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Abstract

We describe a scheme for constructing explicitly solvable arbitrage-free models for stock price. This is
used to study a model similar to one introduced by Cox and Ross, where the volatility of the stock is
proportional to the square root of the stock price. We derive a formula for the value of a European call
option based on this model and give a procedure for estimating parameters and for testing the validity of
the model.
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1. Introduction

The famous Black—Scholes model [1] for option pricing is based on the assumption
that the value S of a stock follows an Itd equation of the form

dS=puSdt+oSdw. )

Here w is a standard Wiener process and p and o are two parameters representing,
respectively, the drift and the volatility of the stock. This leads to the well-known
Black—Scholes formula for determining the value V of a European call option, that is,
the right to purchase the stock at a price k at a future time 7',

log(So/k) + (r + 02/2)T)
V = Sod
0 ( oT
_ log(So/k) + (r — 02/2)T>
—k rTq> .
‘ ( o T
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In this formula, Sp denotes the present value of the stock, ® is the cumulative
distribution function of the standard Gaussian distribution and r is the risk-free
interest rate.

An essential feature of option pricing is the calculation of expectation with respect
to an underlying probability measure with respect to which the model (1) is arbitrage
free. This is the condition that the process e~"'S; is a martingale. In particular, the
expected value of S; at any time ¢ is precisely the future value at time ¢ of a risk-free
bond with present value Sy, that is,

E[S,]= Soe"".

The arbitrage-free condition effectively forces the replacement of x in equation (1) by
r in the subsequent computations of expectations.

Alternatives to the Black—Scholes model (1) have been proposed. In particular Cox
and Ross [2] introduced the model

dS=uSdt +o+Sdw. (3)

They obtained this equation as the diffusion limit of a sequence of jump processes with
intensity tending to infinity. In contrast to (1), equation (3) is not solvable in closed
form by elementary means. Thus there is no direct analogue of the Black—Scholes
formula (2) for the Cox—Ross model.

In Section 2 we describe a method for constructing a class of solvable arbitrage-
free models for stock price. Our starting point is the following stochastic Bernoulli
equation of Stratonovich type

dS=uSdt + o8 odw, 4)

where 1/2 < p <1. In view of the fact that Stratonovich differentials transform
in the same way as classical differentials, equation (4) can be solved explicitly
by elementary methods (see the Zvonkin, Doss—Sussmann method, Karatzas and
Shreve [5, Proposition 2.21], Rogers and Williams [7, Theorem 28.2]). This is done in
Theorem 1.

The process S will not generally satisfy the arbitrage-free condition. In Theorem 2,
we construct a function G such that the process S; = G(S;, 1) does satisfy this
condition. This yields a second-order partial differential equation for G that is similar
to the classical Black—Scholes equation.

In Section 3 we consider the extreme values p=1 and p =1/2, which are
particularly tractable to this analysis. In the linear case, where p = 1, our approach
is shown to yield the Black—Scholes model. We then focus on the case where p = 1/2
studied by Cox and Ross. In this case the partial differential equation for G turns
out to have an especially simple form and we can solve it explicitly. This results in a
formula (16) for the value of a European call option analogous to the Black—Scholes
formula (2).
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Finally, in Section 4, we give a method for estimating the volatility parameter o
from a set of data and for testing the validity of the model.

It should be pointed out that the idea of using Stratonovich calculus in mathematical
finance is not new. A main objective of this paper is to use this methodology to provide
a unified treatment of the Black—Scholes and Cox—Ross models that is self-contained
and, at the same time, elementary enough to be comprehensible to a wide variety
of readers.

