SW) - %(Zbl(W) —Db1(Y2) = b1 (Yy)).

In the case of most interest to us in the current paper, we have Y_ = Y, and b (W) = b(Y_) so
d=-1d(sw).

Secondly, even though it will not be needed for this paper, for some applications one would like to
compute the map itself rather than the associated graded map. One might hope to compute the higher
terms up to (filtered) homotopy, and expect them to be related to the kernel of the Dirac operators on
W coupled to the spectral decomposition associated to Dy, . An important technical complication when
trying to write down an explicit formula in homology is that while there is a canonical identification of
the associated graded module of HM, (3.2), there is no known canonical lift to HM. itself.

3.3. Proof of Theorem 3.2

Recall from [KMO7, Chapter 25] that the map induced by a cobordism (W,sw ) on HM. (possibly
with local coefficient systems) is obtained by counting solely reducible solutions to the Seiberg—Witten
equations in the blow-up on the cobordism W* with cylindrical ends attached. The unperturbed equations
for a reducible configuration (A, 0, ¢) in the blow-up are

{ngo =0
F, =0,

which one needs to study with the right asymptotic growth conditions for ¢ on the cylindrical ends;
different asymptotic conditions change the index of the Dirac operator D7. We are counting solutions
to this equation of index zero. We may break this count up into a sum

m,=mo+my+---

as follows. The map m»;, by definition, counts solutions (A, 0, ¢) to a perturbed version of these equations
for which A lies in a 2i-dimensional moduli space (or equivalently, is asymptotic to flat connections
whose Morse index has difference 2i — (b (W) — b(Y,)), see the formula on p. 47 of [KMO7, Section
2.8]) and the asymptotic conditions are chosen so that indc(D%) = 1 — i; after projectivizing one
obtains a finite number of points. The highest-filtration term in m( then corresponds to the count of
index-zero solutions to a perturbed version of the second equation and asymptotic conditions for which
ind(c(D;) =1.

The second equation is simply the ASD equation, and its solutions up to gauge with L?-curvature
form the b (W)-dimensional torus
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Tw = H (W;iR)/H" (W;2niZ).

Here, following [APS75, Proposition 4.9], we can interpret the numerator as a space Lgxt of extended
L*-harmonic 1-forms «, that is, the harmonic 1-forms that exponentially decay on each end to a time-
independent harmonic 1-form .. Sending each such form to the limiting value is the Hodge theoretic

incarnation of the maps
it H' (W) - H'(Yy).

In the isomorphism of Lemma 3.1, we use a perturbation of the form f; o p. where f. are our chosen
Morse functions and

P+ B(Ys,s) — Ty,

is the retraction obtained by mapping (B, ¥) via the L?-orthogonal projection of the 1-form B — By
to its harmonic part (B — By)"™ given by the Hodge decomposition>. We use these to perturb the
Seiberg—Witten equations as in [KMO07, Chapter 24], using on [0, o) X ¥, a smooth cutoff function

B:10,00) — [0,1]

which is nondecreasing, equal to zero near zero and equal to 1 for ¢ > 1, and similarly on the other end.

We then consider solutions (A, ¢) to a perturbed Seiberg—Witten equation for which the gauge
equivalence classes A|(—co,0]xy. and Al[o,+c0)xy, converge to limits ¢, reducible solutions on Y, which
are critical points of f.. We demand ¢ satisfies some asymptotic growth conditions at +co in terms of
the eigenvalues and eigenspinors of the limit Dirac operators D, (which can also be rephrased in terms
of convergence in the 7-model).

Again let us focus on the perturbed ASD equation. The torus Ty is equipped with a map to Ty X Ty,,
and inside the latter we can consider the unstable and stable submanifolds U,_, S, of critical points g

of f..
2

Lemma 3.4. The moduli space of L, connections satisfying the perturbed ASD equations above on W
asymptotic to q is oriented diffeomorphic to Tw N (U, X S4,) by a diffeomorphism preserving the
local sytem T',,.

Proof. Identifying 1-forms on the end [0, o) X Y, with time-dependent elements w(t) € Q°(Y,) &
Q! (Y,), the unperturbed ASD equation together with the Coulomb gauge fixing condition

(-dHed :Q' -5 Qeq"

on the cylinder can be written as

d )+ Lw(t)=0

—w w(t) =

dt
where

0 —dr
L=(574)

The perturbations we consider are defined via the L?-orthogonal projection to harmonic 1-forms, and
the corresponding perturbed ASD equations together with Coulomb gauge fixing then take the form

d ~
Zw(1) + La(1) +B(1)(grad fo) (@™ (1)) = 0,
2We have fixed a reference flat spin© connection By here.
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where f+ - H! (Y4;iR) — R is the periodic lift of the chosen Morse function on Ty,, which is then
applied to the harmonic part of the time-dependent form in Q' (Y,).

