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Abstract. Over the last two decades, advances in fabrication have led to significant progress in creating
patterned heterostructures that support either carriers, such as electrons or holes, with specific band struc-
ture or electromagnetic waves with a given mode structure and dispersion. In this article, we review the
properties of light in coupled optical waveguides that support specific energy spectra, with or without
the effects of disorder, that are well-described by a Hermitian tight-binding model. We show that with
a judicious choice of the initial wave packet, this system displays the characteristics of a quantum parti-
cle, including transverse photonic transport and localization, and that of a classical particle. We extend
the analysis to non-Hermitian, parity and time-reversal (PT ) symmetric Hamiltonians which physically
represent waveguide arrays with spatially separated, balanced absorption or amplification. We show that
coupled waveguides are an ideal candidate to simulate PT -symmetric Hamiltonians and the transition from
a purely real energy spectrum to a spectrum with complex conjugate eigenvalues that occurs in them.

1 Introduction

Historically, light and matter have been considered two
quintessentially different entities. Since the advent of
quantum theory, which elucidates the wave nature of ma-
terial particles and the particle nature of electromagnetic
waves, properties of quantum system of particles are de-
scribed by a (possibly many-body) wave function whose
time evolution is determined by the Schrödinger
equation [1,2]. Such many-body condensed matter sys-
tems support collective excitations whose energy is lin-
early proportional to the momentum, and thus allow one
to mimic light – linearly dispersing massless excitations –
in material systems [3]. However, due to the unique nature
of electromagnetic waves, namely the lack of a rest-frame
or, equivalently, zero rest mass, they were not considered
useful for simulating the behavior of quantum particles
with nonzero rest mass [4].

Over the past decade, the tremendous progress in
fabrication and characterization of semiconductor
heterostructures has made it possible to create arrays of
evanescently coupled optical waveguides with numbers
varying from a few to a few hundred [5–7]. The resulting
“diffraction management” [8] makes evanescently coupled
waveguides a paradigm for the realization of a quantum
particle hopping on one or two dimensional lattices, and
permits the observation of quantum and condensed mat-
ter phenomena in macroscopic samples using electromag-
netic waves. One can engineer such a waveguide array to
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model any desired form of tight-binding, non-interacting
Hamiltonian, because the local index of refraction and the
width of the waveguide determine the on-site potential
for the Hamiltonian while the tunneling amplitude from
one site to its adjacent site can be changed by chang-
ing the separation between adjacent waveguides [9–11].
A variation in the index of refraction or the tunneling
amplitude, both of which can be introduced easily, per-
mit the modeling of a tight-binding Hamiltonian with site
or bond disorders respectively. Due to this versatility,
many quantum and condensed matter phenomena – Bloch
oscillations [12,13], Dirac zitterbewegung [14], and
increased intensity fluctuations [15,16] of light undergoing
Anderson localization [17–19] – have been theoretically
predicted to occur or experimentally observed in wave-
guide arrays. They have been used to investigate solitonic
solutions that arise due to nonlinearities in the dielectric
response [20,21]. Such arrays of coupled waveguides have
also been used to simulate the quantum walks of a sin-
gle photon [22,23], correlated photons [24], and Hanbury
Brown and Twiss (HBT) correlations [25]. Most recently,
they have been used to create a “topological insulator”,
an exotic state of matter in which the bulk is an insulator,
but the two surfaces are conductors [26,27].

There are several advantages to using waveguides to in-
vestigate quantum behavior and statistics. First, the quan-
tum effects are measurable over much longer distances
than those in condensed matter systems with electrons
or in cold-atom systems in electromagnetic traps. Second,
instead of an indirect measurement through observables
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Fig. 1. Schematic of an array of evanescently coupled optical
waveguides. The height h and the width w of the waveguide
determine the spatial profile of electromagnetic modes inside
it, along with the effective potential �βj in waveguide j, and
the distance d between the centers of adjacent waveguides de-
termines the effective tunneling �Cj+1,j between them. Due to
its constant speed, the motion of light along the waveguide is
equivalent to its time evolution whereas motion across differ-
ent waveguides simulates a quantum particle on a tight-binding
lattice.

such as conductivity or other response functions [28], in
optical waveguides, one can directly measure the time-
evolution of a wave function via the time-and-space de-
pendent probability distribution, since it is identical to
the light intensity distribution. For lattice models realized
via electronic or cold-atom systems, typically, eigenstates
in a small fraction of the energy band near the Fermi en-
ergy are experimentally probed [29]; in contrast, the abil-
ity to create an initial wave packet localized to a single
waveguide – by coupling light into a single waveguide –
means that quantum effects across the entire energy band
of the tight-binding model can be investigated in optical
waveguide arrays (Fig. 1).

In the past 15 years, there has been significant
theoretical research on properties of non-Hermitian
Hamiltonians that, sometimes, show purely real spec-
tra [30–33]. In continuum models, such Hamiltonians
usually consist of a Hermitian kinetic energy term and
a complex potential that is invariant under the combined
operation of parity and time-reversal (PT ), such as
V (x) = x2(ix)ε or V (x) = nR(x) + inI(x) where nR(x)
and nI(x) are even and odd functions of x, respectively.
The region of parameter space where all energy eigenval-
ues of a PT -symmetric Hamiltonian are real is tradition-
ally called the PT -symmetric region, and the emergence
of complex conjugate eigenvalues that accompanies de-
parture from this region is called PT -symmetry breaking.
Since the effective potential in an optical waveguide ar-
ray is given by the local (complex) index of refraction,
properties of PT Hamiltonians have led to predictions of
new optical phenomenon such as Bloch oscillations in com-
plex crystals [34], perfect transmission [35] and a perfect
absorber of coherent waves [36,37], PT -symmetric Dirac
equation [38], induced quantum coherence between Bose-
Einstein condensates [39], and topologically protected
midgap states in honeycomb lattices [40,41]. The
stability of nonlinear solitions in PT -symmetric systems
has also been investigated [42,43]. The PT -symmetry

breaking has recently been experimentally observed in two
coupled waveguides [44,45], silicon photonic circuits [46],
and optical networks [47]. Thus, coupled optical waveguide
arrays are also an ideal candidate to simulate the
quantum dynamics of a non-Hermitian, PT -symmetric
Hamiltonian.

In this paper, we review properties of coupled
optical waveguides. In the absence of any loss or gain in
a waveguide, the effective Hamiltonian of such an array
is Hermitian. In Section 2 we present the basics of such
Hermitian, tight-binding models, and discuss quantum
photonic transport (Sect. 2.1), continuum quasiclassical
limit (Sect. 2.2), arrays with position-dependent nearest-
neighbor tunneling (Sect. 2.3), and the effects of on-site
and tunneling disorder (Sect. 2.4). Section 3 focuses on
PT -symmetric tight-binding models where the non-
Hermitian, PT -symmetric potential corresponds to loss in
one waveguide and an equal gain in its mirror-symmetric
counterpart waveguide. We introduce the terminology,
present the PT -symmetric phase diagram for arrays with
open boundary conditions (Sect. 3.1), discuss the salient
features of non-unitary time evolution in such systems
(Sect. 3.2), and compare the effects of Hermitian vs. non-
Hermitian, PT -symmetric disorder on intensity correla-
tions (Sect. 3.3). We conclude this review with a brief
discussion of open questions in Section 4.

