WEAKLY STABLE BANACH SPACES AND THE BANACH-SAKS PROPERTIES

by THEODOSIS ZACHARIADES

(Received 29 July, 1991)

1. Introduction. In [9] J. L. Krivine and B. Maurey introduced the class of stable Banach spaces: a separable Banach space is called *stable* if for every pair of bounded sequences $(x_n)_n$, $(y_n)_n$ and for every pair of ultrafilters $\mathbb{1}$, \mathfrak{V} on the natural numbers we have

 $\lim_{\substack{n \ u \ u} \\ 11 \ u} \lim_{u} ||x_n + y_m|| = \lim_{\substack{m \ u \ u} \\ u \ u} \lim_{u} ||x_n + y_m||.$

In the paper above it was proved that every stable Banach space contains some $l^p(1 \le p < \infty)$ almost isometrically. It was also shown that if X is stable then so is $L^p(X)$ for $1 \le p < \infty$. It is easy to see that c_0 is not a stable space. S. Guerre and J. T. Lapreste in [8] have proved that every stable Banach space X is weakly sequentially complete and has the weak Banach-Saks (w.B.S.) property (namely, every weakly null sequence $(x_n)_n$ has a subsequence $(x_{k_n})_n$ whose Cesaro means $\frac{1}{n} \sum_{m=1}^n x_{k_m}$ are norm convergent). If in addition X does not contain an isomorphic copy of l^1 then X has the Banach-Saks (B.S.) property (namely, the statements above holds for every bounded sequence $(x_n)_n$).

S. Argyros, S. Negrepontis and the present author in [2] and independently, D. J. H. Garling in an earlier unpublished version of [7], have introduced the wider class of weakly stable Banach spaces. A separable Banach space is called *weakly stable* if for every pair of sequences $(x_n)_n$, $(y_n)_n$ contained in a weakly compact subset of X, and for every pair of ultrafilters U, \mathfrak{V} on the natural numbers we have

$$\lim_{n \to \infty} \lim_{m \to \infty} ||x_n + y_m|| = \lim_{m \to \infty} \lim_{n \to \infty} ||x_n + y_m||.$$

In [3], it was proved that c_0 is a weakly stable Banach space (this was also proved by D. J. H. Garling in the afore-mentioned paper) and that every weakly stable Banach space contains c_0 or some $l^p (1 \le p < \infty)$ almost isometrically.

A weakly stable Banach space X, every subspace of which contains l^2 almost isometrically but which is not reflexive, was constructed in [2]. It follows from [8] that this space does not admit an equivalent stable norm.

In this paper we prove, using techniques from [8] (also see [4]), that every weakly stable Banach space X has the w.B.S. property. If in addition X contains no isomorphic copy of l^1 , then X has the Alternate-signs Banach-Saks (A.B.S.) property (namely, every bounded sequence $(x_n)_n$ in X has a subsequence $(x_{k_n})_n$ such that the alternate signs Cesaro means $\frac{1}{n}\sum_{m=1}^{n} (-1)^m x_{n_m}$ are norm convergent). It is known that B.S. implies A.B.S. which in turn implies W.B.S. [3]. Since l^1 has W.B.S. but not A.B.S. and c_0 has A.B.S. but not B.S. the results above are the best possible. Finally from the example of [2] it follows that a weakly stable Banach space not containing l_1 or c_0 does not necessarily have B.S.

Glasgow Math. J. 35 (1993) 79-83.

THEODOSIS ZACHARIADES

The main theorem has two interesting corollaries. The first is that $L^2(c_0)$ does not admit an equivalent weakly stable norm. Thus the result in [9] on L^{ρ} spaces of stable Banach spaces that was mentioned above does not extend to the class of weakly stable Banach spaces. Another corollary is a characterization of C(K)-spaces (for compact, metrizable K) which admit an equivalent weakly stable norm: they are precisely the ones which are isomorphic to c_0 .

Note that, while the B.S. properties are isomorphic invariants, the stability properties are only isometric invariants. It is an open problem, to find conditions under which a separable Banach space has an equivalent stable or weakly stable norm.