The torus Tw can be understood as the space of unperturbed ASD connections in Li modulo gauge
on the compact manifold W such that the coclosed parts of the boundary values

2 L3 (Q'(W)) — ker(dy ) @ker(dy,) € Li_y,(Q' (V) @ Ly, ,(Q'(Y))

lie in the spectral subspace
H="® H?" C ker(dy, ) @ ker(dy,)

spanned by nonnegative (respectively nonpositive) eigenspaces of the signature operator *dy, . Because
the unperturbed ASD connections solves a first-order ODE on the ends, each boundary value lying
in this subspace extends to a unique solution to the ASD equation on the cylinder (up to gauge); the
spectral condition guarantees that the solution is in Lgxt up to gauge. Notice that Hfo splits into the
sum H'(Y,) @ H;° of the space of harmonic forms and the span of strictly positive eigenspaces, and
similarly for H=°.

Because a perturbed ASD connection on [0, co) X Y, again solves a first-order ODE, it is determined

by its boundary value in ker(d;‘,+) (up to gauge). Further, because the operator is only perturbed on the

harmonic part, it is still true that for the ASD connection to be L2, this boundary value must lie in the

spectral subspace HZ". A similar argument applies for Y_. Because the equation is unchanged on W,
the perturbed ASD solutions are identified with a subset of Ty, which was earlier identified with ASD
solutions on W whose boundary values lie in 50 x HZ.

Finally, examining the harmonic part, we see that a boundary value extends to a solution to the
perturbed equation with the correct asymptotics if and only if the harmonic part [w"™][(0)xy, € Ty,
lies in the unstable and stable manifold of ¢_ and g, respectively.

The claim about orientations follows from compatibility between orientations and gluing, as in
[KMO7, Section 20.3]. The claim about the local system follows immediately from the definition: both

maps are weighted by a factor of el F ;’, the only difference being that in the Morse theory case we
integrate over the intersection of v with the compact part W of the cobordism while in the gauge theory
case we integrate over the noncompact surface v* ¢ W*. However, because A’ is flat on the ends, the
additional contribution is zero. O

This identifies the “top-degree term” in ., which corresponds to the case where the relevant Dirac
operator has index 1: the kernel of this operator is a one-dimensional complex vector space, so that after
projectivizing it contributes a single positively oriented point, up to gauge. Hence the relevant moduli
spaces of solutions simply count solutions to the perturbed ASD equations.

To conclude the proof, following [KMO7, Section 2.8] (and dropping local systems for simplicity),
the map induced on the Morse complexes

my 1 Ci(Ty ) = C.(Ty,) 3.5)

by the correspondence Ty — Ty X Ty, is obtained (under suitable transversality conditions) by
considering triples (y_,y;, w) where

o y_:(—00,0] — Ty._ is a finite-energy half trajectory with y_(—c0) = g_
o v4 1 [0,00) — Ty, is a finite-energy half trajectory with y,(+o0) = g,
o w e Tw and ii(w) = (y-(0),7+(0)).

Because the space of such half-trajectories can be identified with the unstable and stable manifolds U,,_
and S, , we see that my is defined by exactly the same counts as the top-filtration term of ..
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4. RSF-spaces

We want to take advantage of our description of . in the preceding section, where we determined
the associated graded map with respect to an appropriate filtration. To use this to get information
about the map i, we need to make further assumptions about the torsion spin®3-manifold (Y, ) under
consideration.

4.1. Definitions.

To proceed, suppose we have a metric and perturbation on Y (for the spin¢ structure s) such that there
are no irreducible solutions, transversality is achieved in the sense of [KMO07], and the bar complex is
computed by coupled Morse theory as in the previous section. The relatively graded Q-vector space
C.(Y,s) can then be identified as a subspace

C.(Y,s) = @ Ud@Q[u] c @ QIU, U = C.(Y, 5), .1

qeCrit(f) q€Crit(f)

where the shift d(¢) € Z and the identification of C,(Y,s) (as a Q[U]-module) are discussed after
Lemma 3.1. It is often convenient to normalize d so that d(q) < 0, with largest value equal to zero, and
we will do so in what follows.

There are four closely related subtleties. The first is that C is generally not a subcomplex: the
differential on C is

h=-3" -7,

where the term 94 is defined in terms of irreducible Seiberg—Witten solutions on R x Y. Secondly, even
though C(Y,s) is naturally a filtered module, with filtration given by (3.1), the differential 0 does not
necessarily preserve it. Thirdly, the comparison (anti-)chain map

p=1+08":C.(Y,5) = C.(Y,5) (4.2)

also involves this term and is not necessarily filtration-preserving. Finally, C is generally not a U-
submodule, because p only commutes with the action of U up to homotopy.>
Because of this, we make the following definition.

Definition 4.1. We say a torsion spin¢ three-manifold (Y, sy ), where b (Y) > 1, is an RSF-space if Y
admits a regular choice of metric and perturbations such that:

(a) there are only reducible solutions to the Seiberg—Witten equations; .
(b) the map 0¥ is strictly filtered with respect to the U-filtration on C,(Y,s) and C.(Y,s). By strictly
filtered we mean that

(914(.7:](@) C .Fk_zc_'

for the ﬁltratio_n (3.1).
(c) the complex C.(Y,s) coincides with the coupled Morse complex associated to a Morse function
f : Ty — R and the corresponding family of (perturbed) Dirac operators as in Section 3.