2 Hermitian tight-binding models

The Hamiltonian for a one-dimensional array withN iden-
tical, single-mode waveguides is given by

H = �

N∑

j=1

[
βja

†
jaj −

(
Cj+1,ja

†
j+1aj + Cj,j+1a

†
jaj+1

)]
,

(1)
where � = h/(2π) is the scaled Planck’s constant, a†

j(aj)
is the Bosonic creation (annihilation) operator for the
single mode in waveguide j, βj is the effective poten-
tial on site j or equivalently, the propagation constant for
waveguide j, and Cj+1,j denotes the tunneling amplitude
from site j to adjacent site j+1. Based upon its geometry,
the array can have open boundary conditions (CN = 0) or
periodic boundary conditions, a†

N+1 = a†
1. It is straight-

forward to generalize this Hamiltonian to two-dimensional
arrays. The on-site potential βj and the tunneling ampli-
tude Cj+1,j are determined by profile of the electric field
u(r) in a single waveguide as

βj = c
√
k2
0 − k2

j , (2)

Cj+1,j =
(
n2

j+1 − n2
b

) k2
0

2βj

∫

�
druj+1(r)uj(r), (3)

where k0 is the wavenumber for the incident light, c
is the speed of light in vacuum, kj characterizes the wave
vector for the single eigenmode in waveguide j, nj+1 and
nb are refractive indices for waveguide j + 1 and the bar-
rier between adjacent waveguides respectively, and � de-
notes integral over the two-dimensional cross section of
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waveguide j. Thus, the potential βj is linearly propor-
tional to the local index of refraction nj , whereas the tun-
neling amplitude is proportional to the overlap between
the electric-field envelope functions in waveguides j and
j + 1. Note that it is possible to create a non-Hermitian
tunneling profile – Cj+1,j �= Cj,j+1 – by varying the index
of refraction and maintaining the waveguide geometry; we
will, however, only consider waveguide arrays where the
tunneling is Hermitian, Cj+1,j = Cj,j+1 = Cj . The elec-
tromagnetic waves in dielectric media do not interact with
each other when the light intensity is small and the ef-
fects of non-linear susceptibility χ3 can be ignored [48];
therefore, there are no quartic “interaction terms” in the
Hamiltonian. Thus, the Hamiltonian that describes the
time-evolution of an electromagnetic pulse (with many
photons) in an array of waveguides is equivalent to that of
a single quantum particle hopping on a lattice with on-site
potentials βj and tunneling amplitudes Cj . This absence
of interaction allows us to use the coupled waveguide ar-
ray as an exquisite probe of competition among dispersion,
disorder, quantum statistics, and boundary conditions.

When the on-site potential is constant βj = 0 and tun-
neling amplitudes are constant, Cj = C, the
Hamiltonian is translationally invariant. Therefore, it can
be diagonalized by using eigenfunctions ψkn

(j) character-
ized by eigenmomentum kn. The energy spectrum of the
one-dimensional lattice is given by E(kn)=−ΔB cos(kn)/2
where ΔB = 4�C is the bandwidth and the dimension-
less eigenmomenta are kn = nπ/(N + 1) (n = 1, . . . , N)
for open boundary conditions and kn = ±2nπ/N with
n = 0, . . . , N/2 for periodic boundary conditions [49]. It
follows then that for an array with N → ∞ sites and lat-
tice spacing a, the permitted dimensionful wave vectors k
form a continuum, bounded by −π/a < k ≤ π/a, known
as the first Brillouin zone [50].

We emphasize that although electrons in condensed
matter materials and light in optical waveguide arrays can
both be described by equation (1), the relevant lattice-site
numbers and energy scales in the two cases are vastly dif-
ferent. For electronic materials, the number of atoms or
lattice sites is N � 109 whereas for light, the number of
coupled waveguides is N � 100. For electrons, the tunnel-
ing amplitude �C ∼ 1 eV or equivalently, C ∼ 240 THz
and C/(2πc) ∼ 8000 cm−1, whereas the on-site potential
�β ∼ EF � ΔB where EF is the Fermi energy; these
parameters cannot be varied significantly (by orders of
magnitude) since Coulomb interactions are the primary
determinant for these parameters. For light, the tunneling
amplitude, determined by the distance between adjacent
waveguides, is C/(2πc) ∼ 3–50 cm−1. Thus, the typical
bandwidth of the waveguide array, ΔB ∼ a few meV, is
smaller than its electronic counterpart by orders of mag-
nitude. In addition, the on-site potential in waveguide ar-
rays can be comparable with the bandwidth, �β ∼ ΔB ∼
10–100 cm−1. This tremendous flexibility, present even in
a small array with a constant tunneling, hints at the rich
possibilities for designing waveguide arrays with dramati-
cally different properties. In the following subsections, we
will illustrate this point with a few examples.

2.1 Phase-controlled photonic transport

In free space, the change in the momentum of a parti-
cle under constant force, or equivalently, a potential that
varies linearly with position, is proportional to the time
and thus increases continuously. In sharp contrast, when
a particle on a lattice is acted upon by a constant force, its
momentum change is bounded by the size of the
Brillouin zone. Physically, the particle can transfer its
momentum to the underlying lattice as long as the trans-
ferred momentum is equal to one of the reciprocal lat-
tice vectors, and therefore, the momentum of the particle
is only defined within the bounds of the first Brillouin
zone. This surprising result, which occurs only due to
the presence of the lattice, implies that the velocity of
the particle oscillates about zero in the presence of a
constant force, and is called Bloch oscillations. For elec-
tronic materials in constant electric field, the time re-
quired for the requisite change of momentum is given by
tB = Δp/(qE) ∼ �/(qEd) where q is the electronic charge,
E is the applied, constant electric field, and d ∼ few Å
is the lattice constant. For typical fields E ∼ 103 V/m,
this time is orders of magnitude longer than the typical
time ts between electron-lattice scatterings, tB ∼ 10−8 s
� ts ∼ 10−14 s [50,51]. Therefore, although long pre-
dicted in electronic systems, Bloch oscillations have not
been and are unlikely to be observed in them. In addi-
tion, due to the large number of lattice sites, the effects
of boundary on Bloch oscillations cannot be explored in
electronic materials. Since there is no interaction of light
with the dielectric and therefore no scattering that can
randomize the transverse momentum of a wave packet in
a lattice of waveguides, they provide an ideal platform
to study Bloch oscillations and other energy-band related
quantum phenomena in finite lattices where boundary ef-
fects can be prominent [12].

To this end, we consider the waveguide array with a
linear ramp in the on-site potential given by βj = β0+δβj
with δβ/β0 � 1. Since β0 only shifts the zero of the energy
spectrum, we will ignore it in the subsequent treatment.
This system is created by using variable-width waveguides
with variable spacing between them to ensure constant
tunneling and a linear gradient with δβ/β0 ∼ 10−4 [12].
The equation of motion for the electric-field creation op-
erator is given by i�∂a†

j/∂t = [H, a†
j ] and reduces to

∂a†
j

∂t
= +i (β0 + jδβ) a†

j − iC
(
a†

j+1 + a†
j−1

)
, (4)

where one of the tunneling terms is absent when the site
index j corresponds to the first or the last waveguide in
an array with N waveguides. In the limit N → ∞, this
equation can be exactly solved by using Fourier trans-
form [16] and we get the following expression for the time-
evolution operator G(t) = exp[−iHt/�] in the site-index
space,

a†
j(t) =

∞∑

m=−∞
Gjm(t)a†

m(0), (5)

30001-p3

https://doi.org/10.1051/epjap/2013130240 Published online by Cambridge University Press

https://doi.org/10.1051/epjap/2013130240


The European Physical Journal Applied Physics

Fig. 2. The left-hand column shows the exact intensity I(p, t) numerically obtained for a finite array of N = 21 waveguides
with a linear potential gradient δβ/C, and the initial wave packet localized at the central site. The horizontal axis denotes time
normalized in the units of t0 = 1/(4C). Bottom panel shows that for δβ/C = 1, the wave packet expands and contracts with
period T ∝ 1/(δβ). For a smaller gradient, δβ/C = 0.5 (center panel) the period of oscillation doubles and so does the maximum
transverse extent of the wave packet. When δβ/C = 0.25 (top panel) the edge-reflection effects destroy the Bloch oscillations,
although the intensity profile continues to remain symmetric about the center site, I(p, t) = I(N + 1 − p, t). The right-hand
column shows the corresponding differences ΔI(p, t) between the exact solution for a finite array and the analytical result for an
infinite array. Note that, on average, ΔI(p, t) increases with time, but becomes appreciable only after the ballistically expanding
wave packet has reached the boundaries.

Gjm(t) = exp
[
i(β0 + δβ)t+

i(j −m)(δβt− π)
2

]

×Jj−m

[
4C
δβ

sin
(
δβt

2

)]
. (6)

Note that as the potential gradient vanishes, δβ → 0, we
recover the propagator for a uniform lattice with band-
width ΔB = 4�C. The time-evolution operator allows us
to obtain the time and site-dependent intensity for an ar-
bitrary normalized initial state |ψ(0)〉 =

∑
m αma

†
m(0)|0〉,

I(p, t) = |〈p|ψ(t)〉|2 =

∣∣∣∣∣∣

∑

j

αjGjp(t)

∣∣∣∣∣∣

2

, (7)

where the sum of weights is unity,
∑

m |αm|2 = 1. If
the initial input is confined to a single waveguide, αm =
δm,m0 , the intensity profile becomes

Ia(p, t) = J2
p−m0

[
4C
δβ

sin
(
δβt

2

)]
. (8)

This analytical result for the site and time-dependent in-
tensity has the following features: it is symmetrical about
the initial wave packet location; it is periodic in time with
a period given by T = 2π/δβ; its maximum spread oc-
curs at time t = T/2 and is determined by the ratio
of the nearest-neighbor tunneling to the potential gra-
dient C/δβ. We emphasize that this result is valid only
for an infinite array where the effects of boundaries can
be ignored. On the other hand, since the tight-binding
Hamiltonian equation (1) for a finite array corresponds to
a finite, tri-diagonal, Hermitian matrix, one can obtain the

time-evolved wave function 〈p|ψ(t)〉 exactly by straightfor-
ward numerical evaluation of the time-evolution operator
G(t).

