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Abstract. Let £ > 3 be a prime. Fix a regular character y of Fj; of order < ¢ — 1, and an inte-
ger M prime to £. Let £ € S>(I'g(M£?)) be a newform which is supercuspidal of type y at £. For
an indefinite quaternion algebra over Q of discriminant dividing the level of £, there is a local
quaternionic Hecke algebra T of type y associated to f. The algebra T acts on a quaternionic
cohomological module M. We construct a Taylor—Wiles system for M, and prove that T is
the universal object for a deformation problem (of type y at £ and semi-stable outside) of
the Galois representation py over F, associated to f; that T is complete intersection and that
the module M is free of rank 2 over T. We deduce a relation between the quaternionic con-
gruence ideal of type y for f and the classical one.
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Introduction

The fact that certain Hecke algebras are complete intersections and universal defor-
mation rings is a fundamental ingredient in Wiles’ proof of the modularity of semi-
stable elliptic curves over Q [36, 39].

Taylor and Wiles® original construction makes use of the so-called ‘multiplicity
one’ result for the £-adic cohomology of the modular curve: namely the fact that this
cohomology is free of rank 2 over the Hecke algebra when localized at certain maxi-
mal ideals. This result generalizes a theorem of Mazur [21]. Its proof is based on the
g-expansion principle for classical modular forms. The Gorenstein property for the
Hecke algebra is known to follow from it.

However, some later refinements due to Diamond [10] and Fujiwara [13] give an
axiomatization of the Taylor—Wiles construction which allows one to prove that the
Hecke algebra is a universal deformation ring without assuming the multiplicity one
result. Furthermore, multiplicity one becomes a consequence of this construction.

As Diamond points out in [10], in addition to simplifying the arguments of Wiles
and Taylor and Wiles, this approach makes these methods applicable in situations
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where one cannot appeal a priori to a g-expansion principle or to the Gorenstein
property of the Hecke algebra, for instance, the case of Hilbert modular forms (trea-
ted by Fujiwara) or the case of quaternionic modular forms, arising from the co-
homology of Shimura curves. In [10], Diamond gives an application of his method
which produces multiplicity results for the £-adic cohomology of Shimura curves
arising from quaternion algebras unramified at £. Some multiplicity one results of
this kind were previously proved by Ribet in [25] by different methods. In his work,
Ribet also obtains negative results, i.e., cases where the cohomology fails to be free
over the Hecke algebra.

One of the main problems in dealing with Shimura curves arising from quaternion
algebras ramified at ¢ is that the Galois representations associated to the cohomol-
ogy of such curves are very ramified at £. In general, we cannot appeal to a theory
analogous to that of Fontaine and Laffaille which allows one to calculate the dimen-
sion of the tangent space of the local deformation functor at £. Therefore, the tech-
niques of Wiles and Taylor and Wiles are not applicable as they are.

However, for the case of representations arising from ¢-divisible groups over cer-
tain tamely ramified extensions of Q,, the work of B. Conrad [4, 3] allows one to do
this calculation. The results of B. Conrad have already been used in [5] to prove the
modularity of some ¢-adic Galois representation (whose reduction modulo £ is
known to be modular) which are not semistable at £ but only potentially semistable.
A generalization of Conrad’s results has been recently obtained by Savitt [28].

In this paper, we combine the method of Diamond and Fujiwara with Conrad’s
result (as in [5]) to deal with the Hecke algebra acting on some local component
of the ¢-adic cohomology of Shimura curves ramified at £.

More precisely we fix a prime £ > 3. Let A’ be the product of an odd number of
primes, A = ¢A’; N be a square-free integer, (N, A) = 1. Let B denote the indefinite
quaternion algebra over Q of discriminant A, and R(N) be an Eichler order of level
N in B.

We assume the existence of a new form f € S>(I'o(NA'£?)), associated to an auto-
morphic representation n of GL,(A) coming, by Jacquet—Langlands correspon-
dence, from a representation n' of BX. The local representation 7, is then
associated to a regular character y of R(N), /1 + usR(N), >~ F}5, where u, is an uni-
formizer of B). We suppose that the order e of yis <£—1.

Let K be a finite extension of Q, containing Q,» and the eigenvalues of f, O be its
£-adic integer ring, A a uniformizer of O, k the residue field. For simplicity, we discuss
in this introduction the case where the group B* N (GLJ(R) x HF R(N);) has not
elliptic elements (this depends on the congruence class mod 4 of primes dividing A
and N, see [38, IV.3.A] for the precise statement); in the general case, by an argument
of Diamond and Taylor [11] an auxiliary prime s can be added in the level. Let X
be the adelic Shimura curve associated to the compact open subgroup
[T, RN, x (1 +u,R(N),) of B{™. The module H'(X,0) is equipped with an
action of Fj; and with an action of the Hecke algebra generated by the operators
T, with p #£. The two actions commute. Then we can consider the sub-Hecke
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module H'(X, O)* on which F}; acts by the character y; we let T* denote the image of
the Hecke algebra in the endomorphims of H'(X, O)~.

The form f determines a character T — k& whose kernel is a maximal ideal m of
T*. We define M = H'(X, O),, T = T%.

Let p: Gal(Q/Q) — GL,(0) be the Galois representation associated to f, p the
semi-simplification of its reduction mod 4. We assume that p is absolutely irreducible
and ramified at primes p dividing N. We impose the further conditions that
p* # 1mod ¢ if p is a prime dividing A’ such that p is unramified at p and that the
centralizer of p|g, is trivial. Under these hypotheses on p, we construct a Taylor—
Wiles system consisting of quaternionic cohomological modules, which allows one
to characterize T as the universal solution of a deformation problem for p and to
assert that T is complete intersection (Theorem 3.1). This construction provides also
the multiplicity one result for the module M. In order to define the right deformation
condition at £, we make use of the property of ‘being weakly of type y’ for a defor-
mation, introduced in [5]. At primes p dividing A’ such that p is unramified at p we
had to define a deformation condition which excludes deformations arising from
modular forms unramified at p; if p?> # 1 mod £ we found that an appropriate condi-
tion is given by

trace(p(F))> = (p + 1) )

for a lift F of Frob, in G,. For a deformation to O/2" this condition is equivalent to
that of being of the ‘desired form’ in the sense of Ramakrishna [23, Section 3].

Let A be the set of primes p dividing A’ such that p is ramified at p. By an abuse of
notation, if S is a set of primes, we shall sometimes denote by S also the product of
the primes in this set.

In Section 4 we assume the existence of a newform g in S»(I'o(A;£?)) supercuspidal
of type y at £ and such that p, = p. In other words, we are assuming that the repre-
sentation p occurs in type y and minimal level. We choose a pair of disjoint finite sets
Sy, S, of primes p such that £/p(p? — 1)A;. We assume that A; is not empty. We
slightly modify the deformation problem of p described above by imposing condition
1 for primes in S, and allowing ramification at primes in S; in this way we define a
deformation ring Rg, 5, and a local Hecke algebra Ty, s, acting on the forms which
are supercuspidal of type y at £, special at each prime in S, and congruent to g mod £.
By combining Theorem 3.1 with Theorem 5.4.2 of [5], we prove (Theorem 4.5) that
the natural map Rg, 5, = Tgs, s, 1S an isomorphism of complete intersections. Let /
be a newform in S>(I'o(A;S>£?)) supercuspidal of type y at £ and congruent to
gmod /. Let 05, 5,:Ts, s, = O be the section associated to & and 7, 5 s, be the
corresponding congruence ideal. We show that

Nn,8,8,,0 = (1_[ )’p(h))ﬂh,sl,sz

PES>
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where (y,(h)) is the ideal generated by the highest power A" of 4 such that p, is un-
ramified mod A"O. This ideal can be interpreted in terms of the group of components
of the fiber at p of the Néron model of the abelian variety associated to 4, so that the
above formula gives a generalization of the main theorem of [26] and [33] in the ‘type
y context.