In this case, C, (Y, s) is a filtered complex for which p is a filtered map with associated graded map
the natural inclusion; the associated graded complexes are

3Notice that the claim in the proof of [KMO7, Proposition 25.1.1] that the equalities hold at the chain level is incorrect. In our
situation with no irreducible critical points, up to overall signs the chain homotopy between m (U, —) o p and p o m(U, —) is
simply given by m¥ (U, —); this readily follows from identity (iv) in [KMO07, Lemma 25.3.6].
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205, C =0,
grzié = span{q € Crit(f) | d(q) < i} € C.(T, f;I'y).
Moving to the cobordism maps, there are two distinct cases to analyze:

o if b*(W) > 0, after choosing a perturbation by a self-dual form as in [KMO07, Section 27.2], there are
no reducible solutions on the cobordism so that 77.(W) vanishes and therefore 7. (W) vanishes as
well because p is injective.

o if b*(W) = 0, working in the setup of Section 3 it follows from the equation (4.2) that the associated
graded map of 7. (W) determines the associated graded map of 71, (W), and we determined the
former in Theorem 3.2.

We record these observations as a lemma in the specific case of interest, where the two ends coincide.

Lemma 4.2. If (Y, s) is an RSF-space, the complex C.(Y, sy, I';,) is a filtered complex. If (W, sw,v)
is a cobordism from (Y, s,n) to itself, the map .. (W) satisfies

g}" ﬁl*(W’ SW’ V) = Ude,V

for b*(W) =0, and is zero on the nose otherwise.

4.2. Examples of RSF-spaces

The simplest example of an RSF-space is given by a torsion spin® three-manifold (Y,s) admitting
a metric of positive scalar curvature, as follows from the discussion in [KMO07, Chapter 36]. These
examples are somewhat trivial because the family of Dirac operators parametrized by Ty never has
kernel; in the setup of Theorem C, which we prove below, this leads to vanishing results. We now
discuss some nontrivial examples where we obtain instead rigidity results.

All of our nontrivial examples come from the following procedure:

(i) Find a metric g so that (Y, s) supports no irreducible Seiberg—Witten solutions, so that the critical
locus of the Chern—Simons—Dirac functional L is exactly T. Notice that £ fails to be Morse—Bott
exactly along the locus K where the corresponding Dirac operator has kernel.

(ii) After a suitable perturbation without introducing irreducible solutions, choose an additional Morse
function f : Ty — R so that the critical points of f are Dirac operators with no kernel. Labeling
the eigenvalues of the Dirac operator at each critical point g as following Lemma 3.1 and writing
d(q) for the index of the first positive eigenvalue, we demand that for each pair of critical points
x,y with d(x) > d(y), we have f(x) < f(y). (This includes as a special case the “A-adapted
perturbations” of [Lin24b]).

(iii) Even if the unperturbed equations did not admit irreducible solutions, it is challenging to carry out
the perturbation process without introducing such solutions. One uses the geometry at hand to argue
that the perturbed Seiberg—Witten equations are now regular, but still have no irreducible solutions.
After this, one can add additional perturbations as in [KMO07, Ch. 12] to achieve transversality (in
particular by making the spectrum of the perturbed Dirac operators at reducible critical points
simple).

Lemma 4.3. For any metric and perturbation on (Y, s) constructed as in the above procedure, the map
0¢ is strictly filtered.

Proof. The unstable critical points (x, ;(x)) have i < d(x), while the stable critical points (y, 1;(y))
have d(y) < j. Suppose (0¥ (x, 2;(x)), (y,4;(¥))) # 0, so there exists an irreducible flowline from the
stable critical point (x, 4;(x)) and flowing to the unstable critical point (y, 1;(y)).

The perturbed Chern—Simons—Dirac functional coincides with & f on the reducible critical set, so we
must have f(x) > f(y) and therefore d(x) < d(y). Therefore i < d(x) < d(y) < j and we see that 9%
is strictly filtered. O

We now list some examples of RSF-spaces obtained from this procedure.
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Example 4.1. The simplest nontrivial example is that of the torus endowed with a flat metric as discussed
[KMO7, Section 38]. In this setup, the quantity d(x) in (4.1) is given by

i [0 nd >0
Y721 indx) = o,

and the complex C. (T3, s) is given by

Z[U]
Z[U]®3 U-'z[U]

Z[U]®

where the ith column corresponds to the points with Morse index 3 —i, and the arrow is an isomorphism.

Example 4.2. In [KMO07, Section 37.4] the authors show also that the flat three-manifolds Y with b; = 1
are RSF-spaces. For all but one spin® structure on Y, the Morse function can be chosen perfect with
d(x1) = d(xp) = 0. For one spin® structure s, the Morse function can be chosen to have four critical
points (xg, x1 of index 0 and yg, y1 of index 1) and d(xo) = d(x1) = d(yo) = —1 while d(y;) = 0. Notice
that the flat 3-manifolds are precisely the mapping tori of finite-order diffeomorphisms of 72.

Example 4.3. In [Lin24b] it is shown that for g = 2,3, S Iy X, is an RSF-space (for the unique torsion
spin¢ structure).