The left-hand panels in Figure 2 show the numeri-
cally obtained intensity I(p, t) for an N = 21 waveguide
array with initial input in the central waveguide m0 =
(N + 1)/2 = 12; we use t0 = �/ΔB as the unit of time.
For δβ = C (bottom panel), the period of Bloch oscil-
lations is given by T/t0 = 8πC/δβ = 8π and the max-
imum spread of intensity is small compared to the size
of the array. When δβ = 0.5C (center panel), the period
is doubled, T/t0 = 16π and so is the vertical maximum
spread of intensity. For δβ = 0.25C (top panel), the esti-
mated wave packet spread is greater than the size of the
array, and the open boundaries destroy Bloch oscillations
although the intensity profile continues to remain symmet-
ric about the center of the array. The right-hand panels
in Figure 2 show the difference between numerically ob-
tained intensity profile and the analytical result that is
valid only for an infinite array, ΔI(p, t) = I(p, t)−Ia(p, t).
When δβ = 0.25C (top panel), the wave packet reaches
the boundaries and thus the difference between the exact
solution and the analytical result is the greatest, although
we point out that this difference becomes appreciable only
after the ballistically expanding wave packet has reached
the array boundaries. When δβ = 0.5C (center panel),
the maximum intensity difference is approximately 1% of
the total intensity, and it increases with subsequent re-
flections from the boundaries of the finite array. When
δβ = 0.25C (bottom panel), the intensity difference ΔI is
essentially zero. Thus, although the analytical result for
the site and time dependent intensity is ideally applicable
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Fig. 3. Photonic transport in an N = 21 array with linear gradient δβ/C = 0.5, initial state |ψ(0)〉 = cos θ|m0〉+sin θeiφ|m0+1〉,
and θ = π/4. The left-hand column shows intensity profiles I(p, t). When m0 = 11, φ = 0 (top panel), the initially symmetric
intensity profile shifts its weight towards the low potential region, whereas when φ = π/2 (center panel), the weight oscillates
from center to the high-potential region to the low-potential region. When m0 = 16, φ = π (bottom panel) the wave packet
weight starts to shift towards the high potential region, but the Bloch oscillations are destroyed due to reflections at the
boundary. The right-hand column shows corresponding mean positions jmean(t). For m0 = 11 (top and center panels), the
edge-effects are negligible and jmean(t) oscillates with period T = 4π/δβ, consistent with equation (10); when m0 = 16 (bottom
panel), the edge effects change this periodic behavior.

only for an infinite array, it accurately describes the dy-
namics of a finite array as long as the maximum spread of
the wave packet does not detect the array boundaries.

The symmetrical intensity distribution in Bloch oscil-
lations seen in Figure 2 is because all momenta within the
Brillouin zone have equal weight in an input state that is
localized to a single site. Next, we consider an initial state
that is localized to two adjacent waveguides, with a phase
difference φ between the two, αm = cos θδm0+sin θeiφδm1.
The analytical result for the site- and time-dependent in-
tensity is given by

I(p, t) = cos2 θJ2
p (τ) + sin2 θJ2

p−1(τ)

− sin 2θJp(τ)Jp−1(τ) sin(φ− δβt/2), (9)

where τ(t) = (4C/δβ) sin(δβt/2) and the last term in the
intensity arises as a result of the interference between the
two inputs. To quantify this interference, we consider the
time-dependent average and standard deviation of the po-
sition, which, for an infinite array, can be simplified to

jmean(t) =
∑

m

mI(m, t) = sin2 θ

+ sin 2θ
τ

2
sin(φ− δβt/2), (10)

j2std(t) =
∑

m

m2I(m, t) = sin2 θ + τ2/2

+ sin 2θ
τ

2
sin(φ− δβ/2). (11)

Note that when the input is only confined to the central,
zeroth waveguide, sin θ = 0, we recover jmean(t) = 0 and

j2std = τ2/2, and when the light is completely confined to
the first waveguide, sin θ = 1, we obtain the expected re-
sults. At small times, since the function τ(t) ≈ 2Ct, equa-
tions (10) and (11) imply that the mean position and its
standard deviation both change linearly with time except
when φ = {0, π}; in those two cases, they change quadrat-
ically with time. At large times, the mean position and
standard deviation both oscillate due to the periodic na-
ture of the function τ(t) = τ(t + 4π/δβ). These results
are only valid for an infinite array and, as we have seen
earlier, they remain applicable to a finite array only if the
maximum spread of the wave packet is smaller than the
size of the array.

Figure 3 shows the effects of the relative phase φ and
initial wave packet on the intensity profile I(p, t) (left-
hand panels) and the mean position jmean(t) (right-hand
panels) for an N = 21 waveguide array with δβ = 0.5C,
period T/t0 = 16π, and equally distributed weight on
the adjacent sites, θ = π/4. In the left-hand column,
the top panels shows the asymmetrical intensity profile
that results from an initially symmetric state |ψ(0)〉 =
(|m0〉 + |m0 + 1〉)/

√
2 with m0 = 11. The center panel

shows corresponding intensity profile for |ψ(0)〉 = (|m0〉+
i|m0 + 1〉)/

√
2, with m0 = 11, where the asymmetry in

the intensity profile switches direction with time. Both of
these numerically obtained results are virtually identical
with those obtained from equation (9) that is valid for
an infinite array. The bottom panel shows that the same
wave function, with m0 = 16, gives rise to an aperiodic
intensity profile due to the presence of the boundary. The
right-hand panels in Figure 3 show corresponding mean
position of the wave packet. When φ = 0 (top panel),
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the mean position is confined to the region of lower index
of refraction and changes quadratically with time. When
φ = π/2 (center panel) we see that jmean(t) oscillates
about the initial mean position, and changes linearly with
time at small times. The bottom panel shows that when
the initial position is close to the boundary, the periodic
behavior is destroyed due to the added interference with
partial waves that are reflected from one edge of the array.
Thus, the direction of the lateral photonic transport can
be tuned by the relative phase difference φ between inputs
at adjacent waveguides.

2.2 Continuum limit: non-relativistic particle

In the last subsection, we considered the time evolution
of a wave packet that is initially localized to one or two
sites. Due to this extreme localization in real space, such a
wave packet has components with all momenta (or equiv-
alently, energies) across the entire bandwidth of the one-
dimensional lattice. Due to the presence of these dimen-
sionless momenta −π < k ≤ π, the time evolution of the
wave packet is dominated by quantum interference. On the
other hand, by an appropriate choice of initial state that
has energy components only near the bottom or the top of
the cosine-band E(k) = −2�C cos(k), one can mimic the
behavior of a non-relativistic particle on a line segment.

To formalize this mapping from a lattice to the con-
tinuum, let us consider lattice with sites N → ∞ and
site-to-site distance d → 0 such that Nd → L [49]. We
will choose a continuum co-ordinate system such that site
m = 1 maps to x = −L/2 whereas site m = N maps
to x = +L/2. In this limit, the nearest-neighbor tunnel-
ing term in equation (4) translates into a spatial second-
derivative with effective mass m∗ given by

�
2

2m∗ = d2 ∂
2E(k)
∂k2

∣∣∣∣
k=0,π

= ±d2
�C. (12)

Therefore, time evolution of an initial state |ψe〉 with com-
ponents only near the bottom of the band, k ∼ 0, in the
presence of a linearly varying potential V (x) = 2�δβx/L
for |x| ≤ L/2 should correspond to the time-evolution of
a classical particle of mass m∗ = +�/(2Cd2) in the pres-
ence of a constant force F0 = 2δβ/L along the −x direc-
tion. Borrowing the terminology from condensed matter
physics, we call such a wave packet with positive
effective mass electron-type or “e-type”. Equivalently, an
initial state |ψh〉 with components near the top of the
band, k ∼ ±π, corresponds to a classical particle with
mass m∗ = −�/(2Cd2) and will be called hole-type or
“h-type”. We remind the reader that choosing purely real
components αm for the initial wave packet ensures that
the initial velocity of the classical particle is zero.