1. Shimura Curves and Cohomology

In this section, £ is a prime > 2.

Let A’ be a product of an odd number of primes, different from £. We put A = ¢A’.
Let B be the indefinite quaternion algebra over Q of discriminant A. Let R be a maxi-
mal order in B. For a rational place v of Q we put B, = B®q Q,; if p is a finite place
we put R, = R®z Z,; B denotes the adelization of B, B> the subgroup of finite
ideles. The reduced norm and trace in B will be noted v and ¢ respectively; o — o is
the principal involution in B. For every rational place v of Q not dividing A, we fix an
isomorphism i,: B, = M,(Q,), such that i,(R,) = M2(Z,), if v = p is a finite place.

Let N be an integer prime to A. If p is a prime not dividing A we define

1<°(N)—i1{(‘Z b)eGL (Z,)
? or c d 2

b
K\N) = i;1{<i d) e KYN)

For every p dividing N, let K, be a subgroup of B such that KIIJ(N) CK,Cc Kl?(N).
Write U = [,y K. We define

Vo(N, Uy = [ Ry x U, ViV, Uy = [] Ry x Ux (1 +uRy),
PUN PN

c= OmodN},

a= lmodN}.

where u, is a uniformizer of Bf. For i =0, 1, we define also
®(N, U) = (GLI(R) x Vi(N, U)) N B*,
where GL3 (R) = {g € GLy(R)|detg > 0}. There is an isomorphism
Vo(N, U)/Vi(N, U) > Fp, ()

By this isomorphism ®o(N, U)/®(N, U) is identified with the subgroup G € F}; of
order £+ 1, namely the kernel of the norm from F} to Fj.
By strong approximation,

-1
Bx = B*GL(R)Vo(N, U) = | [ B*GL; (R)1;/'1(N, U),
i=1

where the f’s are representatives in R} of R} /{o € R)|v(x) = 1mod ¢} ~ F;. Let
K, = R*SOy(R). We define the Shimura curves

X[(N, Uy = B*\B} /K%, x Vo(N,U),  X|(N,U)= B*\B} /K% x Vi(N, U).
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The curve X|(N, U) is not connected, since the reduced norm v: 1 + u, R, — Z} is not
surjective. Let H be the upper complex half-plane. The group GLJ (R) acts on H
by linear fractional transformations. There are isomorphisms (see for example [Pro-
position 6.1(i)])

-1
X(N. Uy~ H/®(N, U),  X{(N,U) =] [H/®:(N. U).
i=1

We fix a character y:Fj; — Q> satisfying the following conditions:

e =1 3)
©# L 4
Condition 4 means that y does not factor by the norm from F} to. F.

We fix embeddings of Q in Q[ and in C so that we can regard the values of y in
these fields.

Assume now that the group @y(V, U) has no elliptic elements. Let Q,» denote the
unramified quadratic extension of Q,, Z its £-adic integer ring.

Let K be a finite extension of Q,.. Let O be the ring of integers of K and 4 be a
uniformizer of O.

Consider the projection m: X{(N, U) — Xj(N, U). The group F}; naturally acts on
H*(X{(N, U), O) via its action on X{(N, U). The cohomology group H'(X{(N, U), O)
is also equipped with the action of Hecke operators T, for p # ¢ and diamond
operators (n) for n € (Z/NZ)* (for details, see [16, Section 6 and Section 7] and
[37, Section 1.12]); if p|A’, then the 7, operator is the operator on cohomology
associated to the double coset V((N, U)u, V (N, U), where u, is a uniformizer of Bj.
The Hecke action commutes with the action of F 3, since we do not have a T, opera-
tor. The two actions are O-linear. Since O contains the £> — 1th roots of unity, and
[Fj| is invertible in O, the action of Fj; decomposes according to the characters of

%. We denote by H'(X{(N, U), O)* the sub-Hecke module of H'(X{(N, U), O) on
which Fj; acts by the character y. It follows easily from the Hochschild-Serre
spectral sequence that

H*(X{(N, U), O) >~ H*(X{(N, U), O(3)),

where O(y) is the sheaf B*\BX x O/KL x Vio(N, U), B* acts on B} x O on the
left by o-(g,m)=(ag,m) and K x Vo(N, U) acts on the right by (g,m)-v=
(gv, y(vg)m). By translating to the cohomology of groups (see [17, Appendix]),
we obtain

PROPOSITION 1.1. HY(X{(N, U), O)* >~ H (®y(N, U), O(})), where j is the
restriction of y to G and O(y) is O with the action of ®y(N, U) given by ar> "' (y)a.

We give a description of the Hecke action on the group H'(®y(N, U), O(3)). Let

a € BX™ be such that the coset Vo(N, U)aVy(N, U) defines a Hecke operator. By
strong approximation, we can write o = gogook, With go € B*, go € GLT(R),
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ke Vo(N, U). Decompose Oy(N, U)gq®Po(N, U) = [ [, Po(N, U)h;, with h; € B*. Let
EDy(N, U) = O(y) be a cocycle; for y € Oy(N, U) write hyy = y;h;); and define

ooV, vygooov, v (7)) = Z}{(hi)f(%)-

Then it is easy to see that |, vygemv,vy 18 @ cocycle and that the action of
®y(N, U)go®@o(N, U) on H'(Dy(N, U), O(y)) corresponds to the action of
Vi(N, U)aVi(N, U) on H'(X[(N, U), O).

Let ¥ be a compact open subgroup of By *. We shall denote by S,(¥) the space of
weight 2 automorphic forms on B} which are right invariant for V (see, for example,
[16, Section 2]). If yy: V' — C* is a character with finite order, we shall denote by
S>(V, ) the subspace of S»(ker(y)) consisting of the forms ¢ such that
¢(gk) = Y(k)p(g) for any k € V, g € B}.

We now describe the structure of the module H'(X|(N, U), K)* over the Hecke
algebra. Let T{(N, U) be the O-algebra generated by the Hecke operators 7,
p # ¢ and the diamond operators, acting on H'(X{(N, U), O)".

PROPOSITION 1.2. H'(X{(N, U), K)* is free of rank 2 over T{(N, U) ® K.

Proof. Let T§(N, U)¢ denote the algebra generated over C by the operators 7,
for p # ¢ and the diamond operators, acting on H'(X|(N, U), C)*. It suffices to show
that H'(X{(N, U),C)* is free of rank 2 over T{(N, U)c. We consider the space
SH2(Vi(N, U)) of weight 2 automorphic forms on B which are right invariant for
V1(N, U). By the Matsushima—Shimura isomorphism ([20, §4], see also [16, §6])

H'(X{(N, U), C) ~ S,(Vi(N, U)) & S,(V1(N, U))

as Hecke and Fj;-modules. By this isomorphism

H'(X{(N, U), C()) — S:(Vo(N, U), 1) ® Sx(Vo(N, U), %),

where Sy (Vo(V, U), y) is the subspace of S>(V1(N, U)) consisting of forms ¢ such that
o(gk) = x(k)p(g) for all g € B and k € Vo(N, U). The space S>(V1(N, U)) decompo-
ses as a direct sum of (N, U)-invariants of admissible irreducible representations of
BX: Sy(Vi(N,U)) =, W,. In an analogous way, there is a decomposition
S>(To(A'€*) NT1(N)) = @,i Wpg, where the Wy’s are subspaces of irreducible repre-
sentations of GL;(A), invariant by a suitable subgroup. The Jacquet—Langlands cor-
respondence [18] associates injectively a W, to each IW,. Observe that

(a) if p fA, then the local components W', , and W, , are isomorphic;

(b) if p|A’ then W;J, and W, , are both one-dimensional, with the same eigenvalue of
Ty,

(c) Let (W, ,)* be the subspace of W, , on which V(N, U) acts as the character y;
if (W, )*#0 then it is one-dimensional (the corresponding representation
of B} has dimension 2; its restriction to R} has the form y @ x°, where o is
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the nontrivial element in Gal(le /Q,), see [14, Section 5]). On the other hand,
W, is one-dimensional, with 7, = 0.