The proof uses ideas from spectral geometry. We say that a Riemannian 3-manifold Y is spectrally
large if the first eigenvalue of the Hodge Laplacian on coexact 1-forms is large compared to the curvature
(in a suitable quantitative sense). Under this hypothesis, one can then add perturbations of spinorial
type so that the equations do not have irreducible solutions, and the hypersurface K c Ty consisting of
the locus where the Dirac operator has kernel is transversely cut out in the space of operators. Notice
that the latter does not imply that K is smooth when »; > 4. Now, under the technical assumption that
for the spin® structure s the hypersurface K is smooth, one can find a Morse perturbation satisfying the
conditions of Definition 4.1; in particular (Y, ) is an RSF-space.

For a handful of g including g = 2, 3, the manifold S' x X, can be shown to admit a spectrally large
metric. For g < 3 the hypersurface K can be taken to be smooth after perturbation; for g > 4, however,
this cannot be done.

Example 4.4. In [Lin24a] it is shown that if Y is the mapping torus of a finite order diffeomorphism ¢
of a surface ¥ of genus > 2 with /¢ = P!, and s is self-conjugate, then (Y, s) is an RSF-space. In this
context, b = 1 and the locus K ¢ Ty where the Dirac operator has kernel is an arbitrary conjugation-
symmetric set of points (with multiplicity). So the critical set will be an even set of points and d(x)
will increase by the multiplicity of K as we pass between adjacent degree zero and degree 1 critical
points. As a consequence, one can obtain concrete examples for which the reduced Floer homology
HM.(Y,s;T;,) has arbitrarily many U-torsion summands, with arbitrarily large length.

4.3. Proof of Theorem C

In this section and what follows, we will frequently use the Mayer—Vietoris type sequence

i=j2

0 — Hy(W) 2 Hy(X) 25 Hy (V) 222 Hy(w) 2 o) 2 - (4.3)
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as well as the sequences which are related to this one by Poincaré duality and chain-level duality

- = H3(W,0W) — Hy(Y) — Hy(X) — Hy(W,0W) — H((Y) — ---
0— H'(W,0W) > H' (X) - H'(Y) > H*(W,0W) > H*(X) = ---
Z — H' (X) » H' (W) > H'(Y) - H*(X) » H*(W) > --- .

It is useful to keep in mind the intersection-theoretic definition of §x: one takes a generic k-cycle in X
and intersects it with Y to give a (k — 1)-cycle in Y. This is Poincaré dual to the map

fr s HYRX) — HYR(Y)

given by pullback along the inclusion.
Observe now that because b*(X) > 0 and b*(W) = 0, the map p, : Hy(W) — H(X) is not
surjective, so the exactness of (4.3) implies that there exists some [7] € Hy(X;R) for which

[7] =[vNY]#0eH (Y;R),
and we choose chain-level representatives for these classes. Applying Proposition 2.1, we find

m(X,sw) = }glg)m(X, sw,t[v]) = tli_r)réTr(HM*(W, swilyy)).

If b*(W) > 0 it follows from Lemma 4.2 that this quantity is zero. When b (W) = 0, we will relate this
to the associated graded map discussed above by way of the classic Hopf trace formula: if C is a finite-
dimensional Z/2-graded chain complex, then the alternating trace of a map ¢ : C — C coincides with
the alternating trace of the induced map on homology ¢.. We will also use the elementary observation
that the trace of a filtered map is the same as the trace of its associated graded map, because the trace
of an upper-triangular matrix is independent of the entries above the diagonal.

Proof of Theorem C. In our setting the differential § and the map p are filtered by definition, and this can
be applied as follows. Observe that when ¢ # 0, the Morse homology H.(Ty, f;I';) is trivial. Recall
that we normalize the quantity d(g) from (4.1) so that d(q) < 0; say d(q) = k < 0 is the minimum
value. To have a concrete example in mind, in the case of the torus T3 in Example 4.1, we have

C.(T3, f;T;;) i=>0andiseven
griC(TS,SO;Fn) = <X()> i=-2

0 otherwise

Here k = d(x9) = —1 is the minimum value.

In particular, the associated graded complex is C.(Ty, f;I7,) for i > 0 and zero for i < 2k, so we
have El2 = 0 in the associated spectral sequence converging to HM, (Y, s;T;) = HM, (Y,s;T,) except
possibly when i is an even integer satisfying 2k < i < —2. In particular, E? and all successive pages of
the associated spectral sequence are finite-dimensional. Applying Hopf’s trace formula to the successive
pages of the spectral sequence, we find

-1
m(X,sw) = im Te(HM. (W, sw:[1y)) = lim Z Tr(E5; (i(W, sw:Ty))
i=k

-1
= }g%;nw;i(m(w, swilh))
=
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for all r > 2, where
E;i (”;\’l(W, SWs Ftv)) : Egl((j(Y, S, Ft?])) - Egl(CA(Yv S, FH]))

is the map induced on the E” page of the spectral sequence.

The E? page of the spectral sequence coincides with the homology of the associated graded com-
plex ngié(Y, sw;I'y,); notice that for each i this can be naturally identified with a subcomplex of
C.(Ty, f;T';;) which, as an R-module, is independent of . Applying Hopf’s formula once more, we see

—1
—1; d .
m(X,sw) = }%Z;Tr([] mWJVlgrzl-C(Y,s;l",,,))
i=

for d as in Theorem 3.2. Because the domain is independent of ¢ and the map is continuous in ¢, taking
the limit as t — 0 gives

-1

m(X.sw) =Y Tr(Ude |gr2ié(y’s)). (4.4)
i=k

From this we immediately conclude our rigidity result that m(X, sy ) depends only on my, d, and
grzl-é (Y,s), because the map my depends only on the diagram (1.5), the integer d depends only on the
characteristic numbers of W and the spin® structure sy, and the complex depends only on (Y, s).