Based upon this analysis, it follows that the average
position of the wave packet x(t) will satisfy

x(t) = x(0) ∓ F0

2|m∗| t
2, (13)

Fig. 4. Simulating a quasi-classical particle in a linear po-
tential via an array with N = 201 waveguides and potential
gradient δβ/C = 5. The initial wave packet is spread across
M ∼ N/10 = 20 sites. The left-hand panel shows the inten-
sity Ie(p, t) for the “e-type” wave packet, which simulates a
particle with positive effective mass, whereas the right-hand
panel shows the corresponding result Ih(p, t) for an “h-type”
wave packet, which simulates a particle with negative effective
mass. In contrast with the earlier results, here the wave pack-
ets (mostly) maintain their shape as they move towards lower
or higher potential, respectively, in a parabolic manner. The
bottom panel shows that the mean positions of the two wave
packets, jmean(t), obtained from the time-dependent intensity
distributions, follow the trajectory of a non-relativistic particle
with constant acceleration and zero initial velocity.

where the negative sign is for an “e-type” wave packet,
the positive sign is for an “h-type” wave packet, and x(0)
is the initial location of the wave packet. Figure 4 shows
the numerically obtained results for time evolution of a
wave packet in an array with N = 201 waveguides and
δβ = 5C. The top left panel shows the site and time-
dependent intensity I(p, t) of an “e-type” wave packet
with initial Gaussian profile of size M = N/10 � 1 at
the center of the array. We see that, in a sharp contrast
with earlier results, the wave packet largely maintains its
shape and moves toward the region with lower potential
or, equivalently, smaller waveguide index, in a parabolic
manner. The top right panel shows corresponding results
for an identical “h-type” wave packet; it, too, maintains
the shape, but moves towards larger waveguide index in
a parabolic manner. We emphasize that in both cases,
the external linear potential is identical; the opposite mo-
tions of the “e-type” and “h-type” wave packets arise due
to their equal but opposite effective masses, and subse-
quent accelerations. These observations are quantified in
the bottom panel where we plot the mean position of the
wave packet, jmean(t) as a function of normalized time for
the “e-type” (dashed red) and “h-type” (solid blue) wave
packets. It is clear that they follow equation (13) where
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the magnitude of dimensionless acceleration is given by
|F0/m

∗d(4C)2| = δβ/(4CN), and matches the accelera-
tion obtained from a quadratic fit to the data shown in
the bottom panel. We emphasize that as the wave packet
gets closer to the edge, the contribution from reflected
partial waves increases and destroys its mapping onto a
classical non-relativistic particle.

These results show that a waveguide array with con-
stant nearest-neighbor tunneling can be used to investi-
gate properties of a quantum particle or a non-relativistic
classical particle in an external potential. It also has the
special property that the bandwidth of its correspond-
ing Hamiltonian, ΔB = 4�C, does not depend upon the
number N � 1 of waveguides in that array; this N -
independence ensures the existence of the thermodynamic
limit for such a lattice. However, as we discussed in the in-
troduction, waveguide arrays offer the possibility of a site-
dependent, nearest-neighbor tunneling Ck,k+1 = Ck+1,k =
C(k). In the following subsection, we present the prop-
erties of arrays with such position-dependent tunneling
profiles.

2.3 Arrays with site-dependent tunneling profiles

For a finite array with N waveguides and open bound-
ary conditions, by judiciously choosing the distances dk

between waveguides k and k + 1, any arbitrary tunnel-
ing profile C(k) ≥ 0 can be created. For simple tunneling
functions, the behavior of such an array can be easily de-
duced. For example, if C(k) is a monotonically increasing
function of site index k, then the average position of the
quantum particle is shifted towards the end of the array
with site index N . On the other hand, if C(k) is a rapidly
oscillating function of site index, C(2k) � C(2k+1), then
theN -site array is best understood in terms ofN/2 weakly
coupled dimers with tunneling profile C(2k+1) where each
dimer represents two adjacent waveguides with a strong
tunneling C(2k) between them [52]. In general, the tun-
neling profiles in both of these models break the parity-
symmetry about the center of the array, C(k) �= C(N−k),
and thus prefer one end of the array over the other.

To maintain the equivalence between two ends of a fi-
nite, N -site array, we restrict ourselves to Hermitian tun-
neling profiles that obey C(k) = C(N−k). In the simplest
case, this constraint implies that the tunneling profile has
either a single maximum or a single minimum at the cen-
ter of the array. Therefore, we consider single-parameter
tunneling functions

Cα(k) = C[k(N − k)]α/2 = Cα(N − k). (14)

When α > 0, the tunneling rate at the center of the array
is (N/4)α/2 times larger than the tunneling near its edges,
whereas when α < 0, the converse is true; when α = 0, we
recover the constant-tunneling case. Since the tunneling
amplitude C(k) can be varied by a factor of hundred in
a single material [5,6,53,54], establishing such tunneling
profile constraints the size of the array to (N/4)|α|/2 ∼ 100
or, equivalently, N ≤ 104 for |α| = 1, N ≤ 200 for |α| = 2,

and N ∼ 20 for |α| = 3. These numbers show that it is
feasible to fabricate waveguide arrays with a reasonable
number of waveguides for tunneling profiles up to |α| ≤ 3.

The Hamiltonian for such an N -site array is given by

Hα = �

N−1∑

j=1

Cα(j)
[
a†

j+1aj + a†
jaj+1

]
. (15)

We remind the reader that when α �= 0, due to the
loss of translational invariance, the eigenstates of the
Hamiltonian are not labeled by momentum and, in gen-
eral, it is not possible to obtain analytical solutions for
the eigenvalues and eigenfunctions. The sole, notable ex-
ception is the case with α = 1, where analytical solutions
for the eigenvalues and eigenfunctions are possible [55–57].
One can, however, show that energy eigenvalues of Hα

for any α occur in pairs ±En and that the corresponding
eigenfunctions are related by a simple transformation [58].

Figure 5 shows the typical properties of Hamiltonian
Hα, for an array with N = 500 and |α| ≤ 2 obtained nu-
merically. The left-hand four-panel figure shows the energy
eigenvalues normalized by their respective maximum for
α = {0, 1, 2,−1} (clockwise). For α = 0, we get the well-
known cosine-band. When α = 1, we obtain a spectrum
with equidistant energy eigenvalues, maximum eigenen-
ergy Emax = (N − 1)�C, and level spacing ΔE = 2�C;
for α = 2, the spectrum is linear near the band edges,
with a flatter region in between. For α = −1, the spec-
trum consists of a few localized states near the band edges
(shown by the blue oval) along with a bulk of extended
states [57]. The four panels on the right-hand side show
the unnormalized density of eigenstates D(ε), which pro-
vides a measure of number of eigenstates available in a
small interval δε around energy ε for α = {0, 2,−2,−1}
(clockwise). For α = 0, we recover the well-known result
for a one-dimensional lattice with van-Hove singularities,
signaled by a diverging D(ε), at the band edges [50,59].
For α = 1, due to the equidistant energy levels, the den-
sity of states is a constant. When α = 2, the density of
states has a maximum near zero energy, consistent with
the small slope of the corresponding energy spectrum near
ε = 0. When α = −1, the D(ε) has two distinct features.
The first is a two-peaked structure that represents the den-
sity of bulk, extended states; the second is the presence of
discrete, localized states near the band edges (shown by
the blue oval). When α = −2, these features are preserved,
but there are a number of localized states at different ener-
gies; note that the logarithmic vertical scale in this panel
shows the distributed weight of such states. These results
show that arrays with α-dependent tunneling have widely
tunable spectra.