By the above analysis we see that there is an homomorphism
JL: Sy(Vi(N, U)) — Sy(To(A'€%) N T'1(N))

satisfying JLo T, =T,0JL, for every p#¢£ and JLo (n) = (n)oJL for every
n € (Z/NZ)* (for details see [37, Section 1]). By c) the restriction of JL to the space
S2(Vo(N, U), ) is injective. Let V,, = JL(S2(Vo(N, U), x)); then there is an isomorph-
ism between T§(N, U)¢ and the Hecke algebra T(V,) generated over C by the Hecke
operators T, with p # £ and (n) acting on V. The latter is also equal to the Hecke
algebra generated by all the Hecke operators, because the forms occurring in V, are
supercuspidal at £ and so 7, =0 on V. In the same way we can deal with
S2(Vo(N, U), x). The space V, is a direct sum of W,’s; therefore it is a direct sum-
mand of S>(I'g(A'¢?) N T'1(N)) as a Hecke module. We can assume that B contains
an element y such that ino(y) = (j 0 ') for some a€R. Let 7, be the idéle having 1
in the finite part and y at the mﬁmte place. Then there is an isomorphism of Hecke
modules S>(Vo(N, U), )= S2(Vo(N, U).7). defined by @i, where (g)=0(g7o,);
therefore V3~ V. Since we know that H'(X{(NA'¢?),C) is free of rank 2 over the
Hecke algebra (see [31, Chap. I11]), the result follows. O

2. The Deformation Problem

If K is a field, let K denote an algebraic closure of K; we put Gx = Gal(K/K). For a
local field K, K" denotes the maximal unramified extension of K in K; we put
Ix = Gal(K/K"™), the inertia subgroup of Gg. For a prime p we put G, = Gq,,
I, = Ig,; we denote Wq,, WDq, the Weil group and the Weil-Deligne group over
Q, respectively, cf. [34]. If p is a representation of Gq we write p, for the restriction
of p to a decomposition group at p.

In the rest of this paper, £ is a fixed prime > 3. We fix a character y:F3; — Qx,
trivial over F; and such that

2 <ord(y) < - 1. (5)

By composing with the reduction mod ¢ we can view x as a character of Z}, — Q*
and extend it to Q by putting y(¢) = —1; the above conditions imply that y is trivial
over Z; and that it does not factor through the norm from Qj: to Q;. By
[14, Section 3] we can associate to y a supercuspidal representation m,(y) of GL,(Q,)
having conductor ¢? and trivial central character. Let WD(m()) be the two-dimen-
sional representation of the Weil-Deligne group at ¢ associated to m,(y) by local
Langlands correspondence. Here we normalize WD(n,(x)) by following the conven-
tions in [2], but twisted by the character | |;! ¢ - Then we have, by [2, Section 11.3], WD

(ﬂe(,{))—lnd L@l ">
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Let M # 1 be a square-free integer not divisible by ¢; and =77, a,(f)q" be a
normalized newform in S»>(I'o(M¢?)). Let nr = Q),ms, be the automorphic represen-
tation of GL,(A) associated to f; then s, is special, for all p|M. We assume that fis
supercuspidal of type y at £, that is nzy = m(y), (see [37, Section 3.16] for some con-
ditions on M assuring that such a form fexists). Let pp: Go — GLZ(Q[) be the Galois
representation associated to fand p: Go — GL(F,) be its reduction modulo ¢£.

We fix a factorization M = NA’, where A’ is a product of an odd number of
primes. We impose the following conditions on p:

p is absolutely irreducible; (6)
if pIN, then p(7,) # 1; %)
if p|A” and p* = 1mod ¢, then p(I,) # 1; (8)
Endg, 6,,(P,) = F. ©)

Let K = K(f) be a finite extension of Q, containing Q,: and the eigenvalues for f of
all Hecke operators. Let O be the ring of integers of K, /. be a uniformizer of O,
k = O/(2) be the residue field.

Let B denote the set of normalized newforms % in S,(I'o(M¢?)) which are super-
cuspidal of type y at £ and whose associated representation p,, is a deformation of
p.Forhe B, leth=>3 2 a,(h)q" be the g-expansion of  and let O, be the O-alge-
bra generated in Q, by the Fourier coefficients of /. Let T denote the sub-O-algebra
of [],cs On generated by the elements T,= (ap(h))yep for pf M.

Our next goal is to state a deformation condition of p which is a good candidate

for having T as universal deformation ring.

2.1. LOCAL DEFORMATIONS AT ¢: THE TYPE ©

We use the terminology and the results in [5].
We can regard y as a character of I, by local classfield theory:

I, = Gal(Q,/Q!") — Gal(Q%/Q"") — 75> — F} 5 Q7.

Consider the type 1=y ® y°: [, — GLz(Q[). The representation p,, is of type T,
since by [27] or [S, Appendix Bl WD(p;) = 1Indy& (D@| ;"% so that
WD(psly, = 1 @ x°; moreover p;, is Barsotti-Tate over any finite extension L of
Qq such that y[,, is trivial.

Let e be the order of y. The kernel H of the above map is an open normal sub-
group of I, therefore it fixes a finite extension F’ of Q. Then we have
F'=F-Qy" for a finite extension F of Q, of ramification index e. Since
Ir = Gal(Q,/F) = H, y is trivial over the inertia of F.

Then there is an ¢-divisible group I' over OF with an action of O such that p/ |, is
isomorphic to the representation defined by the action of O[GF] on the Tate module
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A of T'. By [24, Cor. 3.3.6] the group scheme G = I'[A] ~ I'[¢]/AT'[¢] is finite flat over
OF. Since p,|g, is isomorphic to G(Q,) as a k[Gr]-module, it is finite and flat over Op.

We show that G is connected. The canonical connected-étale sequence for I' gives
rise to an exact sequence 0 — A’ - A — A% — 0 of free O-modules with an action
of Gp, and Ir acts trivially on A%, Since Py 1s ramified, A £ 0. If ranko(A®) = 1,
then by the exactness of the functor WD and the fact that WD(pslg,) =
WD(p;)lw,, the representation WD(p, )|y, = (Indwgz | I_]/Z)IWF would have

a one-dimensional subrepresentation of the form | |e where # is an unramified
character of Wy with values in O, a contradiction. Then A = A and thus T is con-
nected, so that G is connected. A similar argument applied to the dual ¢-divisible
group I'? shows that the Cartier dual of G is also connected.

Suppose first that p, is irreducible. In this case, by [30, Section 2],
Pels, =~ 0 @ i where w, is a fundamental character of level 2, m = I mod ¢ — 1
and m# 0mod ¢+ 1. Replacing m by £€m if necessary we can write em =
a4+ ¢hmod ¢*> — 1, where 0 < b < a < £ — 1. By Raynaud’s classification [24, Théo-
réme 3.4.3] the Op-flatness condition gives the constraint a, b < e. Since el + 1 we
have a = bmod e and thus either a =b or b =0,a = e. However, if a = b, then
e=2amod £ —1 and since a<e<{—1, e=2a, which implies (£—1)/2=
Omod ¢ — 1, a contradiction. Therefore em = emod 02 —1.