2. Preliminaries. Let X be a separable Banach space. A type on X is a function $\tau: X \to \mathbb{R}^+$, for which there exists a sequence $(x_n)_n$ in X such that $\tau(x) = \lim ||x_n + x||$ for

every $x \in X$. Then we say that $(x_n)_n$ generates τ . The set of all types on X is denoted by $\mathcal{F}(X)$ and is provided with the topology of pointwise convergence. We set $\mathcal{F}^{1}(X) =$ $\{\tau \in \mathcal{T}(X) : \tau(0) \leq 1\}$. It is obvious that $\mathcal{T}^1(X)$ is a compact space and $\mathcal{T}(X)$ is locally compact and σ -compact. We denote by $\mathcal{T}_w(X)$ (respectively $\mathcal{T}_{wn}(X)$) the set of types on X which are generated by a weakly convergent (respectively weakly null) sequence of X. An element of $\mathcal{T}_{w}(X)$ (respectively $\mathcal{T}_{wn}(X)$) is called a *weak* (respectively *weakly null*) type on X. A type $\tau \in \mathcal{T}(X)$ is symmetric if $\tau(x) = \tau(-x)$ for every $x \in X$. We denote by $\mathcal{T}^{\mathcal{G}}(X), \mathcal{T}^{\mathcal{G}}_{wn}(X), \mathcal{T}^{\mathcal{G}}_{wn}(X)$ the set of all symmetric, weak and symmetric, weakly null and symmetric types on X respectively. For $\tau \in \mathcal{T}(X)$ and $\lambda \in \mathbb{R}$ we set $\lambda \tau = 0$ if $\lambda = 0$, and $(\lambda \tau)(x) = |\lambda| \tau\left(\frac{x}{\lambda}\right)$ if $\lambda \neq 0$ for $x \in X$.

Let X be a weakly stable space. If $\sigma, \tau \in \mathcal{T}_w(X)$ we set $(\tau * \sigma)(x) = \lim \lim ||x_n| +$

 $y_m + x \parallel$ for every $x \in X$, where $(x_n)_n$, $(y_n)_n$ are two sequences which generate the types τ, σ , respectively. In [2] it is shows that $\tau * \sigma \in \mathcal{T}_w(X)$ and if $\tau, \sigma \in \mathcal{T}_{wn}(X)$ then $\tau * \sigma \in \mathcal{T}_{wn}(X)$. A subset \mathscr{C} of $\mathcal{T}_{wn}^{\mathscr{G}}(X)$ is called a *conic class* if $\mathscr{C} \neq \emptyset$, $\mathscr{C} \neq \{0\}$, \mathscr{C} is a closed subset of $\mathcal{T}_{wn}^{\mathscr{G}}(X)$, and $\sigma * \tau \in \mathscr{C}$, $\lambda \tau \in \mathscr{C}$ for σ , $\tau \in \mathscr{C}$ and $\lambda \in \mathbb{R}$, $\lambda \ge 0$. If \mathscr{C} is a conic class in $\mathcal{T}_{wn}^{\mathscr{G}}(X)$, $\sigma \in \mathscr{C}$ and α , $\beta > 0$ then σ is called an $(\alpha, \beta, \mathscr{C})$ -approximating type if for every $\varepsilon > 0$ and every neighborhood V of σ there is $\tau \in \mathscr{C} \cap V$ such that

$$|(\tau * \alpha \tau)(x) - (\beta \tau)(x)| \le \varepsilon \text{ for } x \in X.$$

We denote by $\Gamma_{\alpha,\beta,\mathscr{C}}$ the set of $(\alpha,\beta,\mathscr{C})$ -approximating types. The *spreading model* of $\sigma \in \mathscr{T}^{\mathscr{G}}_{w}(X)$ is a Banach space $Y \supset X$, where Y is spanned by $X \cup \{e_n : n = 1, 2, ..., \}$ and such that

$$\|x + \lambda_1 e_1 + \ldots + \lambda_n e_n\| = (\lambda_1 \sigma * \ldots * \lambda_n \sigma)(x)$$

for $n = 1, 2, ..., \lambda_1, ..., \lambda_n \in \mathbb{R}$, $x \in X$. The spreading model of σ is unique up to isometry and the sequence $(e_n)_n$ is called the fundamental sequence of σ . A type $\sigma \in \mathcal{T}^{\mathcal{G}}_{w}(X)$ is called an l^{p} -type, for some $1 \leq p < \infty$, (respectively a c_{0} -type) if $\alpha \sigma * \beta \sigma =$ $(\alpha^p + \beta^p)^{1/p}\sigma$ (respectively $\alpha\sigma * \beta\sigma = \max(\alpha, \beta)\sigma$) for every $\alpha, \beta \ge 0$. It is clear that if a type $\sigma \in \mathcal{T}^{\mathcal{G}}_{w}(X)$ is an l^{p} -type or a c_{0} -type, then the fundamental sequence of σ is equivalent with the usual basis of l^p or c_0 .