We define the energy bandwidth as Δα(N) = Emax −
Emin = 2Emax. When α = 0, the bandwidth is indepen-
dent of the array size for N � 1, Δα=0(N) → ΔB = 4�C,
whereas for α �= 0, the bandwidth depends upon the size
of the array and is essentially determined by the maxi-
mum tunneling element in the array. Thus, Δα(N) ∼ Nα

for α > 0 and ∼N−|α|/2 for α < 0. In the following, we
use inverse-bandwidth as the characteristic unit of time
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Fig. 5. Dimensionless energy spectra (left-hand four panels) and unnormalized density of states D(ε) as a function of dimen-
sionless energy ε = E/Emax (right-hand four panels) for Hamiltonian (15) with N = 500 waveguides. The α = 1 spectrum is
exactly linear, whereas for α = 2, it is linear near the edges. When α = −1, the tunneling at the edge of the array is higher
than that at its center, and the spectrum has discrete, localized states with energies near the band edges (the blue oval). On
the right, when α = 0, D(ε) is maximum at ε = ±1 whereas for α = 2, it is maximum at ε = 0. The quasilinear behavior of
the α = 2 spectrum near the band edges is reflected in the flat D(ε) near ε = ±1. For α < 0, the presence of discrete, localized
states at the bottom and the top of the energy band is reflected in the finite, but vanishingly small, density of states away from
the center of the band.

for an array with a given tunneling profile α and number
of waveguides N , τα(N) = �/Emax = 2�/Δα(N). Thus, as
α > 0 increases, the characteristic time τα and the charac-
teristic length lα = cτα/n both decrease, where c/n is the
(constant) speed of light along the waveguide with index
of refraction n. Thus, in a sample with a given physical
length, long-time dynamics are easily observed as α in-
creases, whereas short-time dynamics become accessible
for α < 0 [60].

Now we consider the time evolution of a wave packet
in such an array. For an arbitrary initial state |ψ(0)〉, the
time-evolved state is obtained by |ψ(t)〉 = Gα(t)|ψ(0)〉
where the time-evolution operator Gα(t) = exp [−iHαt/�]
is obtained numerically. Since we have discussed the time-
dependent intensity profiles of wave packets that are local-
ized to a single or two sites in Section 2.1, here we choose
a broad initial state that is equally distributed across all
waveguides, |ψ(0)〉 = 1/

√
N .

Figure 6 shows the intensity I(p, t) = |〈p|Gα(t)|ψ(0)〉|2
in an N = 50 array with α = {0, 1, 2,−1}; the horizontal
axis denotes time normalized by the α- and N -dependent
time-scale τα(N). Note that, due to the symmetries of
the Hamiltonian and the initial state, the intensity sat-
isfies I(p, t) = I(N + 1 − p, t) and that the average in-
tensity per site is Ia = 0.02 = 1/N . When the tunneling
is constant, the effects of interference and reflection at
the boundaries lead to a suppression of the intensity at
the edges, and a modest enhancement, by a factor of five,
near the center of the array (α = 0 top panel). When
α = 1 (second panel) the constant spacing between the
energy levels implies that the intensity profile is periodic
in time, I(p, t) = I(p, t + π/C). In contrast to the con-
stant tunneling case, we also observe that the maximum

Fig. 6. I(p, t) for a uniformly distributed initial state, |ψ(0)〉 =
1/

√
N ; the horizontal axis denotes normalized time. For α = 0,

we get larger intensity in the central region due to edge-
reflection and interference. α = 1 shows periodic behavior
due to the equally-spaced eigenvalues of the underlying Hamil-
tonian. When α = 2, the quasilinear energy spectrum and the
edge-reflections contribute to the quasi-periodic larger inten-
sity in the central region. The bottom panel shows that for
α = −1, eigenstates localized at the two edges lead to a larger
intensity at the edge instead of in the central region.

intensity at the center of the array is enhanced by a fac-
tor of 20. For α = 2 (third panel) due to the quasilinear
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nature of the energy spectrum, we see approximate recon-
struction of the intensity profile, and the maximum inten-
sity at the center is again significantly enhanced from its
initial value. In all the three cases, since the tunneling at
the center is maximum, we see that the intensity profile
I(p, t), in general, is largest at the center of the array and
reduces symmetrically on the two sides. The bottom panel
in Figure 6 shows the intensity evolution for an array with
α = −1, which has localized eigenstates at the two ends
of the array. In a sharp contrast with the earlier results,
we see that I(p, t) now shows symmetrical maxima near
the two edges of the array, with a broad minimum near
the central region. These results show that identical ini-
tial states give rise to strikingly different intensity profiles
in tunable waveguide arrays with a position-dependent
tunneling profiles.

2.4 Disorder induced localization

In the past three subsections, we have focused on the prop-
erties of waveguide arrays with constant or position depen-
dent tunneling profiles and constant or linearly varying
on-site potentials; we implicitly assumed that it was pos-
sible to fabricate a waveguide array with the exactly spec-
ified Hamiltonian. This is, of course, an approximation.
In real samples, disorder is always present through varia-
tions in the tunneling amplitudes �Cj,j+1 or on-site poten-
tials �βj in the tight-binding Hamiltonian, equation (1).
The effect of such disorder on the transport properties of
lattices was first investigated in the context of electronic
systems [61,62], and then extended to classical
waves [17–19]. In one dimension, all eigenstates of a disor-
dered Hamiltonian are exponentially localized in the limit
of an infinite system size, N → ∞ irrespective of the
strength of the disorder vd. This non-analytical result –
exponential localization at infinitesimal disorder – is due
to the subtleties associated with the order of limits
N → ∞ and vd → 0 [63–65].

In a finite array of N ∼ 102 coupled waveguides, lo-
calization refers not to an exponential localization of all
eigenstates à la electronic systems, but rather to the devel-
opment of a “steady-state” intensity profile I(p) that con-
trasts the ballistic expansion and edge-reflection present
in a clean system. The time required for the emergence
of the steady-state profile is inversely proportional to the
strength of the disorder. In another sharp contrast, the
typical strength of disorder in (weakly conducting) elec-
tronic materials is vd � EF whereas in waveguide arrays,
the disorder strength can be comparable to the tunneling,
vd ∼ �C [15,16].

In this subsection, we present the effects of disorder on
the time-evolution of a uniform initial state. We consider
two distinct disorders. The diagonal disorder randomly
modulates the on-site potential �βi → �βi + vi where vi

is a random variable with zero mean and variance vds.
The off-diagonal disorder randomly modulates the tun-
neling �Ci → �Ci + vi where vi is a zero-mean random
variable with variance vdt. We use uniformly distributed

random variables to ensure that the modulated tunnel-
ing rates remain strictly positive, although the results are
independent of the type of distribution used as long as
any such distribution has zero mean and identical vari-
ance [16,66]. The resultant intensity distribution is aver-
aged over multiple M ∼ 104 realizations to ensure that
the final results are independent of the number of dis-
order realizations and the probability distribution of the
site or tunneling disorder. Figure 7 shows the intensity
profile 〈I(p, t)〉 for an array with N = 50, uniform ini-
tial state, and α = {0, 2,−1} where 〈· · · 〉 denotes disorder
average. We remind the reader that the average inten-
sity per site is Ia = 1/50. The left-hand column has re-
sults for on-site disorder vds and the right-hand column
has results for the tunneling disorder of equal strength,
vds = vdt = 0.1Δα(N). The top line, α = 0, shows that
for both disorders the initial interference pattern is re-
placed at later times by a steady state intensity that is
suppressed at the edges. The center line, α = 2, shows
the same qualitative behavior, but also shows slight dif-
ference between the the two intensity profiles, particu-
larly at small times. The bottom line, α = −1, shows
steady-state profiles that have maxima near the two edges.
In all cases, the differences between the left-hand and
right-hand panels for a given tunneling profile Cα(j) de-
crease with increasing time, measured in units of τα(N).

Lastly, we compare the cross-section of the intensity
profiles at t/τα = 500 for the same array with on-site dis-
order (solid symbols) and tunneling disorder (open sym-
bols) of equal strength, vds = vdt = 0.1Δα. When α =
−1 (circles), the intensity profile shows a minimum at
the center and multiple, symmetric maxima at the two
edges, whereas for α = 2 (squares), the intensity is maxi-
mum at the center and monotonically decays away from it.
Note that the multiple maxima near the two edges show
up as striations in the intensity profiles for α = −1 in
Figure 7. The (gray) dashed line shows the average in-
tensity Ia = 1/N = 0.02 per site. We point out that
the intensity profiles for on-site and tunneling disorders
coincide with each other at sufficiently long times, al-
though the time required for such a match depends upon
the tunneling profile α and the initial state. For exam-
ple, Figure 8 shows virtually identical intensity profiles
for α = 2, whereas for α = −1, the intensity suppres-
sion due to the tunneling disorder (black open circles) is
larger than that by the on-site disorder (blue solid circles).
It is also worth emphasizing that the disorder-averaged
intensity profile recovers the underlying parity-symmetry
shared by the clean Hamiltonian and the initial state,
〈I(p, t)〉 = 〈I(N + 1 − p, t)〉.