Suppose that p, is reducible. Then p,~ ( ne” ; Tw) where # is an unramified
character of G,, w is the cyclotomic character mod{¢ and m+n=1modf—1. By
Op-flatness and the connectedness of G and its Cartier dual, Raynaud’s classification
gives ne=i+1modf¢—1 with 0<i<e—2. If ££1mod4 or e#£(£+1)/2 or n#
(¢—1)/2mod £—1 or n(Froby)#=1, then there is exactly one such representation
(up to isomorphism).

Suppose finally

£+ 1 £—1
¢ = 1mod4, e=m=i, n=-———, n(Froby) = £1.

Then p, @™~ ((’0’ ’1‘) becomes flat over the ring of integers of a tamely ramified
extension of F, so that * must be peu ramifié by [30, Section 2.8]. Then we see that
in any case p, is included in the classification of [4, Theorem 0.1]. Let Ré,[ be the
universal deformation ring for p, with respect to the property of being weakly of
type 7; by [5, Corollary 2.2.2] there is a surjective homomorphism of local O-algebras

OllX]] — R, (10)

2.2. LOCAL DEFORMATIONS AT PRIMES DIVIDING M

Let g be a weight two eigenform with trivial character such that p, ~ p. By the
results of Deligne, Langlands and Carayol [2], the local component 7y, is special
of conductor p if and only if pg|1p~((l) ©) with % ramified. Hence if p(f,)#1
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we get a suitable deformation condition at p by requiring the restriction to /, to be
unipotent (the condition of minimal ramification at p, [22]).

On the other hand, if p(/,) = 1 we have to rule out those deformations of p arising
from modular forms which are not special at p.

We denote by Cp the category of local complete Noetherian O-algebras with resi-
due field k. Let e G, — Z; be the cyclotomic character and w: G, — F} be its reduc-
tion mod ¢. The following lemma gives a characterization of the deformations of p,
in the unramified case, if p*> # 1 mod ¢:

LEMMA 2.1. Let p be a prime such that € fp(p* —1). Let p: G, — GLa(k) be an
unramified representation. Assume that ﬁ(Frob,,)::I:(g (1)) Then every deformation p
of p over an O-algebra Ae€Cp is strictly equivalent to an upper triangular repre-
sentation p such that p(I,) C ((1) 7).

Proof. Let m, be the maximal ideal of 4. Since p(I,) € 1 + m, the wild inertia
group acts trivially. Let F be a lift of Frob, in G,, ¢ be a topological generator of
Iltj*me. Since p #£ 1 mod £ we see that p is strictly equivalent to a representation (which
we denote by p again) such that p(F) is diagonal: p(F)= 2) with a=+p,
b=+1modm,. We prove that p(c) has the form ((1) ‘f) for some J € m 4. By induction
on n write p(o)= ((1) "1’) +N,, with N,=0modm’;, N,= (:: 5:) The relation

FoF~'=o’mod I implies

—1\ _ 1 o, p_ 1 pén n+1
p(FoF )_(<O 1 + N, | = 0 1 + pN, mod m’;

because (é "1’) and N, commute modm’j,“. The above equality, under the hypothesis
p*# 1mode, gives x,, wy,z, e my n

By the previous lemma, every class of strict equivalence of deformations p of
p, over A with determinant ¢ is determined by a pair of elements (y,0) in niy,
given by

a=+p+y, b=pla, p(F)=<g 2)’ p(“):<(1) ?>

satisfying

a 0 1 6\(a' 0\ _ (1 po

0 p/a)\0 1 0 a/p) \O 1)
that is y0 = 0. Moreover, two deformations p,, p, corresponding to the pairs (y,, d;)
and (y,,0;) respectively are strictly equivalent if and only if y, =y, and
03 = (1 +m)d,, for some m € ni4. Then we see that R; = O[[X, Y]I/(XY) is the ver-

sal deformation ring of p. If we assume p, has been suitable diagonalized, then the
versal deformation p” over R;, is such that
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oo (P +X 0 o (1Y

DEFINITION 2.2. Let p be a prime such that £ fp(p*> — 1) and p is unramified at p.
We say that a deformation p of plg over a O-algebra A € Co satisfies the sp-con-
dition if every homomorphism ¢: R;) — A associated to p has ¢(X) =0.

It is immediate to see that the sp-condition is equivalent to the condition that

trace(p(F))* = (p + 1)
for a lift F of Frob, in G,.

Remark 2.3. There is some connection here with Ramakrishna’s work [23, Sec-
tion 3]. Though the application is quite different, a key role is played there by lifts of
plg, to quotients of W(k) satisfying the condition of being of the ‘desired form’,
which is equivalent to the sp-condition.

Remark 2.4. Suppose that p|A’ and p is unramified at p; then by condition 8,
p* = 1mod €. Let g be a modular form (weight 2, trivial Nebentypus) such that
Pgp~ P, If g is special at p then pg’p~¢®(6 T) with an unramified quadratic
character . Therefore p, , satisfies the sp-condition. On the other hand, if g is not
special at p then by Lemma 2.1 it must be principal unramified at p. Then the
representation p, , cannot satisfy the sp-condition: otherwise ap(g)zz(p+l)2, in

contradiction with the Ramanujan—Petersson conjecture, proved by Deligne.

In the hypotheses of the above remark, we consider the deformations of p,, satisfy-
ing the sp-condition. This space includes the restrictions to G, of representations
coming from forms in S»(I'o(NA'€?)) which are special at p, but it does not contain
those coming from principal forms in S>(I'o(NA'£?)). The corresponding versal ring is

Ollx, YNI/(X, XY) = O[[Y]]. (1
2.3. THE GLOBAL DEFORMATION CONDITION
We let A; be the product of primes p | A’ such that p(I,) # 1, and A, be the product
of primes p | A’ such that p(I,) = 1.

DEFINITION 2.5. Let Q be a square-free integer, prime to M{. We consider the
functor Fo from Co to the category of sets which associate to an object 4 in Cp the
set of strict equivalence classes of continuous homomorphisms p: Gg — GLy(A4)
lifting p and satisfying the following conditions:

(ap) p is unramified outside MQY;
(b) if p|A|N then p |, is unipotent;

https://doi.org/10.1023/A:1023610129294 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023610129294

34 LEA TERRACINI

(c) if p| Ay then p), satisfies the sp-condition;
(d) p, is weakly of type t;
(e) det(p) is the cyclotomic character €: Gog — Z;'.

PROPOSITION 2.6. The functor Fg is representable.

Proof. By the hypothesis of absolute irreducibility of p, there is in Co the uni-
versal deformation ring 7€Q of p with condition (ap) [22, Section 20, Prop. 2 and
Section 21]. Then we can use Proposition 6.1 in [8] for checking the representability
of the deformation subfunctor F. Let ]:/Q be the functor corresponding to condi-
tions (ag), (b), (¢). We know that it is representable (see, for example, [22,
Section 29]). On the other hand one easily checks that the subset of deformations
having properties (c) and (d) in Definition 2.5 satisfies the representability criterion
in [8, Proposition 6.1]: then there is a closed ideal ap of Ry such that the ring
R = Ro/ag represents the functor Fy in Co. O

Let Rp be the universal ring associated to the functor Fy. We put F = Fy,
R = Ry.

3. Construction of a Taylor—Wiles System

We set A = ¢A’; let B be the indefinite quaternion algebra over Q of discriminant A.
Let R be a maximal order in B.