We have proved much of Theorem C; all that remains is to show that this trace vanishes when the
three listed conditions are not met. That the Seiberg—Witten invariant m(X, sy ) vanishes for b* (W) > 0
was discussed above. Because my, has degree by (W) — b (Y), we see that even when b* (W) = 0 the
trace can only be nonzero if b1 (W) = b (Y). Similarly, this trace can only be nonzero if d = 0, which
when b (W) = b (Y) is equivalent to d(sw ) = 0. O

It is worth naming the dependency of the constant in (4.4).
Definition 4.4. Suppose (X, Y, sy) satisfy the hypotheses of Theorem C. We write

-1

C(W’ Y’ SY) = ZTr(mwlngiC‘(Y,s))
i=k

for the quantity arising in (4.4) when d = 0.

Remark 4.1. There is a sign ambiguity in the definition of ¢(W,Y, sy), as the map my depends on a
choice of a homology orientation for W. In particular, the sign ambiguity is independent of sy ; summing
c(W,Y,sy) over all sy gives an integer, well-defined up to sign.

5. Examples

Theorem C is useful if we can actually compute this quantity ¢(W, Y, s). We do this in several examples.
Throughout this section, we suppose (Y, s) is an RSF-space and W : Y — Y is a cobordism with
b*(W) =0and b1 (W) = b;(Y). Notice that the latter condition allows us to define the discriminant as
in (1.2)

When Y has positive scalar curvature and b,(Y) > 0, the family of Dirac operators on Ty has no
kernel, so d(g) = O for all critical points g and therefore HM. (Y, s;I;)) is zero for any spin® structure
on Y. Of course, it follows that ¢(W,Y,s) = 0.

As a less tautological example, we compute the quantity ¢(W, Y, sg) in Theorem C for s the torsion
spin® structure on 773,
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Proposition 5.1. For Y = T3, the quantity c(W,Y,s) in Theorem C is equal up to sign to the natural
number disc(W) in (1.2).

Proof. It was established in the proof of Theorem C that the quantity ¢(W, Y, sg) is equal to

Tr(mw [{x0)).

Because the Morse function is perfect, the map my is the same as the map it induces on homology,
which is computed in [KMO7, Section 2.8] to be the composition

(ry)« o PDRV orfoPDr,,
where
YAy AN o

is the diagram induced by the pair of inclusions i, j : ¥ — W. Generally, if f : T3 — T? is any linear
map, we have

X x| =0
filx) =
det(f)x |x| =3,
and similarly for f*(x). The computation in middle degrees is somewhat more subtle; the map in degree
k can be computed in terms of the matrix of k X k minors of f.
Thus, we have

mw (¥0) = £(r2). (PD5L) (#)(x3) = £(r2). (PD3)) (det(i)xs)
= +(ry). (det(i)xg) = +det(i)xo.

The discriminant in (1.2) is, by definition, det(i). o

Remark 5.1. This argument is where the sign ambiguity in Theorem B appears. Homology orientations
on Y and W are used to pin down the sign on the Poincaré duality maps above, which pins down the sign
in the definition of m(X) as well. We do not see the appeal in working out the homology orientations
in detail, so we choose to record the result up to sign. The sign ambiguity is the same as in Remark 4.1.

This argument goes through with minimal change for the other flat 3-manifolds with b;(Y) = 1. For
all but one spin structure sy, the Dirac operator on Y has no kernel, and hence like in the example
of PSC manifolds, spin® classes on X restricting to something other than sy contribute nothing to the
computation of m(X). For the following proposition, write s for the unique spin® structure which
admits spin® connections with parallel spinors.

Proposition 5.2. If (Y,sg) is a flat 3-manifold with b\(Y) = 1 equipped with its canonical spin©
structure, then the quantity c(W,Y, so) in Theorem C is equal up to sign to the natural number disc(W)
defined as in (1.2).

Notice that by (4.3) in order for the glued up manifold X to have b* > 1 we have to assume that the
maps (1.5) coincide or, equivalently, that H,(Y) — H,(X) is injective.

Proof. As discussed above, the Morse function f : § I' 5 R has four critical points xg, x1, yo, y1 With
d(xg) = d(x1) = d(y9) = —1and |x;| = 0 while |y;| = 1; the associated graded complex is only relevant
for i = —1, in which case we obtain (xg, x1, yo). The trace of my on this subcomplex is the negative of
the trace of my on the quotient complex (y;), where it can be computed as in Proposition 5.1 to equal
+ det(i*). (In fact, the map 7, must be given by scaling by det(i*) on every generator.) O

More generally, we have the following.
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Proposition 5.3. Suppose the maps in (1.5) coincide. Then
¢(W.Y.5) = £disc(W) - x(HM.(Y.5:T,),

where again disc(W) is defined as in (1.2).
Proof. Recall that we defined

1
c(W.Y.5) =) Tr(Ude |gr2ié(y,s)),
i=k

summing only over those indices for which gr2ié (Y,s,I';,;) is not acyclic. Because the associated graded
complex of C(Y,s, I';;;) is independent of ¢, the Euler characteristic of each summand is independent
of t € R; summing from k to —1, the result is equal to y (HM.(Y,s;I";;)). We will prove that the map
mwy : Ci(T, f) — C.(T, f) is scalar multiplication by + det(i*) = disc(W), so the same is true of the
restriction to each ngiC' , giving the stated result.