We end this section with another phenomenon due to
the parity-symmetric tunneling profile in a finite array of
waveguides. Figure 9 shows the time-and site-dependent
intensity evolution in an array with N = 100 waveguides,
a small on-site disorder vds/Δα = 0.05, and tunneling
profiles with α ≥ 0. The initial wave packet is localized
at a single site m0 = 15. The top panel (α = 0) shows
that I(p, t) changes from interference-dominated behavior
at short times to disorder-dominated steady-state

30001-p9

https://doi.org/10.1051/epjap/2013130240 Published online by Cambridge University Press

https://doi.org/10.1051/epjap/2013130240


The European Physical Journal Applied Physics

W
Fig. 7. Disorder averaged intensity profiles 〈I(p, t)〉 for a uniform initial state with site-disorder (left-hand column) and
tunneling-disorder (right-hand column) in an N = 50 array; the horizontal axes denote time normalized by the relevant time-
scale τα(N) and the two disorder strengths are equal, vds = vdt = 0.1Δα. In all cases, the interference pattern at small times
is replaced by quasi steady-state intensity at large times. For α = 0 (top line) and α = 2 (center line), 〈I(p)〉 has a maximum
near the central region, whereas for α = −1 (bottom line) the intensity has multiple maxima near the two edges of the array.
This emergence of steady state profiles shows that “extended” initial states also undergo disorder-induced “localization” as it
is defined here.

I

Fig. 8. Intensity profiles at t/τα = 500 for an array with
N = 50, α = 2 (squares) and α = −1 (circles), and on-site
(solid symbols) or tunneling (open symbols) disorders of equal
strength. Both disorders give identical disorder-averaged in-
tensity profiles at sufficiently long times, and they are parity-
symmetric about the center of the array.

behavior at longer times; the steady-state intensity is max-
imum at site m0 and decays exponentially with distance
from m0 [15]. The center panel (α = 1) shows that, at
short times, the wave packet partially reconstructs at the
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Fig. 9. Intensity 〈I(p, t)〉 in an array withN = 100, a weak dis-
order vds/Δα = 0.05, and initial wave packet |m0〉 with m0 =
15. Top panel shows that for constant tunneling, the steady-
state intensity profile is maximum at m0, with exponential de-
cay on the two sides. The center (α = 1) and bottom (α = 2)
panels show that, at short times, the wave packet partially re-
constructs at the mirror-symmetric site m̄0 = N+1−m0 = 86.
Thus, in sharp contrast with the traditional localization, α = 0
case, the steady-state intensity profiles for α ≥ 1 have a two
peaks, one at the initial wave packet location and the other
at its parity-symmetric counterpart. Note that in all cases, the
average intensity is Ia = 0.01 = 1/N and thus, the localization
enhancement is only by a factor of two.
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parity-symmetric site m̄0 = N +1−m0. The steady-state
intensity profile in this case has two peaks, at m0 and
m̄0, and their relative weights are tuned by the disorder
strength and the distance between the two peaks. The
bottom panel (α = 2) shows a qualitatively similar result.
Thus, a position-dependent, parity-symmetric tunneling
in a finite array of waveguides leads to effective localiza-
tion at two waveguide locations, even if the initial wave
packet is introduced in a single waveguide [67].

3 Non-Hermitian, PT-symmetric models

In the last section, we only considered Hermitian Hamilto-
nians, equation (1), which modeled waveguides that have
no loss or amplification of the input signal. The ubiqui-
tous losses that are present in real waveguides are phe-
nomenologically taken into account by adding a negative
imaginary part to the real eigenvalues of the Hermitian
Hamiltonian, En → En − iΓn [68,69]. This imaginary part
Γn > 0 leads to an exponential decay of the total in-
tensity and therefore represents dissipation, absorption,
or friction [3]. Nominally, if we assign a positive imag-
inary part to the energies of a Hermitian Hamiltonian,
En → En + iΓn with Γn > 0, the total intensity of an
initially normalized wave packet will increase, and will
therefore represent gain or amplification. Such a phenom-
enological model breaks down at long times, when the
power required to maintain the exponential intensity in-
crease cannot be supplied by the “reservoir”.

In this section, we will focus on non-Hermitian
Hamiltonians that represent balanced, spatially separated
loss and gain. In a waveguide-array realization of such a
Hamiltonian, one of the waveguides is lossy, its parity-
symmetric counterpart has gain, and the rest of the wave-
guides are neutral [44,45]. To get a feel for properties of
such a system and to define the terminology, let us start
with the simplest example with N = 2 waveguides. The
tunneling Hamiltonian for this system is given by Ht =
−�C(a†

1a2+a
†
2a1). The non-Hermitian, PT -symmetric po-

tential, which represents gain in the first waveguide and
loss in the second, is given by V = i�γ(a†

1a1 − a†
2a2).

For a single waveguide, the on-site “potential” −iγ leads
to an intensity that decays exponentially with distance
traveled along the waveguide and therefore we call
it the “loss” channel. In a matrix notation, the total
Hamiltonian becomes

H = �

[
iγ −C

−C −iγ

]
�= H†. (16)

Although H = Ht + V is not Hermitian, it is invariant
under the combined parity (P : 1 ↔ 2) and time-reversal
(T : i → −i) operations [2]. It is straightforward to ob-
tain the eigenvalues λ± and (right) eigenvectors |±〉R of
the Hamiltonian (16). We remind the reader that since
the matrix H is not Hermitian, its left-eigenvectors and
right-eigenvectors are not Hermitian conjugates of each
other [70,71].

For a small non-Hermiticity, γ ≤ C, the eigenvalues of
H are purely real, and given by λ± = ±ε = ±�

√
C2 − γ2.

The corresponding right-eigenvectors are given by

|±〉R =
1
2

[
|1〉 ∓ e∓iθ|2〉

]
, (17)

where sin θ = γ/C ≤ 1. Thus, R〈+|−〉R = (−i)eiθ sin θ �=
0. Since the matrix H is symmetric, H = HT , the left-
eigenvectors are obtained by taking the transpose of the
right-eigenvectors. |±〉R are simultaneous eigenvectors of
the combined PT operation as well, and each of them has
equal weight on the gain and the loss site. When γ = 0
the inner product is zero, whereas for γ → C, the two
eigenvalues become degenerate and the two eigenvectors
become parallel to each other. For γ ≥ C, the eigenvalues
are purely imaginary complex conjugates, λ± = ±i�Γ =
±i�

√
γ2 − C2. The corresponding right-eigenvectors are

now given by

|±〉R =
1√

1 + e∓2φ

[
|1〉 + ie∓φ|2〉

]
, (18)

where coshφ = γ/C ≥ 1. Thus, the inner product of the
two eigenvectors is equal to 1/ coshφ ≤ 1. Note that now
the eigenvectors are not simultaneous eigenvectors of the
PT -operation; the |−〉R eigenvector has higher weight on
the gain site and the |+〉R eigenvector has higher weight
on the loss site.

The region of parameter space where all eigenvalues
are real and the eigenvectors are simultaneous eigenvec-
tors of the PT operation, γ/C ≤ 1, is traditionally called
the PT -symmetric region, and γPT = C is called the
threshold loss-and-gain strength. For γ/γPT > 1, com-
plex conjugate eigenvalues emerge and the PT -symmetry
of the Hamiltonian H is not shared by its eigenvectors
with complex eigenvalues. Therefore, the emergence of
complex eigenvalues is called PT -symmetry breaking. In
the following subsections, we present the properties of N -
waveguide arrays with Hermitian, position-dependent tun-
neling profiles Cα(j) and a single pair of non-Hermitian,
PT -symmetric loss and gain potentials. Note that in this
case, the threshold loss-and-gain strength γPT (N,m) de-
pends upon the array size N , and the location m of the
single gain waveguide in that array.