2. Arbitrage-free models

Throughout this section, let p denote a rational number m/n in the interval
[1/2, 1], with m odd and n even. We introduce the following stochastic differential
equation as a tentative model for stock price:

dS=rSdt +oSPodw, (3)

where o dw denotes the Stratonovich differential. The following relationship between
Ité6 and Stratonovich differentials holds (see Klebaner [6, Theorem 5.20]): for a
random process & with a stochastic differential d§ = a dw + b dt, where a and b are
continuous adapted processes,

Eodw =& dw + 3d[&, w]
=&dw+ sadt (6)

where the bracket [£, w] denotes the quadratic covariation of the semimartingales &
and w. It follows from this and It6’s formula (see, for instance [6, Theorem 4.16]) that
Stratonovich differentials transform under composition with smooth maps in the same
way as classical differentials, that is, by the standard chain rule. Thus equation (5)
may formally be regarded as an ordinary differential equation in S. As such, it is
solvable by elementary differential equation methods, that is, variation of parameters
and separation of variables. This gives the following result.

THEOREM 1. Define
_ t - 1/(1=p)
S, = e”{(l —p)o / P g, + So_p} , (7)
0

forallt > 0. Then S, is the solution to equation (5).

PROOF. Note that, although the quantity inside the rational power 1/(1 — p) in (7)
may be negative, the assumption on p ensures that S; is real and nonnegative.
We verify that (7) is the solution to equation (5) as follows. Write

‘ L Va=p)
E, = {(1 — p)o / " P gy, + SOP}
0

and note that the function f(x) =x/0-P) js C2~ on R. Applying Itd’s formula to
compute the stochastic differential of the process S; = ¢’ E; and using (6) gives
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< P02 2p—1) p2p—1
dS =re""E; dt +oe™"E? dw—f—Te”( P=DESP™ dr
~ p0'2 ~ ~
= (rS + 7521)1) dt +oSP dw

- - 1 -
=rSdt+oSPdw + Ed[aS”, w]
=rSdt +oSP odw

as required. O

As remarked in Section 1, the process S, will not generally satisfy the arbitrage-
free condition and hence is not a feasible model for stock price. We therefore seek a
function G such that S; = G(S;, t) is arbitrage-free.

THEOREM 2. Suppose that G :R x R+ Ris C2ins, C int, and satisfies the partial
differential equation

p0282p71 02s2p
— G5 + Gy =rG. 8)

G
t+<rs+ 5 )

Suppose further that there exists n such that for every T > 0

sup |Gy(s, 1) < Cls|", VseR 9)

0<t<T

where C is a constant depending only on T
Let S; = G(S;, t). Then the process e™"' S, is a martingale.

PROOFE. We have

de™'S) = e ((G((S;, 1) — rG (S, 1) dt + G(S;, 1) dSy)
= ¢ "N(G(Sr, 1) —rG(Sy, 1)) dt
+e "Gy (S, )(rS dt + o SP o dw). (10)

Applying (6) to convert equation (10) to Itd6 form then using (8), we obtain

2
d(efrZSt) — e*}’f |:G[(St’ t) + (rS[ + %SIZP_I)GS(SD t)

o250 - - ~ -
+ = Gus(S. 1) = rG(,. t):| dt + ¢ "'Gy(5;, o 5P dw

=e""Gy(S;, o SP dw.

Thus .
e S, = So —1—0/ e Gy(Sy, w)SP dw. (11)
0
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Now the indefinite It integral fos f dw, where s <t, is a martingale (see [6, p. 100])
provided that f satisfies

t
/ E[fw)?] du < . (12)
0
Using the estimate (see Gikhman and Skorohod [4])
s 2m T
E[ sup | [ gy aw } <G [ ENF@P" du
0<s<T1J0 0
for some constant Cy,, and condition (9), it is easy to check that the integrand in (11)
satisfies (12). Thus the result holds. O

3. Examples

There are two values of p, namely 1 and 1/2, where equation (8) is solvable in
closed form. Firstly, in the case where p = 1, (8) reduces to

o? o2s?
G+ |r+ —)sGs+ —Gs =rG.
2 2
It is easy to check that
G(s, 1) = se1/2
is a solution to this equation, and this function G clearly satisfies condition (9). Solving
equation (5) in the case where p = 1 yields

S, = So exp(rt + owy).
Thus y
S =G(8, 1) = Sy exp((r —o?/2)t +ow,).