Because both endpoint maps in the correspondence

Ty « Tw — Ty
are the same (say, i : Tw — Ty) by assumption, in the equation

r(w) = (y-(0),7+(0))

we are counting Morse trajectories together with an element w € Ty mapping to y_(0) = v.(0).
Because we are counting trajectories between points of the same Morse index, we must have that y.. are
constant trajectories at the same critical point g € Crit( f). Thus we are computing the signed number
of w € Ty which map to g € Ty, which coincides with det(i*) up to sign. O

Looking back at Section 4.2, for ¥ = T3 the Euler characteristic term is +1, while the Euler
characteristic term for S' x X, is +2 for g = 2 and +6 for g = 3. The mapping tori of Example 4.4
provide examples of manifolds for which the Euler characteristic term is arbitrarily large.

A particularly interesting example is the case of ¥ = S! x X,. Write ¢ : S! x ¥y — S! x %, for a
diffeomorphism of the form idgi X ¢x,.

Proposition 5.4. Suppose (Y,so) is S' X X, with its unique torsion spin¢ structure. If (W, sw) is a
self-cobordism of (Y, sg) for which i* = j* and X is obtained by gluing the ends together using ¢, then
m(X, sw) = xdisc(W) - (Tr(¢.) - 2)

where ¢. denotes the action on Hy(Z>).

Proof. Choose 1 to be a nonzero multiple of S'. We have i*[17] = ¢*j*[#7] so i extends to a 2-chain ¥
on X as in Proposition 2.1. For this n we have

HM,(S" x 25,50:T))) = H.(X2;R)

as Z,-graded vector spaces. Explicitly, following [Lin24b, Corollary 4.5], we consider the Abel-Jacobi
map AJ : £, — Jac(X,), which is an embedding. Identifying Ty = S' x Jac(X,), there exists a perfect
Morse function f : Ty — R as in Section 4.2, for which K is a sphere bundle around the image of
AJ. We have d(x) = 0 for critical points in one component of the complement and d(x) = —1 in the
other. The latter component is diffeomorphic to %, x D3, and the Morse function may be chosen to have
exactly six critical points in this component. The isomorphism

HM.(S' X 23,50; ;) = Hogr(CM.(S" X £5,50;T,)) = H,(Z;R)
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then arises because the associated graded complex gr_, is equal to C..(2,; R), while all other associated
graded terms are acyclic.

Because the Morse function f is perfect, the cobordism map induced by the pair (1, ¢*) on the chain
level coincides with the map the correspondence of tori induces on homology, which coincides with ¢..
Because the map induced by AJ on homology commutes with the action of the mapping class group, we
see the restriction to C..(X,; R) also coincides with ¢,.. The map induced by the pair (i*, j*) is disc(W)
by Proposition 5.3, so the pair (i*, ¢*j*) induces ¢, scaled by disc(W). The stated formula follows. O

As a concrete example, consider the mapping class of 2, obtained as the connect sum of the identity
on T2 and the Anosov map induced by the matrix

21
11
Then X is a homology four-torus with determinant 1, and we obtain that

Z m(X,s) = £3.

sly =50

In fact, X is obtained from T* by doing knot surgery [FS98] along a standard 77 using the figure eight
knot, and the value of 3 we found corresponds to the constant term in its Alexander polynomial. The
nonconstant terms correspond to spin® structures which are nontorsion over Y, which our techniques do
not have access to.

6. Nonseparating three-tori

The main goal of this section is to prove Theorem B and Theorem A, and discuss some concrete
examples.

6.1. Proof of Theorem B

Our first observation restricts attention to the case we can actually calculate, namely that of spin©
structures on X which are torsion on Y.

Lemma 6.1. Suppose X is a closed, oriented, connected 4-manifold with b* (X) > 2, and that X contains
a nonseparating hypersurface Y with trivial Thurston norm. If m(X, sx) # 0, then the restriction sx |y
is torsion.

Proof. LetX C Y be atorus, so in particular [X] - [£] = 0 and g(X) = 1. First, the adjunction inequality
[KMO7, Theorem 40.2.3] implies that if m(X,sx) # 0, we have

0=2g-22[{c1(sx), [ZD| + [Z] - [Z] = [{c1(sx), [ZD].
It follows that
0={ci1(sx), [Z]) = {c1(sx)ly, [Z])

for all tori X in Y. Because Y has trivial Thurston norm, the real homology H>(Y;R) is generated by
embedded tori, and it follows that ¢ (sx )|y pairs trivially with every real homology class. By Poincaré
duality, ¢ (sx )|y is torsion. ]

Now to prove Theorem B, assume ¥ = T3. For a spin€ structure on W with i*sy = j*sy = s( the
torsion spin® structure on Y, we established in Proposition 5.1 that
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CW.T.5) = {(J;rdisc(W) if b*(W) =0, by(W) = by (Y), and d(sw) =0,

otherwise.