3. The main result. In what follows, X will denote a fixed weakly stable space. For $\sigma \in \mathcal{T}_{wn}^{\mathcal{G}}(X)$, we set

$$D_{\sigma} = \{ \tau \in \mathcal{T}(X) : \text{there exist } \lambda_1, \ldots, \lambda_n \in \mathbb{R} \quad \text{with} \quad \tau = \lambda_1 \sigma * \ldots * \lambda_n \sigma \}$$

and $\mathscr{C}_{\sigma} = \overline{D}_{\sigma}$. It is clear that $D_{\sigma} \subset \mathscr{T}^{\mathscr{G}}_{wn}(X)$ and \mathscr{C}_{σ} is a closed subset of $\mathscr{T}^{\mathscr{G}}(X)$.

LEMMA 3.1. Let σ be a non-trivial, weakly null and symmetric type on X with fundamental sequence equivalent with the usual basis of l^1 . Then we have the following:

(i) $\mathscr{C}_{\sigma} \subset \mathscr{T}^{\mathscr{G}}_{wn}(X).$

(ii) The function $*: \mathscr{C}_{\sigma} \times \mathscr{C}_{\sigma} \to \mathscr{T}^{\mathscr{G}}_{wn}(X)$ is separately continuous.

(iii) \mathscr{C}_{σ} is a conic class.

(iv) Every non-trivial type τ that belongs to \mathcal{C}_{σ} has fundamental sequence equivalent with the usual basis of l^1 .

Proof. (i) Let $\tau \in \mathscr{C}_{\sigma}$. Without loss of generality we suppose that $\tau(0) = 1$. Then there is a sequence $\tau_n = \lambda_1^{(n)} \sigma * \ldots * \lambda_{k_n}^{(n)} \sigma(n = 1, 2, \ldots)$ with $\tau_n(0) = 1$, such that $\lim_{n \to \infty} \tau_n = \tau$. Since the fundamental sequence of σ is equivalent with the usual basis of l^1 , there is a K > 0 such that

$$\frac{1}{K} \le \sum_{i=1}^{k_n} |\lambda_i^{(n)}| \le K \tag{1}$$

for n = 1, 2, ... If (x_m) is a weakly null sequence which generates the type σ , as in the proof of Proposition 9, Ch. VII of [4], for every n = 1, 2, ..., there exists a block $(y_m^{(n)})_m$ of (x_m) , with $y_m^{(n)} = \sum_{i=1}^{k_n} \lambda_i^{(n)} x_{l_{mk_n+i}}$, which generates the type τ_n , and there are sequences $n_1 < ... < n_k < ...$ and $m_1 < ... < m_k < ...$ such that the sequence $(y_{mk}^{(n)})_k$ is a block of (x_m) which generates the type τ . From (1) we have $\lim_k y_{mk}^{(n)} = 0$ weakly. Thus $\tau \in \mathcal{T}_{wn}^{\mathcal{S}}(X)$.

(ii) For every $\pi \in \mathcal{T}_{w}^{\mathscr{G}}(X)$ the function $\phi_{\pi} : \mathscr{C}_{\sigma} \to \mathbb{R}$, with $\phi_{\pi}(\tau) = (\pi * \tau)$ (0), is well defined by (i). It is enough to prove that, if $\tau_{n} \in D_{\sigma}$, $n = 1, 2, \ldots$, and $\lim_{n} \tau_{n} = \tau$, then there exists a subsequence $(\tau_{n_{k}})_{k}$ of $(\tau_{n})_{n}$ such that $\lim_{n} \phi_{\pi}(\tau_{n_{k}}) = \phi(\tau)$.