We also note that when p = 1, the Itd equation for § is
dS=rSdt+oSdw,

and the equation that gives rise to this, prior to the imposing of the arbitrage-free
condition, is precisely (1). Thus both our model and its solution reduce to the classical
Black—Scholes theory in the case where p = 1.

We now turn to the case where p = 1/2 studied by Cox and Ross (this will be
referred to in the sequel as the fractional model). In this case, equation (8) becomes

0'2 O'2S
Gt + (rs + T)GY 4+ TG” =rG

which has the simple solution

o2

G(s,t)= .
(s, 1) s+4r

(13)

https://doi.org/10.1017/5144678870900007X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870900007X

150 D. Bell and S. Stelljes [6]

Again, G satisfies (9).
Assume that Sy > o2 /4r. Combining (13) and (7) with p = 1/2 gives

_ t 212 2
S,=G(St,t):e”{z/ e dw, + [ So — U—} +Z (14)
2 Jo 4r 4r
The It equation for S is
o2
dS=rSdt+o,/85S— —dw.
4r

A natural candidate for the original model of stock price that gives rise to this formula
after the imposing of the arbitrage-free condition, is

2
dS:,uSdH—J‘/S—Z—dw. (15)
r

Formula (14) yields a value V for a call option with exercise price k at future time 7.
The It6 integral in (14) is a Gaussian random variable with zero mean and variance
(1 —e~"")/r. An elementary calculation shows that

V =e T E[max(Sy — k, 0)]
is given by
V= %(e‘d%/z(vaﬁ +2a) — e B2 (vdy + 2a))
+ (W +a*) + e (b k)1 — Dd1) + D(d2)) (16)

where @ is the cumulative distribution function of the standard normal distribution,

o? o2 o |1 —e'T
a=+S—-——, b=—, v=——-—,
4r 4r 2 r

e T2 /k=b—a —e T2 /k=b—a
d = , dy= .
v v

4. Parameter estimation and model testing

In order to use formula (16), a mechanism is required to estimate the volatility o
for a given stock from a set of data. We propose the following scheme, based on a list
of opening prices S; for the stock on successive dayst =1, ..., N. Since the data set
is discrete, it is natural to approximate equation (15) by the difference equation

o2
AS=uSi+0o,/S——Aw,
4r
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where A;S and A;w denote Sy — Sy and wy41 — w;, respectively. Solving for A, w,
we see that, if the model is valid, then the quantities

AS — 1S,
Z,Et—'ut 17)

oS —o?/4r

form an (approximately) independent set of standard Gaussian random variables.
Equating the mean to O and the variance to 1 of the sample values Z;, t=1,..., N
gives the following equations in u and o

N N
> Z,=0 and Y Z}=N-1
=1 t=1

These equations can be solved numerically to yield estimates 4 and & of the
parameters 4 and o and the estimated value 6 can then be used in place of ¢ in (16)
to compute the option value V. Furthermore, the validity of the fractional model can
be tested by applying a standard normality test, such as the Shapiro—Wilk test, to the
quantities Z; in (17), again using the estimated values for i and o in place of the actual
values.

In conclusion, we note that Delbaen and Shirakawa [3] have recently used a Bessel
process to study the law of the process S, defined by the /16 equation

dS =rdSdt +oS? dw.

Here p is assumed to lie in the range (0, 1). The analysis in [3] results in an expression
for the law of the random variable St (where t > 0) as an infinite series. This result is
then used to obtain a formula [3, Equation 3.21] for the price of a European call option
based on the stock price S,, as the difference of two infinite series. The relationship
between the option pricing formula in [3] and its counterpart (equation (16)) in the
present work is unclear at this time. This issue will be studied in a later paper.
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