3.1 PT symmetric phase diagram

We begin with the Hamiltonian for an N -site array with
open boundary conditions,

HPTα = Hα + iγ
(
a†

mam − a†
m̄am̄

)
, (19)

where Hα is the Hermitian tunneling Hamiltonian, equa-
tion (15), 1 ≤ m ≤ N/2 is the position of the waveguide
with gain, and m̄ = N + 1 − m is the parity-symmetric
position of the waveguide with absorption. The parity op-
erator in an array with open boundary conditions is given
by P : ak → ak̄. It follows that the Hermitian part of the
Hamiltonian is PT -symmetric, Cα(k) = Cα(N − k), and
so is the non-Hermitian potential term. Thus, to obtain
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Fig. 10. PT -symmetric phase diagram as a function of tunneling profile α ≥ 0. The vertical axes denote the strength of the
non-Hermitian, loss (gain) term in units of the quarter-bandwidth Δ′

α = Δα/(4�) of the Hermitian lattice; the horizontal axes
denote the relative position of the gain waveguide μ = m/N . The left-hand panel, with even N = 40, shows that γPT (μ)/Δ′

α = 1
is maximum at μ = 0.5, and remains relatively constant over a wide range of μ as μ → 0 for α ≥ 1. In contrast, for constant
tunneling, the threshold loss-and-gain strength decays rapidly with decreasing μ, but increases again as μ → 0. The right-hand
panel shows corresponding, qualitatively similar, results for an odd array with N = 41. For an odd array, the smallest separation
between loss and gain waveguides is D = 2, instead of D = 1 in an even array, and therefore, the maximum threshold value for
an odd array near μ = 0.5 is γPT = 0.5Δ′

α.

the PT -symmetric phase diagram, we need to obtain the
eigenvalues of the Hamiltonian HPT and then locate the
threshold loss and gain strength γPT (μ) as a function of
the relative location μ = m/N of the gain waveguide. It is
possible to obtain this threshold analytically only in the
case of constant tunneling, α = 0 [72,73]; however, for
an arbitrary α, a numerical approach is most fruitful. By
numerically tracking the emergence of complex eigenval-
ues of the tridiagonal matrix HPTα, we obtain the typical
phase diagram, shown in Figure 10. Note that μ = 1/N
corresponds to largest distance between the loss and gain
waveguides, whereas μ ∼ 0.5 corresponds to the shortest
separation between them. Due to the constraint of parity-
symmetric locations, in an even N -array this separation is
unity, and for an odd N -array, the loss and gain locations
have to be separated by a single waveguide between them.

The left-hand panel in Figure 10 shows the threshold
strength measured in units of the lattice bandwidth as
a function of relative location of the gain waveguide for
an N = 40 array with α = 0 (blue circles), α = 1 (red
squares), and α = 2 (beige diamonds); all eigenvalues of
HPTα are real for values of γ below the curve for that α.
Note that we use quarter-bandwidth, Δ′

α = Δα/(4�), as
the relevant scale in the phase diagram. For α ≥ 1, the
threshold strength is maximum γPT /Δ

′
α = 1 at μ = 0.5,

when the loss and gain waveguides are nearest neighbors.
It reduces to γPT /Δ

′
α ∼ 0.3 and remains approximately

constant for 0.15 ≤ μ ≤ 0.45, and is monotonically sup-
pressed with the separation D = 1 + N(1 − 2μ) between
the loss and gain waveguides. Note that the behavior of
γPT (μ) for an array with constant tunneling amplitude,
α = 0 is dramatically different. Starting from the maxi-
mum value of γPT /C = 1 for closest loss and gain, the
threshold strength first drops rapidly with increasing D,
but is again enhanced as the loss and gain sites approach
the two edges of the array. Thus, for moderate separa-
tions μ ∼ 0.25 and number of waveguides N ∼ 40, the
PT -symmetric phase in an array with center-enhanced
tunneling, α > 0, is substantially stronger than in an

array with constant tunneling amplitude.1 The right-hand
panel shows the PT -phase diagram for an array with an
odd number of waveguides, N = 41. We see that the
robust nature of the PT -symmetric phase for α ≥ 1 is
maintained, although the threshold for smallest separa-
tion μ = (N − 1)/2N is reduced to γPT = 0.5Δ′

α [73,74].
We emphasize that although the qualitative form of

the PT -phase diagram is the same for different N , as N
increases, the threshold strength γPT (μ)/Δ′

α decreases for
all separations except when the loss and gain are the clos-
est (μ ∼ 0.5) or the farthest (μ = 1/N). Thus, rigorously,
γPT /Δ

′
α(N) → 0 as N → ∞; however, this is of no con-

cern for experiments where the number of sites in an array
– whether the “site” be an optical waveguide [44,45,47],
an RLC circuit [75], or a pendulum [76] – is typically
N � 100. Since the PT -symmetry breaking occurs when
two adjacent eigenvalues En, En+1 become degenerate and
then complex, and since the eigenvalues of Hα occur in
pairs ±En, it follows that, for a generic position μ of
the gain waveguide, N − 4 eigenvalues of the Hamiltonian
HPTα remain real while four eigenvalues become complex
conjugate pairs. The remarkable exception to this rule is
the case of nearest-neighbor loss and gain waveguides in
an even N array. In this case, since the array can be ef-
fectively divided into two systems, one with the loss and
the other with the gain, all N eigenvalues of HPTα be-
come complex simultaneously [74,77]. Thus, the implica-
tions of PT -symmetry breaking are determined by both
the threshold loss-and-gain strength γPT and the location
and number of eigenvalues that become complex at the
threshold.

3.2 Time evolution across the PT threshold

In the previous section with Hermitian Hamiltonians, we
presented intensity profiles I(p, t) for various initially

1 For α < 0, the PT -symmetric phase is highly fragile.
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normalized states, 〈ψ(0)|ψ(0)〉 = 1. Since the time
evolution operator in these cases was unitary, G†(t) =
exp

[
+iH†t/�

]
= exp [+iHt/�] = G−1(t), the total in-

tensity of the time-evolved wave packet remained unity,∑N
p=1 I(p, t) = 1. For a non-Hermitian Hamiltonian, since

H†
PT �= HPT , the corresponding time evolution operator

is not unitary. Therefore, the norm of an initially nor-
malized state is not preserved and the total intensity is
a function of time, I(t) =

∑N
p=1 I(p, t) �= 1. Note that

G(t) = exp [−iHPT t/�] is not a unitary operator irrespec-
tive of whether the system is in the PT -symmetric phase
or has complex conjugate eigenvalues.

To get a better feel for this non-unitary time evolution
operator, let us calculate it for the two-site Hamiltonian,
equation (16). From the completeness property of its left
and right eigenvectors, it follows that

G(t) = |+〉Re
−iλ+t/�

L〈+| + |−〉Re
−iλ−t/�

L〈−|, (20)

where the left eigenvectors L〈±| are obtained by trans-
posing the right eigenvectors |±〉R. In the PT -symmetric
phase, γ/C ≤ 1, equation (17) implies that

G≤(t) =
[

cos τ + γ
ε sin τ +iC

ε sin τ
+iC

ε sin τ cos τ − γ
ε sin τ

]
= GT

≤(t), (21)

where τ = εt/� is the dimensionless time. We leave it
to the reader to verify that G≤(t) is not unitary, but its
eigenvalues have unit modulus and are given by
e±iτ . Therefore the non-unitary time evolution oper-
ator satisfies detG≤(t) = 1. In the PT -symmetry
broken phase, γ/C ≥ 1, a corresponding calculation

using equation (18) gives

G≥(t) =
[

cosh τ ′ + γ
Γ sinh τ ′ iC

Γ sinh τ ′

iC
Γ sinh τ ′ cosh τ ′ − γ

Γ sinh τ ′

]
, (22)

where τ ′ = Γt/�. The reader can verify that G≥(t) is not
unitary, its eigenvalues are e±τ ′

, and thus, detG≥(t) = 1.
We note that the matrix elements of G≤(t) are

bounded, those of G≥(t) diverge with increasing time, and
that the time evolution operator is continuous across the
PT -symmetry threshold. At the threshold γ = C, since
the Hamiltonian is singular, H2 = 0, the exponential ex-
pansion for the time-evolution operator truncates at the
linear order and gives

GC(t) =
[

1 + Ct/� iCt/�
iCt/� 1 − Ct/�

]
. (23)

Since the time-evolved state is given by |ψ(t)〉=G(t)|ψ(0)〉,
the change in net intensity is proportional to unitary
deficit, G†(t)G(t)−1. Equations (21)–(23) show that, for a
PT -symmetric Hamiltonian (16), the net intensity I(t) in
the PT -symmetric phase remains bounded, increases ex-
ponentially with time in the PT -symmetry broken phase,
and exactly at the threshold, varies quadratically with
time at long times [78].