Applying Lemma 6.1, reindexing the sum, and applying Theorem C gives

mx) =Y mXsx)= > mXsx)= > > mXsx)
[3% Sx Sw Sx
sx |y torsion i"sw=j"sw pTsx =sw
i*sw =50
- Z c(W, Y, 50).
SwW
Fsw =) sw
i*sw torsion
d(Sw):O

By Proposition 5.1, these summands simplify to £D(W)disc(W) when b*(W) = b1 (W) — b1 (Y) =0,
and is otherwise zero; further, as discussed in Remark 4.1, the equality ¢(W,Y,sy) = D(W)disc(W)
holds up to an overall sign ambiguity.

Remark 6.1. More generally, if (Y, s) is an RSF-space with trivial Thurston norm, the combination of
Lemma 6.1 and Theorem C allow to completely determine m(X) if one could compute the quantities
c(W,Y,s) in the case of interest.

6.2. Homology 4-tori

Let X be a homology 4-torus. The goal of this subsection is to deduce Theorem A from Theorem B via
computations in algebraic topology. Recall the definition of the determinant of X in (1.1); this is the
class of the 4-form U}, € A*H'(X;Z) = Z up to sign. We begin with the following lemma.

Lemma 6.2. Suppose X is a rational homology 4-torus andY C X is a nonseparating 3-torus. Then we
have det(X) # 0 if and only if the intersection map

03 : H3(X) — Hy(Y)

has rank three, in which case det(X) is the index of im(63) in Hy(Y).

Proof. Because the map 03 is given by intersection with Y, if we choose a basis for H3(X) given by
[Y], %y, X, X3, then

det(X) =[Y]NZNZyNZ3=03(Z1) No3(Zn) No3(Z3).

Choose X, X, X3, and basis vectors S; of H>(Y) so that the map 63 : H3(X) — H(Y) is in Smith
normal form, with §3(Z;) = a;S;. Then because det(73) = 1 we have det(X) = a;a»as. This is zero if
and only if rank(d3) < 3; if rank(d3) = 3, this quantity coincides with the index of the image of 3. O

We will also be interested in the behavior of §, : Hy(X) — H;(Y). Write ¢; = 3 — rank(6;). It is
straightforward to verify using the Mayer—Vietoris type sequence (4.3), Poincaré duality, and the fact
that the rank of homology and cohomology coincide, that

b4(W) =0, b3(W) =1+cs, bz(W) =3+cy+c3, bl(W) =3+cy, bo(W) =1.

We also have b; (W, dW) = by_;(W).

Lemma 6.3. If X is a rational homology torus with Y C X a nonseparating 3-torus, then b*(W) = c;.
In particular, b*(W) = 0 if and only if b1 (W) = 3.
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Proof. Consider the relative long exact sequence of the pair (W, 0W), we have
0 — Z — Hy(W) — Hy(W,0W) — Ha(Y) @ Ha(Y) = Hy(W) 5 Hy(W,0W).

We computed the rank of each group in the sequence above in terms of ¢, and c3; starting on the left,
we can compute the rank of each map in the sequence, concluding that rank(¢p) = 2¢;.

As remarked in the introduction, the intersection form on H(W) = im(y)/tors is well-defined and
nondegenerate, and is the intersection form associated to W. On the other hand, by additivity of signature
under boundary-gluing, we have o-(W) = o-(X) = 0. Because b* (W) = b~ (W) it follows that

1 o 1
bt(W) = 3 dimH(W) = Erank(ga) = cs. |

Recall the definition of discriminant in (1.2).

Lemma 6.4. If X is a rational homology torus with Y C X a nonseparating 3-torus and W = X =Y its
complement, then det(X) # 0 if and only if b1 (W) = 3 and disc(W) # 0. In this case, W is a rational
homology cobordism from Y to itself, the maps (1.5) are equal, and det(X) = disc(W).

Proof. Suppose first that det(X) # 0. Then 3 has rank three. Using the commutative diagram

A?H3(X) Té)) A’Hy(Y)
3

lu; l;

Hy(X) ——2 5 H(Y)

and the fact that A?(83) also has rank three, it follows that ¢, has rank three as well, so that b; (W) = 3.
Next, suppose b1 (W) = 3 and consider the composition

)5 o w) S H (7).

The composite (pi)* = f* is Poincaré dual to the map ¢3. The first map has rank three, as

*

0-Z—H'X) L H'W) - H (YY) > -

is exact and b (X) = 4, so the composite PD(d3) = i* p* has rank three if and only if i* has rank three.
This establishes the claim that det(X) # 0 if and only if b; (W) = 3 and det(i*) # 0.

Supposing now that b; (W) = 3 and det(i*) # 0, because det(X) # 0 we find that W has the Betti
numbers of the 3-torus; as i* : H'(W;Q) — H'(Y;Q) is an isomorphism on rational cohomology,
taking the cup-square and cup-cube of this map we find the natural map i* : H*(W;Q) — H*(Y; Q) is
an isomorphism for all k. The same argument holds for j*.