It is convenient to choose an auxiliary prime s f M¢, s > 3 such that no lift of p can
be ramified at s; such a prime exists by [11, Lemma 2]. With the notation of Section 1,
we put U = [T,y K)(N) x K{(s%), @y = Qo(Ns, U); it is easy to verify that the group
@, has not elliptic elements.

There exists an eigenform f in S,(I'o(Ms2¢%)) such that p, = p; and T,f=0.
By the Jacquet-Langlands correspondence, the form f determines a character
TS(NSZ, U) — k sending the operator ¢ in the class mod /4 of the eigenvalue of ¢
for f The kernel of this character is a maximal ideal m in Tg(st, U). We define
M = H'(X{(Ns?, U), O)%,. By combining Proposition 4.7 of [6.7] with the Jacquet—
Langlands correspondence we see that there is a natural isomorphism
T ~ Tg(st, U),,. Therefore by Proposition 1.2

M ®o K is free of rank 2 over T ®¢ K. (12)

Since R is topologically generated by traces, the map R — [[, .5 Oy has image T.
Thus there is a surjective homomorphism of O-algebras ®: R — T.
Our goal is to prove the following

THEOREM 3.1. (a) R is complete intersection of dimension 1; (b) ®: R — T is an
isomorphism; (¢c) M is a free T-module of rank 2.

In order to prove Theorem 3.1, we shall apply the Taylor—Wiles criterion in the
version of Diamond [10] and Fujiwara [13].
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We shall prove the existence of a family Q of finite sets Q of prime numbers, not
dividing M¢, and of an Rp-module My for each Q € Q such that the system
(Rg, Mg)geq satisfies the following conditions:

(TWSI1) For every Q € Q and every g € O, ¢ = 1 mod ¢; for such a ¢, let A, be the
¢-Sylow of (Z/¢qZ)* and define Ag =[], Ay Let Ip be the augmentation
ideal of O[Ag]. Then Rp is a local complete O[Ap]-algebra and
RQ/IQRQ ~TR;

(TWS2) My is O[Ap]-free of finite rank o independent of Q;

(TWS3) for every positive integer m there exists Q,, € Q such that ¢ = 1 mod ¢” for
any prime ¢g in Q,,;

(TWS4) r = |Q| does not depend on Q € Q;

(TWSS) for any Q € Q, Rp is generated by at most r elements as local complete
(-algebra;

(TWS6) My/IpM g is isomorphic to M as R modules, for every O € Q.

Then Theorem 3.1 will follow from the isomorphism criterion in [10, Theorem 2.1]
and [13, Theorem 1.2].

3.1. THE ACTION OF Ay ON Ry

Let Q be a finite set of prime numbers not dividing NA and such that

(A) ¢g=1mod ¢,Vqg € Q;
(B) if ¢ € O, p(Frob,) has distinct eigenvalues o, ff, contained in k.

Let o, and qu be the two roots in O of the polynomial X* — a,(f)X + ¢ reducing to
oy, B,» respectively. Let Ay, Ag, Ip as in condition (TWS1) above. The ring Ro
defined in Section 2.3 is naturally equipped with a structure of O[Ap]-module. In fact
for every deformation p of p with determinant € and for every ¢ € Q,

0
oo~ (4 o) (13)
q

for some character ¢, such that Eq(Frobq) = 0y, [36, Appendix, Lemma 7]. Let
%y Go — A, be the composite of the cyclotomic character modulo g¢:
Go — (Z/qZ)* and the projection on the ¢{-part (Z/qZ)* — A,; we put
Yo = qug %g- The map I, — Ré, o> &,(0), factors through y,: &, 11, = ¢, 01411,
where ¢, is a character Ay — 1+ Mg, ([7], Corollary 3). Consider the character
¢ = Hq‘Q q’)j: Ag — RZZ Its O-linearization gives the structural map O[Ag] — Ro.

PROPOSITION 3.2. There is a canonical isomorphism Ro/IpRo >~ R.

Proof. The deformation associated to the quotient Rp — Ro/IpR¢ is unrami-
fied at every g € Q; properties (b)-(e) in Definition 2.5 are stable by quotients;
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therefore there exists a map R — Ro/IpRo which is the inverse of the evident map
RQ/IQRQ — R. J

3.2. THE HECKE ALGEBRAS T,

Let By denote the set of new forms / of level dividing MQ#?* special at primes p
dividing M, supercuspidal of type y at £, such that p, ~ p and whose nebentypus
Y, factors through the map (Z/MQ*Z)* — Ag. Let Tp denote the sub-O-algebra
of HheBQ O, generated by the elements f}, = (ap(h)pes, for pfMQC and
(1//,1(n)),,eng for n € Ag. Then Ty is naturally an O[Agp]-algebra.

PROPOSITION 3.3. There is a surjective homomorphism of O[Ag]-algebras
(DQZ RQ g TQ.

Proof. For each hin By, the Galois representation p, is a deformation of p, unra-
mified outside M Q¥ and such that det(p,(Frob,)) = y,(p)p, if p f MOL. By Cebotarev,
det(p;) = (Y, 0 xp)e. Define p) = (), 0 xél/z) ® p;, (since Ap is an £-group, the
square root makes sense). Then pj is a deformation of p unramified outside MQY,
with determinant ¢. By the results of Deligne, Langlands and Carayol, if p| M, then

pilg, ~ (a_l(%bo Zo)¢ *>

o

where « is an unramified character, o®> =, o Y%o» * ramified. Therefore p), satisfies
conditions b) and ¢) in definition 2.5. Since y¢|g, is unramified, the type of pj g, is
equal to the type of p,|,; hence condition d) is fulfilled by p),. By the universality
of Ry there exists an homomorphism of O-algebras ®p: Rg — ][5, On: since
Ro is generated by traces, the image of this homomorphism is in Ty. Again by
Deligne-Langlands—Carayol, if ¢|Q then

-1 N 0
i~ (107 )

o

where o is unramified. Therefore ®p brings ¢,[; to y,/*[; and so it is O[Ag]-linear

and surjective. O
3.3. DEFINITION OF THE MODULES M,

If g € O, we put

, . H, =x
Kq:{cxequlq(ac)e<qZIq *>}

where H, is the subgroup of (Z/¢qZ)™ consisting of elements of order prime to £. We
define

Up = ]_[plng(N) x K!(s?) x ch o Ko D, = Dy(NQs*, Up):;
Vo = ]_[plN 0 K)(NQ) x Ki(s7); Dy = Dy(NQs?, Vo).
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Then @o/®j, ~Ap acts on H (@), O(3)). Consider the Hecke algebras
TS(NQS UQ) and T/ (NQs V) defined in Section 1. There is a natural surjection
oo: T§ (NQs Up) — T‘(NQs Vo). Since the diamond operator (n) depends only
on the image of n in Ap, Tg(NQs Up) is naturally an O[Ap]-algebra.

As in [6, Sect. 4.2] we see that there exists a unique eigenform fQ € SH(To(MQs>£%))
such that Pj, = Py s (fQ) =0, aq(fQ) ﬁq for ¢|0.

By the Jacquet-Langlands correspondence, the form fQ determines a character
Op: T6(NQs Vo) — k, sending T, to ap(fQ) mod /4 and the diamond operators to
1. We define

fig = kerfp, Mg =0y (Mp), and Mg = H' (@), OF))y,-

Then the map oo induces a surjective homomorphism T} (NQs UQ)mQ
T4H(NQs?, Vo)m, whose kernel contains Io(T{(NQs?, Uo))wm,- By combining the
Jacquet— Langlands correspondence with the discussion in Section 4.2 of [6] we obtain:

PROPOSITION 3.4. There is an isomorphism of O[Agl-algebras
TQ = (T (NQS UQ))mQ

sending T,, to T, for each prime p not dividing MQst.