Let $(x_m)_m$ be a weakly null sequence that generates the type σ . Then for every $n \in \mathbb{N}$ there exists a weakly null block $(y_m^{(n)})_m$ of (x_m) which generates the type τ_n . Thus we have $\phi_{\pi}(\tau_n) = \lim_{m} \pi(y_m^{(n)})$ for n = 1, 2, ..., and, without loss of generality, we may suppose that

$$|\phi_{\pi}(\tau_n) - \pi(y_m^{(n)})| \le \frac{1}{n}$$
⁽²⁾

for n, m = 1, 2, ... As in (i), there are sequences $n_1 < ... < n_k < ...$ and $m_1 < ... < m_k < ...$ such that the sequence $(y_{m_k}^{(n_k)})_k$ is a weakly null block of $(x_m)_m$ which generates the type τ . So we have

$$\phi_{\pi}(\tau) = \lim_{k} \pi(y_{m_k}^{(n_k)}). \tag{3}$$

From (2) and (3) it follows that $\lim_{k} \phi_{\pi}(\tau_{n_{k}}) = \phi_{\pi}(\tau)$.

THEODOSIS ZACHARIADES

(iii) It is obvious that $\mathscr{C}_{\sigma} \neq \emptyset$, $\mathscr{C}_{\sigma} \neq \{0\}$, \mathscr{C}_{σ} is a closed subset of $\mathscr{T}^{\mathscr{G}}_{wn}(X)$ and $\lambda \tau \in \mathscr{C}_{\sigma}$ for $\tau \in \mathscr{C}_{\sigma}$ and $\lambda \ge 0$. The fact that \mathscr{C}_{σ} is closed under * follows from (ii).

(iv) Let τ be a non-trivial type of \mathscr{C}_{σ} , $\tau(0) = 1$, and $\tau_n = \lambda_1^n \sigma * \ldots * \lambda_{k_n}^n \sigma$, $\tau_n(0) = 1$ for $n = 1, 2, \ldots$, with $\lim_{n \to \infty} \tau_n = \tau$. From (1) and (ii) it is easy to see that for every $c_1, \ldots, c_n \in \mathbb{R}$ we have

$$\frac{1}{K^2} \sum_{i=1}^n |c_i| \le (c_1 \tau * \ldots * c_n \tau)(0) \le K^2 \sum_{i=1}^n |c_i|$$

(see the proof of Proposition 9, Ch. VII of [4]). Thus the fundamental sequence of τ is equivalent to the usual basis of l^1 .

PROPOSITION 3.2. Let \mathscr{C} be a conic class of $\mathcal{T}_{wn}^{\mathscr{G}}(X)$ such that

(i) \mathscr{C} is a closed subset of $\mathscr{T}^{\mathscr{S}}(X)$, and

(ii) the function $*: \mathscr{C} \times \mathscr{C} \to \mathscr{C}$ is separately continuous.

Then there exists a type $\tau \in \mathcal{C}$, which is an l^p -type, for some $1 , or a <math>c_0$ -type.

Proof. By (i), Zorn's Lemma implies that \mathscr{C} contains a minimal conic class. Without loss of generality we may thus suppose that \mathscr{C} is minimal. From (i) we have that $\mathscr{C} \cap \mathscr{T}^1(X)$ is compact and we can prove, as in Lemma IV.4 of [9], that for every $\alpha > 0$ there exists $\beta > 0$ such that $\Gamma_{\alpha,\beta,\mathscr{C}} \neq \emptyset$ and $\Gamma_{\alpha,\beta,\mathscr{C}} \neq \{0\}$. From (ii) we have that $\Gamma_{\alpha,\beta,\mathscr{C}}$ is a conic class (see [9, Lemma IV.5]) and then, since \mathscr{C} is a minimal conic class, for every $\alpha > 0$ there exists $\beta > 0$ such that $\mathscr{C} = \Gamma_{\alpha,\beta,\mathscr{C}}$. From (i) \mathscr{C} is locally compact and σ -compact; hence Namioka's theorem [10], implies that there exists a dense subset D of \mathscr{C} such that every $(\sigma, \tau) \in D \times \mathscr{C}$ is a point of joint continuity of the convolution $*: \mathscr{C} \times \mathscr{C} \to \mathscr{C}$. From the above we have that for every $\sigma \in D$ and for every $\alpha \ge 0$ there exists $\beta \ge 0$ such that $\sigma * \alpha \sigma = \beta \sigma$. Thus, from Lemma 1.11 of [2], every $\sigma \in D$ is an l^p -type, for some $1 \le p < \infty$, or a c_0 -type, and since $\sigma \in \mathscr{T}^{\mathscr{G}}_{wn}(X)$, σ is not an l^1 -type.