For the final claim, observe that exactness of

t‘*—j*

0->Z—-H'(X)>HW) — H' (YY) > ---

implies by rank considerations that i* — j* has rank zero, hence (being a map between free abelian
groups) i* = j*, and in particular the map p* : H'(X) — H'(W) is surjective. It now follows from the
equation 03 = i*p* that the index of im(83) coincides with det(i*) = disc(W). O

We will now prove Theorem A. This is the first place we use that X is an integer homology torus;
one can extend the result to rational homology tori, with det(X) replaced by det(X)|H;(X)|.

Proof of Theorem A. If det(X) = 0, then by Lemma 6.4 we have either b; (W) # 3 or b;(W) = 3 but
disc(W) = 0. In either case, Theorem B gives m(X) = 0, as desired.
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More interestingly, if det(X) # 0, then by Lemma 6.4 we have b (W) = 3, b*(W) = 0, and
disc(W) = det(X). What remains is to show that

|H?(Y)/f*H*(X)| if W supports a torsion spin® structure
0 otherwise.

D(W) ={

By rank considerations and the fact that H;(Y) is torsion-free, in the long exact sequence
- Hy(Y) = Ha(X) — Hy(W,0W) — Hi(Y)
the last map is zero. Thus we have an isomorphism
H>(W) = Hy(W,0W) = Hy(X)/f.H2(Y).

This group is of the form Z3 @ T for a torsion abelian group 7’; using that H;(X) is torsion-free and
appealing to Smith normal form, one finds that H>(Y)/f*H*(X) = T, so |H*(Y)/ f*H*(X)| coincides
with the number of elements in TorsH 2(W); and so long as one exists, this set is in bijection with the set
of torsion spin® structures on W. Thus Theorem A is reduced to showing that D (W) counts the number
of torsion spin¢ structures on W.

D(W) counts spin¢ structures with i*sy = j*sw torsion and d(sw) = 0. Because T° carries a
unique torsion spin® structure, the first condition is equivalent to sy being torsion on the ends (so that
in particular d(sw ) is defined). Because X is a homology torus we have y (W) = o(W) = 0 and thus
d(sw) = %cl (sw)?. Because W is negative-definite and

[c1(sw)] € H(W) = im(H*(W,dW;R) — H*(W;R)),

we see that d(sy) = 0 is equivalent to [c;(sw )] = 0 in real cohomology, which is equivalent to sy
being torsion. Thus D (W) counts torsion spin© structures. O

6.3. Some examples

Write t;(W) = |TorsH;(W)| and similarly for variations, so that our formula can be rewritten m(X) =
+ det(X)r>(W). It follows from the universal coefficient theorem and Poincaré duality that there are
essentially two torsion coefficients associated to W:

n(W) = 2(W) = (W, 0W) = £ (W, 0W),
(W, 0W) = 2(W,0W) = t,(W) = £3(W).
Lemma 6.2 computes that (W) = det(X), when X is an integer homology torus (and more generally

for rational homology tori, #,(W) = det(X)t; (X)). It is interesting that t2(W) = ¢; (W) does not seem to
have such a simple description. In this section we will discuss two concrete examples.

Remark 6.2. Combining our result with Ruberman—Strle’s, we see that if det(X) is odd, then >(W) is
odd. It is not hard to show this by purely algebraic arguments; more generally, if det(X) is nonzero mod
p, then t2>(W) is also nonzero mod p.

Example 6.1. Suppose M is a rational homology 3-torus containing a nonseparating two-torus 7 < M,
and let X = S' x M; notice that X is spin and det(X) = det(M). Denoting by C the complement, we
have W = S' x C. Now by the Kiinneth theorem #;(W) = #,(C) = t,(W), and as discussed above
tr (W) = det(X)t;(X) = det(M)t;(M). Therefore

+m(X) = det(X)> (W) = det(M)*t;(M).

When M is an integer homology torus, this is consistent with the result of Meng-Taubes [RS00, Section 5].
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Example 6.2. Fix nonzero integers np, ny, n3. Consider the cobordism Z obtained from 7 X T3 first by
adding three 1-handles, so that the resulting boundary is 73#(S! x $2)3, and then three 2-handles along
curves with homology class

(1,0,0,n1,0,0), (0,1,0,0,n2,0), (0,0,1,0,0,n3).

By choosing the framings appropriately, we can arrange that Z is spin. Call Y the other boundary
component. Cellular homology computations give that H(Z) = Z>, that the image of

H\(T*) - Hy(Z)
is a sublattice of index nnyn3, and that

H(Z,T*) =Z/n) @ Z/n> & Z/n3
H>(Z,T?) = H3(Z,T%) = 0.

By Poincaré-Lefschetz duality
H'(Z,Y)=H*(Z,Y) =0
so that
H'(z) - H'(Y)

is an isomophism. We now take W = Z Uy Z, the double of Z along Y. The isomorphism just mentioned
implies that the map in the Mayer-Vietoris sequence

H*(W) —» H*(Z) ® H*(Z)

is injective, hence HZ(W) is torsion-free.

To sum up, W is a cobordism from 73 to itself such that the two inclusion map are the same map in H;;
gluing together the boundary components we obtain an integral homology torus which has determinant
ninynz by Lemma 6.2, but H>(W) is torsion-free. Therefore, for this family of spin integer homology
tori X, we have +m(X) = det(X).
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