PROPOSITION 3.5. (a) My is free over O[Agl; (b) Mg/IgMg = H'(®y, O(Z))ﬁw;
(¢) rkoa,Mo does not depend on Q; (d) There is an isomorphism of R-modules
MQ/IQMQ ~ M.

Proof. (a) We shall prove that H1(<I)’Q, O(y)) is free over O[Ap]. Remark that
H(®g, O(%) = H(D),, O(3)) =0 if i # 1: in fact H* =0 since ¥ is nontrivial. By
[31, Props. 8.1 and 8.2], if G = @y or @),, H*(G, O(})) = O/I where I is the O-ideal
generated by 7(y) — 1 for all y € G. Since % is not trivial and Im(¥) consists of £> — 1¢h
roots of unity, I = O, so that H*(G, O(})) = 0. Moreover, if i > 2, H' = 0, because
@y and CD’Q have cohomological dimension 2, [29, Prop. 18.a]). Since
H(®,, K/O(3)) =0, H'(®,, O(%)) is free over O. Then it suffices to prove that
H'(Ag, H(®),, O(%)) = 0 if i > 0 (see for example [1, VI.8.10]). Recall the Hochs-
child—Serre spectral sequence: Ef'? = HP(Ag, HY(®),, O(}))) = H"(®g, O(})); by the
previous considerations E}? =0 if ¢# 1. Therefore EZ?=EI.  Since
H'(®g, O(3)) =0 if n > 1, we obtain EI"* =0 if p > 0.

(b) We have My/lgMop = Hy(Ag, H' (D, O()))im o We have proved in (a) that
the Ap-module N = H'(®),, O(})) is cohomologically trivial; from the exact sequence

0 — H '(Ag, N) = Hy(Ag, N) = H(Ag, N) = H'(Ag, N) = 0
we deduce
Hy(Ag, N) =~ H'(Ag, N) = H'(Ag, H'(®), O(1)))-

Again by the Hochschild—Serre spectral sequence the latter is isomorphic to
H'(®p, O(3)). The trace map in the sequence is compatible with the Hecke operators,
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as is the map H'(®g, O(3)) — H' (D), O(%)), so that, after localization, we get the
result.

(c) It is sufficient to show that the rank over O of the module My/IpMy =
H' (@9, O(0)in 0 does not depend on Q. Let B/Q be the set of forms in By with trivial
character. By Proposition 1.2

rankoH' (@9, O(7))s, = 2dimx(T{NOs, Vo), ®0 K) = 2|By|.

By 13 every form in B’Q is principal at each ¢ dividing Q; therefore it is unramified at
these places, by [19]. So these forms are Q-old; therefore B’Q =B and ranke
(MQ/]QMQ) = l"al’lko(M).

(d) We show that if Q' =QU/{gq} there is an isomorphism of R-modules
Mg /lgMgy ~ Mg/IgMg. Let e € T{(NQ's?, Vo) be the projection on the ig-
component. We define a map of R-modules:

H' (@9, 0@, — H' (0, O,
X > e(resoy/a, X)

By (c) and Nakayama’s lemma, it is an isomorphism if and only if its reduction
modulo 4

F: H'(Qg, k(D)i, — H' Qg k(D)
is injective.
Notice that the restriction map rese,/a, 18 injective on H ! (®g, k())), because
g+ 1.
Let 5, be the idéle in B} defined by n,, = lif v # g and n, , =i, ({ ?) By strong
approximation, write 1, = d,8-ou With d, € B, g € GLI(R),ue Vo(NQ's?, Vo). We
define a map

H'(®g, O(7)) — H'(®g, OF))

X > x|y,

as follows: let & be a cocycle representing the cohomology class x in H'(®g, O(%));
then x|n, is represented by the cocycle ') =1, - é(éqyégl). It is straightforward
to see that 7,,(x|n,) = (Tp(x)|n,) if p fMQ'L, that Ty(x |n,) = qresa, /0, X, and that
Tq(I'GSq)Q/q)Q/ x) = I‘CS@Q/(DQ,(Tq(X)) — x| Ny

Let x € H'(®y, k(f())ﬁlg. Since T, — a, € My, there is a smallest integer n such that
(T, — ay)"(x) = 0. By induction on n, we show that F(x) =0 implies x =0. If n =1
then x is an eigenvector for T,. Then it is easy to see that

(T, - ﬁq)(ﬁqres%/%,x —xn,) =0 and (7,— ocq)(ocqres%/%,x —xIn,) =0,
so that

1
F(lx) = 705([}‘1 I€Sq /by X — x|n,)-

q q
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Assume that f rese,/0,x = x|n,. Decompose the double coset @pd,Pp = H?:ll

®yogh; with h; € ©p. If y € Oy, we put d,h;y = ;04hji;), where y; € @p. Then we have

frzllﬁ,;hjzli € 5;'CDQ5q N®y =dy. Let & be a cocycle representing x in Zl(CDQ,k(;Z)).
en

(T,20) = Y0 1200 = 3 thid e iy,
- Z 1(h)eln (hivhigy),

and the latter is cohomologous to 8, X(/l,')f(/l,'yhj_l). From the cocycle relation we
know that y(h)&(hiyh; ') = &) + 27 (ERY) — E(hY). Since i j(i) is a permuta-
tion of {1,..., ¢+ 1} we find

(1,900 = Byta-+ DE0) + 6, S 0 - ),

The sum on the right side is a coboundary, so that
reSa, /0, Tgx = 2ﬁqres%/q)g,x,

since ¢ = 1 mod ¢. This shows that a, — 28, kills rese, /0, x. Since o, and f, are dis-
tinct mod ¢, a, — 2ﬁq is a unit, so Ie8ay /by X = 0 and thus x = 0.

Suppose now the result to be true for n and (7, — aq)”“x = 0 with F(x) = 0. Then
eTy(xln,) =0 and so e(x|n,) =0, since T, ¢ my. Let y=(T,—a,)x. Then
(Ty—a))"(») =0 and F(y) = F(Ty(x)) = T,(F(x)) +e(xln,) =0. By induction
hypothesis y = 0, so that x is an eigenvector for T, and the above argument shows
that x = 0. O

3.4. CALCULATIONS ON SELMER GROUPS

Propositions 3.2 and 3.5 show that if Q is a family of finite sets Q of primes satisfying
conditions (A) and (B), then conditions TWS1, TWS2 and TWS6 hold for the system
(Rgs Mg)geo- The existence of a family Q realizing simultaneously conditions
(TWS3), (TWS4), (TWS5S) is proved by the same methods as in [6, Section 6 and
Theorem 2.49] or [7, Sections 4, 5]; we confine ourselves to show that in our situation
the dimensions of the cohomological subgroups defining the local conditions at
p Ay allow one to apply that technique.

We let ad’p denote the subrepresentation of the adjoint representation of p over
the space of the trace-0 endomorphisms. Local deformation conditions (ay), (b), (),
(d) in Section 2.3 allow one to define for each place v of Q, a subgroup L, of
HY(G,, ad"p), see [22, Section 23]. If p divides A,, L, is the kernel of the restriction
map to H'((F), ad’p), for a lift F of Frob, in G,. Then

e dim;L, =1 (formula 11)

e dimH°(G,, ad’p) = 1, because the eigenvalues of p(Frob,) are distinct, by
hypothesis 8.
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By Conrad’s result (formula 10),

e dim; L, = 1; and
o dim; H%(G,, ad’p) = 0, because of hypothesis 9

Theorem 3.1 is then proved.

4. The Quotient between Classical and Quaternionic Congruence Ideals

Let A; be a set of primes, disjoint from £. By an abuse of notation, we shall some-
times denote by A; also the product of the primes in this set.