Figure 11 shows the evolution of net intensity I(t) in an
N = 40 waveguide array with constant tunneling, α = 0,
the loss-and-gain waveguides farthest apart (m = 1) or
closest together (m = N/2 = 20) as a function of γ/γPT .
These numerically obtained results are for an initial state
localized at the first waveguide, |ψ(0)〉 = |1〉. We remind
the reader that the crucial difference between the m = 1
case and the m = N/2 case is that only four eigenvalues at

Fig. 11. Evolution of the time-dependent net intensity I(t) as a function of loss-and-gain strength γ/γPT in an N = 40
waveguide array with the gain-waveguide at m = 1 (blue curves) and m = N/2 (red curves). The left-hand panels show that
I(t) is remains bounded in the PT -symmetric region, γ/γPT < 1. The top-right panel shows that I(t) ∝ t2 at the threshold,
γ/γPT = 1. The bottom-right panel shows that in the PT -symmetry broken region, γ/γPT > 1, the net intensity diverges
exponentially with time. These results, obtained for |ψ(0)〉 = |1〉, have the same qualitative behavior for an arbitrary initial
state.
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the center of the cosine-band become complex for m = 1,
whereas all eigenvalues simultaneously become complex
when m = N/2 [73,74,77]. The top-left and bottom-left
panels show that in the PT -symmetric phase, γ/γPT < 1,
the net intensity I(t) oscillates but remains bounded, and
its time-average increases monotonically with its proxim-
ity to the PT -symmetric phase boundary. In addition,
they show that the average and fluctuations in the m =
N/2 case are smaller than those in the m = 1 case. The
top-right panel shows I(t) at the threshold, γ/γPT = 1, for
the two cases; note the logarithmic scale on both axes. At
small times, the order-of-magnitude difference between in-
tensities for the two gain-waveguide locations is consistent
results in the left-hand panels. At longer times, we see that
the net intensity scales quadratically with time, although
the prefactor of this quadratic dependence is greater for
the m = 1 case. The bottom-right panel shows I(t) in
the PT -symmetry broken phase, γ/γPT = 1.01; note the
logarithmic scale on the vertical axis. These results show
that, as expected, the net intensity diverges exponentially,
but with a larger exponent for loss and gain waveguides
at the two ends of the array, m = 1. We emphasize that
this qualitative trend is valid for arbitrary location and
shape of the initial wave packet. The results in Figure 11
show that the simple 2 × 2 non-Hermitian Hamiltonian,
equation (16), captures the time-dependence of the net in-
tensity in a large tight-binding array, although it does not
capture the full gamut of PT -symmetry breaking signa-
tures [74].

3.3 Intensity correlations with Hermitian or
PT-symmetric disorders

We have seen in Section 2.4 that (Hermitian) disorder
leads to “localization” of an arbitrary initial state, that
is characterized by a steady-state, disorder-averaged in-
tensity profile 〈I(p)〉. The steady-state intensity profile is
solely determined by the initial state and the strength of
the disorder potential, but is independent of whether the
disorder is in the on-site potentials or tunneling ampli-
tudes. Therefore, the site-dependent steady-state inten-
sity measurements can only determine the strength of the
disorder, but not the type of the disorder. These two dis-
orders affect the particle-hole symmetric spectrum of the
clean lattice in qualitatively different manners: the on-
site, diagonal disorder destroys this symmetry whereas the
tunneling, off-diagonal disorder preserves it. Therefore, al-
though intensity measurements are insensitive to it, it is
known that intensity correlation function is able to distin-
guish between the on-site and tunneling disorders [79].

In contrast to the Hermitian potential, a non-
Hermitian, PT -symmetric potential, in the PT -symmetric
phase, preserves particle-hole symmetry of the resulting,
purely real spectrum [58]. Therefore, in this section, we
compare the steady-state intensity correlations that arise
from a Hermitian tunneling disorder and a non-Hermitian,
PT -symmetric disorder, both with zero mean and
equal variance. The PT -symmetric disorder potential is

given by

V =
N/2∑

m=1

iγm

(
a†

mam − a†
m̄am̄

)
, (24)

where the random, loss (or gain) potentials |γm| ≤ γPT

(μ = m/N) ensure that the system is in the PT -symmetric
phase. The normalized correlation matrix is defined as [79]:

Γjk(t) =
〈I(j, t)I(k, t)〉

〈I(j, t)〉〈I(k, t)〉

∣∣∣∣
t�1

, (25)

where I(j, t) is the intensity profile determined by the ini-
tial state |ψ(0)〉 and the disorder potential. 〈I(j, t)〉 is the
disorder-averaged intensity that becomes independent of
time at long times (Sect. 2.4). The net intensity

∑
p I(p, t)

is conserved at unity for a Hermitian disorder, but not
for the PT -symmetric disorder. The intensity correlation
function is defined as

g(r) =
1
N

N∑

j=1

Γj,j+r, (26)

and represents the sum of weights along a diagonal
that is shifted by r from the main diagonal of the steady-
state correlation matrix, equation (25). Figure 12 shows
the normalized, steady-state correlation matrix Γij and
the intensity correlation function g(r) for an N = 20 ar-
ray with constant tunneling, Cα(j) = C, and initial state
|ψ(0)〉 = (|9〉 + |10〉)/

√
2. The top line shows the results

(a) (b)

(c) (d)

Fig. 12. Normalized correlation matrix Γjk and intensity
correlation function g(r) for an N = 20 array with con-
stant tunneling, PT -symmetric on-site disorder (top line) and
Hermitian, tunneling disorder (bottom line) with zero mean
and equal variance vd = 0.02ΔB. The steady-state Γjk, pan-
els (a) and (c), are different for the two sources of disorder,
whereas the steady-state intensity correlation function g(r),
panels (b) and (d), is insensitive to them. Their similarity
shows that the particle-hole symmetry of the disordered spec-
trum is instrumental to the correlation function properties.
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for a PT -symmetric, on-site disorder, whereas the bottom
line has results for a Hermitian, tunneling disorder; both
disorders have zero mean, equal variance vd/ΔB = 0.02,
and the results are averaged over M ∼ 104 disorder real-
izations. Panels (a) and (c) show that the full correlation
matrix Γjk is sensitive to the source of disorder. How-
ever, panels (b) and (d) show that the intensity correla-
tion function g(r) = g(−r) cannot distinguish between the
two. Thus, symmetry properties of the disorder-induced
spectrum are reflected in the disorder-averaged intensity
correlation function, and not the on-site or off-diagonal
nature of disorder [67].

These results also suggest that although intensity dis-
tribution, or intensity correlation function is insensitive to
the disorder distribution function, higher order intensity
correlations may encode signatures of different disorder
distributions that have zero mean and identical
variance [16,66].

4 Conclusion

In this article, we have presented the properties of coupled
waveguide arrays. We have argued that they provide a
versatile and robust realization of a tight-binding model,
ideally suited for investigating many quantum, quasi-
classical, and bandwidth effects that are not easily
accessible in “naturally occurring” lattices in electronic
materials. We have shown that finite arrays with small
number of waveguides exhibit a rich variety of effects, such
as localization in the parity-symmetric waveguide, that are
absent in a lattice with sites N → ∞.

Due to the ease of introducing absorption or ampli-
fication, coupled optical waveguides are also well-suited
to model open systems with spatially separated, balanced
loss and gain. Such systems are formally described by non-
Hermitian, PT -symmetric Hamiltonian. Since the spec-
trum of such Hamiltonian changes from purely real to
complex, and since the time-evolution under such
Hamiltonian is always non-unitary, we have discussed a
few salient properties of PT -symmetric lattice models.

In this review, we have ignored nonlinear effects that
arise at high intensities in a waveguide, and that are ex-
pected to play a large role in the PT -symmetry broken re-
gion where the net intensity increases exponentially with
time, and have not considered PT -symmetric potentials
that vary with time, or equivalently, the propagation dis-
tance along the waveguide [80]. We have not considered
the effects of shape-preserving solitonic solution that ex-
ist in the nonlinear regime on time evolutions discussed
here [81]. In addition, we have not discussed the effects
of PT -symmetric, non-Hermitian disorder, including the
fate of Anderson localization, in the PT -symmetry bro-
ken region. The investigation of these outstanding ques-
tions will further deepen our knowledge of this exciting
research area.

This work was supported by the NSF DMR-1054020 (Y.J.),
and a GAANN Fellowship (C.T.) from the US Department of
Education grant (G.V.).
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