THEOREM 3.3. Every weakly stable Banach space has the W.B.S. property.

Proof. Let X be a weakly stable Banach space and suppose that X does not have the W.B.S. property. Then, from a result of Rosenthal [11] (see also Proposition II.1 of [3]), there exists a weakly null sequence $(x_n)_n$ in X, which we may suppose generates a type $\pi \in \mathcal{T}_{wn}(X)$, such that the fundamental sequence of π is equivalent with the usual basis of l^1 . We set $\sigma = \pi * (-\pi)$ and we have that σ is a non-trivial type of $\mathcal{T}_{wn}^{\mathcal{G}}(X)$ with fundamental sequence equivalent to the usual basis of l^1 . Then, from Lemma 3.1 (i), (ii), (iii) and Proposition 3.2 there exists a type $\tau \in \mathcal{C}_{\sigma}$ which is an l^p -type, for some $1 , or a <math>c_0$ -type. Thus we have a contradiction, by Lemma 3.1 (iv).

COROLLARY 3.4. Every weakly stable Banach space that does not contain a subspace isomorphic to l^1 has the A.B.S. property.

Proof. This is a consequence of Theorem 3.3 and Proposition II.3 and Theorem III.1 of [3].

In [9] it was proved that if X is a stable Banach space then $L_p(X)$ is a stable Banach space for $1 \le p < \infty$. From Theorem 3.3 and [1] we have that the corresponding result for weakly stable Banach spaces is false.

COROLLARY 3.5. The space $L_2(c_0)$ does not admit an equivalent norm for which it is a weakly stable space.

Proof. It is known [1] that $L_2(c_0)$ does not have the W.B.S. property. The result thus follows from Theorem 3.3.

COROLLARY 3.6. Let K be a compact metric space. The space C(K) has a renorming in which it is weakly stable Banach space if and only if it is isomorphic to c_0 .

Proof. If C(K) is isomorphic to a weakly stable space, then from Theorem 3.3, C(K) has the W.B.S. property. Thus, from [6], $K^{(\omega)} = \emptyset$, where $K^{(\omega)}$ is the ω -th derived of K. Then [5] implies that C(K) is isomorphic to c_0 . The converse is obvious from the fact that c_0 is a weakly stable Banach space [2].

REMARK. Every Banach space which has the B.S. property is reflexive. Thus, from the example of [2], there is a weakly stable space X not containing isomorphic copies of either l^1 or c_0 , and not having the B.S. property.

REFERENCES

1. D. J. Aldous, Unconditional bases and martingales in $L_p(F)$, Math. Proc. Camb. Phil. Soc. 85 (1979), 117-123.

2. S. Argyros, S. Negrepontis and Th. Zachariades, Weakly stable Banach spaces, *Israel J. Math.* 57 (1987), 68-88.

3. B. Beauzamy, Banach-Saks properties and spreading models, Math. Scand. 44 (1979), 357-384.

4. B. Beauzamy and J.-T. Lapreste, *Modeles étales des espaces de Banach* (Herman Ed., Paris, 1984).

5. C. Bessaga and A. Pelczyňski, Spaces of continuous functions (IV), Studia Math. 19 (1960), 53-62.

6. N. R. Farnum, The Banach-Saks theorem in C(S), Canadian J. Math., 26 (1974), 91-97.

7. D. J. H. Garling, Stable Banach spaces, random measures and Orlicz function spaces, in *Probability measures on groups*, Lecture Notes in Mathematics No. 928 (Springer-Verlag, 1982), 121–175.

8. S. Guerre and J. T. Lapreste, Quelques proprietes des espaces de Banach stables, *Israel J. Math.* 39 (1981), 247–254.

9. J.-L. Krivine and B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), 273-295.

10. I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-523.

11. H. P. Rosenthal, Weakly independent sequences and the Banach-Saks property, in *Proceedings of the Durham Symposium on the relations between infinite dimensional and finite dimensional convexity*, *Durham-July 1975*, p. 26.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ATHENS PANEPISTEMIOPOLIS, 15781 ATHENS, GREECE