Let g be a newform in S»(I'o(A;£?)) supercuspidal of type y at £. As above, let T be
the type = (y ® 2)I;,- Let p=p,: Go — k, k € F, be the residue representation
associated to g and suppose that p is ramified at every prime in A;. In other words,
we are assuming that the representation p occurs with type t and minimal level. This
happens for example if the type t is ‘strongly acceptable’ for p in the sense of
Conrad, Diamond and Taylor [5, pp. 524-525 and Proposition 5.4.1].

We assume that the character y satisfies conditions (3) and (4) in Section 1, that p
is absolutely irreducible and that p, has a trivial centralizer.

Let A, be a finite set of primes p, not dividing A;£ such that p> # 1 mod ¢ and
trace(,Z)(Frobp))2 = (p+ 1)’ mod £. We let Ba, denote the set of new forms / of weight
2, trivial character and level dividing A;A,¢ which are special at A;, supercuspidal of
type x at £ and such that p, = p. We choose an ¢-adic ring O with residue field k,
sufficiently large, so that every representation p, for h € By, is defined over O.
For every pair of disjoint subsets S, S> of A, we denote by Ry, s, the universal solu-
tion over O for the deformation problem of p consisting of deformations p satisfying

(a) p is unramified outside A.S,S,¢;

(b) if p|A; then pl; is unipotent;

(c) if p|Sy then p, satisfies the sp-condition;

(d) p, is weakly of type t;

(e) det(p) is the cyclotomic character €: Gg — Z;'.

Let Bs, s, be the set of newforms in By, of level dividing A;S.S2¢ which are special at
Sy and let Tg, 5, be the sub-O-algebra of HheBSl,& O generated by the elements
T, = (ap(h))hele,sz for pnotin A; US| U S, U {£}. Since Ry, s, is generated by traces,
we know that there exists a surjective homomorphism of O-algebras Rs, s, = Ts, s,
Moreover, Theorem 5.4.2 of [5] shows that Rg, g — T, 4 is an isomorphism of com-
plete intersections, for any subset S; of A, (In section 2.1 we verified that the type 7 is
acceptable for p; in [5] the further hypothesis that 7 is strongly acceptable for p is
made in order to prove that By £ @, but we can do without it, since we are already

assuming the existence of g).
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If A; # 1, then each Ty, acts on a local component of the cohomology of a
suitable Shimura curve, obtained by taking an indefinite quaternion algebra of discri-
minant S>¢ or S>¢p for a prime p in A;. Therefore Theorem 3.1 gives the following

COROLLARY 4.1. Suppose that Ay # 1 and that By s, # @, then the map Ry s, —
Ty.s, is an isomorphism of complete intersections.

If p € S, there is a commutative diagram

Rsipssp —>  Rsis,

= =

Tspsp — Tsis,

where all the arrows are surjections.

For every p dividing A, the deformation over Ry, 4 restricted to G, gives maps
R;, = O[[X, Y]]/(XY) — Ra, ¢ as explained in Section 2.2. The image x, of X and
the ideal (y,) generated by the image y, of Y in R, do not depend on the choice
of the map. By an abuse of notation, we shall call x,, y, also the images of x,, y,
in every quotient of Ra, . If & is a form in By, g, we denote by x,(4), y,(h) € O the
images of x,, y, by the map R, ¢ — O corresponding to p,,.

LEMMA 4.2 If h € Ba, and p|A,, then

(@) x,(h) =0 if and only if h is special at p;

(b) if h is unramified at p then (x,(h)) = (a,(h)* — (p + 1)%);

(¢) yp(h) =0 if and only if h is unramified at p;

(d) if his special at p, the order at (1) of y,(h) is the greatest positive integer n such that
pyI,) =1 mod 2"

Proof. It is an immediate consequence of the discussion in Section 2.2. Statement
(b) follows from the fact that

V4

4,(h) = trace(p(Froby)) = £p +x(h) + =

O

LEMMA 4.3. For every pair of disjoint subsets S, Sy of A, and for every p € S

(a) the map Rs, s, = Rs,/p.s,p has kernel (x,),
(b) the map Rs, s, = Rs,p,s, has kernel (y,).

Proof. The deformation over Rg, s,/(x,) satisfies the sp-condition at p; thus there
is a map Rs,/p,5,p = Rs,.s,/(xp); on the other hand the map Ry, 5, = Rs,/p,s,p Kills
X, and so it induces a map R, s,/(x,) = Rs,/p,s,p- By universality the two maps are
inverse each other. An analogous argument holds for assertion b), by replacing x, by
yp and the sp-condition by the condition of being unramified at p. OJ
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If h is a form in Bg, s, then there is a character 0, s, 5,: Ts, 5, = O corresponding
to h; we denote by w5, 5,0 Rs,.s, = O the composition of 0 s, 5, with the map

Rs, s, > Ts, s, and by Py s, s, the kernel of 7y, 5, s,-

LEMMA 4.4. Suppose that p divides S\ and h belongs to B,y s,p. Then

Phus.s Ph.si/p.Sop o
lengthy [ —="25 ] <lengthy | —==2 | + lengthy | ——— ).
<(Ph,s],sz)2 (Ph.si/p.sp)” p(h)
Proof. There is a surjective homomorphism

: Ph,sl,szz_> Ph,sl/p,szpz
(Ph.s,.s,) (Ph.s1/p.50p)

induced by Rg, 5, = Rs,/p.s.p- By point a) of Lemma 4.3 the kernel of ¢ is the
O-module generated by the image X, of x,, in Py g, s, /(Ph.s,.s,)>. We choose a map
R/ O[[X, Y]I/(XY) — Rs, s, associated to the restriction to G, of the univer-
sal deformatlon over Rg, s,. Let P, = ¢, (79;, s..s,) be the kernel of m, 5, 5, © ¢, and
let X be the i image of X in P, /7?2 Then OX maps surjectively on Ox,, via ¢,. We put
a=mps,.50¢,(Y) €0, so that (a) = (yp(h)); then P,=(X,Y —a) and 732
(X2, (Y —a)’,aX). The O-module O[[X, Y])/(XY) is isomorphic to
XO[[X]] @ O[[Y]]; by this isomorphism P, is sent on XO[[X]] & (Y — a)O[[Y]] and
77; on XI® (Y — a)*O[[ Y]], where I = (a, X) isﬂthe O[[X]]-ideal consisting of series f
with f(0) € (a). Thus, as O-modules, OX ~ O[[X]]/] ~ O/(a) and therefore
lengthy(Ox,) < lengthp(O/(y,(h))). O

We now define the congruence ideal of £ relatively to Bg, s, as the O-ideal:

Mhs,.s, = Ons, s, (Annrg o (ker 0y s, s,)).

It is known that », g, 5, controls congruences between 4 and linear combinations of
forms different from / in B, s,.

THEOREM 4.5. Suppose Ay # 1 and A, as above. Then

(@) Bya, # 9, and for every subset S C A
(b) the map Rsa,;s — Ts.a,s is an isomorphism of complete intersections;
(©) for every h € Bya,, fy.s.,5 = (L pis Yo (W)ig.a,-

Proof. By induction on |A;|. If A, is empty statement (a) is true by the hypothesis
By.y # 0, statement (b) is the minimal case of Theorem 5.4.2 in [5] and (c) is tau-
tological. Assume now the result to be true for |A;] <n and suppose that
|A2| =n+ 1. Choose a prime p in A, and define Q = A,/p. Let h be a form in By ¢,
whose existence is assured by induction hypothesis. Then
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Mae = (D00 = (xp(h) qu(h)> Nho.0- (14)
q10

Because of the characterization of x,(h) given in Lemma 4.2, the first equality above
follows from [5, Cor. 1.4.3 and Section 5.5]; the second one holds by inductive
hypothesis.

For an element 7 in Ann(ker 0}, o), let 7 be a lift of 7 in Ta, . Lemma 4.2¢) implies
that [ ], », annihilates ker(Ts, 4y — T, o) so that ZHqIQ V4 € Ann(ker 0, 4, ¢), and

Nhp,0 (H J’q(h)> S Npa,0 (15)

q10

By 14 and 15 we obtain 1, , o < (x,(7)n;, 4 o and we know that x,(h) is not invertible
in O; thus the map T, o — Ty has a non trivial kernel, that is By », is not empty
and (a) is proved.

We prove (b) and (c) by induction on |S|. Suppose S = @; we know by a) that
By.a, # 0; then the hypothesis A; # 1 and Corollary 4.1 imply b); c) is tautological.
Suppose now the results being true for S and let r € A;\S. By inductive hypothesis
(on § and A, respectively) we know that the maps Rga,;s — Tsa,ys and
Rs.a,ysr — Ts.a,s- are isomorphisms of complete intersections. Consider the fol-
lowing surjections

o: Rsr,arysr —> Tsra./8r

B:Tsrarysr — Ts,a,75 = Rs.ayys

V:Tsrasr — Ts.a,8r = Rs,ayysr-
Since Bsy.a,/s- is the disjoint union of By a,/s and Bg a,/sr, and since ker(y o o) = (y,)
by Lemma 4.3 we have (y,) = kery = Ann(ker f8). Let / be a form in Bga,;s. Then
)y 5.0, S Misroanyse (see the proof of 15 above). We claim that this inclusion
is in fact an equality: suppose that ¢ e Ann(ker0) s.a,/s/); then ¢ belongs to
Ann(ker ff) = (y); write t = cy,, with ¢ in T, a,/s,. For every form g € Bg a,/s differ-
ent from /1 we have 1g =0 and y.g # 0, thus ¢g = 0. Then S(c) € Ann(ker 0}, s a,/s)
and so 0, sr.a,/s/(C) € Ny, 5. ArJS Therefore

Nh,sr.0y/Sr = (Vr(h))ﬂh,s,Az/Sv forevery i € Bs ayys- (16)

We are now ready to prove b); according with Criterion I of [9] the map « is an
isomorphism of complete intersections if and only if

length,, Phs’—Az/S'z < length,, _9 .
(P, sr,02/5r) N, Sr,As)Sr

By applying successively Lemma 4.4, point b) of the inductive hypothesis and equal-
ity 16 we obtain
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Ph.sr.Ay/Sr Phs.a /s ( 0 )
length, | ————=*—] < length, | ——=*~] + length,| ——
s O((Ph,Sr,Az/Sr)z) £ 0((7711,S,A2/s)2 £\ 0n )

< length, L
h VD))

< length, _9 .
Mh,Sr,Ay/Sr

Now we prove c): if & € By a,, then the identity 16 combined with the inductive
hypothesis gives 1, 5. a,/s- = (vr(h) Hp\syp(h))nh,ﬂ,Az' ]

Remark 4.6. Statement (a) in Theorem 4.5 determines some ‘nonoptimal levels’
(in the sense of [12]) for which p is modular of type y at £ and weight two.
If we combine point (¢) of Theorem 4.5 to the results in Section 5.5 of [5] we obtain:

COROLLARY 4.7. Let h € Bs, s,. Then

Mass = | | %0 []900ms, s.-

[,‘S]A_gz pIS2

Remark 4.8. Let h be a weight two eigenform with trivial character, which is

p-new for a prime p such that £ f p(p> — 1). Let Oy be the ring generated over Z by the

Fourier coefficients of 4, Kj its quotient field, and let (50 be the integral closure of O

in Ky. By the work of Shimura [32], there is an Abelian variety A over Q associated
to h, of dimension equal to [Kjy: Q], such that Oy € End (A).

LEMMA 4.9. There exists an abelian variety A over Q, isogenous to A, such that

O, C End (4). ~
Proof. Let ¢ € End’(4) = End (4) ® Q be an element in Oy. Then ¢ satisfies a
relation of the form ¢* = ax_1¢* ' + -+ ao with ag, ..., ax_1 € Op. Put J={a €

Oolag, ..., ad"" € Oy}; then J is a nonzero ideal of Oy, J¢ < J and A[J] is finite.
We define A" = A/A[J]; it is a consequence of Grotendieck’s results on quotients of
group schemes (see [35, Theorem 3.4 and Section 3.5]) that this quotient is an
Abelian variety, defined over Q, with an action of Oy that the projection 4 — A4’
is an isogeny defined over Q and Oy-linecar. We show that ¢ € End (A4’). Let x be a
non zero element in Oy such that x¢ € Oy. Let P € A4’ and choose Q € A’ such that
xQ = P. Define ¢(P) = (x¢)(Q); it is immediate to see that this definition does not
depend on the choice of x and Q, and that Oy[¢] € End (A4’). By induction on the
number of generators of (7)0 as an Oyp-algebra, we deduce the result. O

The E—Nadic Tate module T, ((1‘1) is a free Z, ®z @o—module of rank 2 and
M =T,(A) ®7,80, O is an O-integral model for p,. Assume that the representation
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py, over k is absolutely irreducible; then up to homotheties there is a unique O-lattice
stable for Gq in the space of p,. Therefore the order at (1) of y,(h) is the greatest
exponent 1y such that 7, acts trivially over M @0 O/(A™).

Since 4 is special at p, A and A have multiplicative reduction at p: there is an exact
sequence of (Z, ® (90)[Ip]-modules

0> L — Ty(A)— L, > 0 (17)

where L = Tg(fi)l" and /, acts trivially over L; and L,. Let CD,,(/I) be the group
of components of the fiber at p of the Néron model of A. It is shown in
[15, Section 11] that (Dp(/i) ®z Z, is isomorphic to the torsion part of
H\(I,, T@(/I)), that is to the cokernel of the coboundary map d: L, — Hom (Z,, L)
associated to sequence 17.

Since O is flat over Z, ® (7)0, we can tensor sequence 17 with O over Z, ® (7)0 and
get a sequence of O[/,]-modules

0— M — M—> M, — 0. (18)

Then (I)p(fi) ®p, O =~ coker(d’) where &": M, — Hom(l,, M,) is the coboundary
map associated to sequence 18. On the other hand, it is immediate to see that
coker(d') is a cyclic O-module whose annihilator is (4") = (y,(h)). Therefore we
obtain the formula

O/(p(h) ~ ®,(A) ®, O. (19)

Now let s be a newform in S»(I'y(M), Q) where M = AN is the product of two rela-
tively prime integers A and N and A is the discriminant of an indefinite quaternion
algebra B over Q. Let X4 (N) be the Shimura curve associated to B and to an Eichler
order of level N in B. Let E be the elliptic curve associated to / and let §(E), 0*(E)
denote the degrees of parametrization of E by Xy(M) and XOA(N) respectively; under
the hypothesis of the irreducibility of p,, the main theorem in [26] and [33] implies
that

ordy(8(E)) = ord, (5A(E) -T1 cp<E>), (20)
plA

where ¢,(E) = |D,(E)|. If £ f M then the ideal generated by J(E) in Z, is the anni-

hilator of the Z,-module of congruence of /# with respect to forms in S>(I'o(M)),

cf. [40, Theorem 3]. Therefore by equality 19 we can regard Corollary 4.7 as an ana-

logue of formula 20 (locally at £) in the ‘type y’ context.
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