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"

Many problems lead to the consideration of "algebras", given by

an object A of a category A together with "actions" TkA > A

on 4 of one or more endofunctors of A , subjected to equational
axioms. Such problems include those of free monads and free
monoids, of cocompleteness in categories of monads and of monoids,
of orthogonal subcategories (= generalized sheaf-categories), of
categories of continuous functors, and éo on; apart from problems

involving the algebras for their own sake.

Desirable properties of the category of algebras - existence of
free ones, cocompleteness, existence of adjoints to algebraic
functors - all follow if this category can be proved reflective
in some well-behaved category: for which we choose a certain

comma-category T/A

We show that the reflexion exists and is given as the colimit of

a simple transfinite sequence, if A is cocomplete and the T

k
preserve either colimits or unions of suitably-long chains of

subobjects.

The article draws heavily on the work of earlier authors, unifies
and simplifies this, and extends it to new problems. Moreover
the reflectivity in T/A is stronger than any earlier result, and

will be applied in forthcoming articles, in an enriched version, to
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the study of categories with structure.

Introduction

Many existence theorems in categorical algebra have been proved by
transfinite-induction arguments, either leading directly to the universal
object sought, or establishing a solution-set condition permitting the

application of Freyd's general adjoint functor theorem.

Thus, in the late 1960s, both Ehresmann and Gabriel used such
arguments to prove the reflectivity, among presheaves, of the algebras they
were considering - namely functors sending chosen cones to limit-cones. 1In

Gabriel and Ulmer [§] this becomes the theorem on the reflectivity, in a

locally-presentable category A , of the full subcategory KL given by the
objects A which are orthogonal to, or sheaves for, each map k of a
small set K ; in the sense that each A(k, 4) is an isomorphism. This
was later generalized by Freyd and Kelly [7], both in respect to the

conditions on A and the size of X .

Again, both Schubert [716] and Barr [2], at about the same time and
independently, gave such arguments for the existence of colimits in the
category of algebras for a monad: under suitable conditions, those of Barr
being the weaker. In the same paper, Barr proved under similar conditions
the existence of a free monad on a given endofunctor; and later Dubuc did
the same for free monoids in any monoidal category - but only under
stronger conditions like those of Schubert. Much more recently, Bousfield
[5] used such arguments to show, under strong conditions, that a prefactor-

ization system is a factorization system.

Freyd and Kelly remarked in [7] that "Our results seem to bear some

relation, not too well understood, to those of Barr and Schubert'". The

connexion was made clear by Wolff [17], who showed that KL consisted of
the algebras for a pointed endofunctor T on A ; since Barr had
constructed the free monad on an endofunctor H by constructing the free
H-algebra, which is also the free T-algebra for the pointed endofunctor

T =1+ H , the problems were now closely related.

This was pointed out by the present author in [9], along with a
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further unification and generalization: namely, the category T-Alg of
algebras for T , whether T is a monad or merely a pointed endofunctor, is
a full subcategory of the well-behaved comma category T/A ; and the
desired results all follow by proving it reflective. This reflectivity
moreover played an essential role in the thesis of Blackwell [4], who was
dealing with a 2-monad T and comparing the strict and lax morphisms of

its algebras.

However it still remained true that there were two different kinds of
argument for the reflectivity: one in the strong conditions of Gabriel and
Ulmer, Schubert, or Dubuc, which gave the reflexion directly as the colimit
of a transfinite sequence, and one in the weaker conditons of Barr or Freyd

and Kelly, which used a transfinite argument to get a solution set.

In the meantime, the question of algebras for an endofunctor,
especially in its relation to automata theory, had attracted considerable
attention from the Prague school; their advances in particular aspects of
the question are summed up in Reiterman [715] and Adémek [1], where further
references can be found. More recently, Koubek and Reiterman [13] have
shown that, even under the weaker type of conditions, the free algebras for
an endofunctor H are obtained directly by the convergence of the
appropriate transfinite sequence, with no necessity for an appeal to the
general adjoint functor theorem. They do not consider pointed endo-
functors, although they do give a modification covering the algebras for a
monad. Nor do they use the setting of [9] embedding the algebras into
T/A ; instead they use an embedding into "generalized partial

H-algebras", which would not answer the needs of Blackwell's argument.

These results are now spread over an enormous body of literature, many
of the articles in fact being written in ignorance of one another. There
is also a scattering of mistakes: not in the statements of major theorems,
but rather in incomplete or false proofs. It seems to the present author
an appropriate time to write a unified and simplified account, that may
serve as a fairly full reference; and at the same time to complete the
above work in some important respects. Besides the "constructive"
existence in the pointed-endofunctor case, and the reflectivity in T/A
which will be used by Blackwel| and the author in a forthcoming paper,
there are important aspects of the existence of free monoids, and of

colimits in categories of monoids, which do not seem to have been
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discussed, but which we include in the present account.

In arranging the account we obtain a conceptual simplification by the
following observation. The algebras for a well-pointed endofunctor on A
- by which we mean a pointed endofunctor o : 1 + S satisfying So = 0S5 -
form a full subcategory of A ; and in this case the transfinite
construction leading to the free algebras, and hence to the reflexion into
the algebras, is particularly simple. Then, for a general pointed T
(which may be 1 + H for an unpointed H ), there is a well-pointed
endofunctor S on T/A vwhose algebras form precisely the full subcategory

T-Alg whose reflectivity we seek; and S 1is as well-behaved as T |.

Our desire for completeness, involving us in the discussion of special
cases and of counter-examples, has made the technical first chapter a
little long; the reader may wish to skim through this and start with
Chapter I1I.

I. BASIC TECHNICAL RESULTS

1. Factorization systems

1.1. We identify cardinals with initial ordinals, and an ordinal with
the set of lower ones. We suppose there is an inaccessible cardinal o« ,
and call cardinals and ordinals less than ®© small; in future when we say
simply "o is an ordinal", we mean a small one. A set is small if its
cardinal is small; a category A is small if its set of maps is small,
and has small hom-sets if each A(4, B) 1is small. It is cocomplete if it
admits all small colimits. The results are easily adapted to any other

view of the foundations.

1.2. By a factorization system (E, M) on A we mean one in the
sense of Freyd and Kelly [7], where most -of the important properties of
such systems are given: one property we use often is that any pushout of
an E is an E . Another important property, noted by Bousfield [5], only
special cases of which are given in [7], is the following: for a natural
transformation o : 7+ S : K+ A , if each 0K € E , then
colim & : colim T + colim S 1lies in E , whenever these colimits exist.

In future we shall write '"a € E" for "each aK € £ ", using the same

letters (E, M) for the factorization system on the functor-category
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{K, A] induced pointwise from the system (E, M) on A .

Recall that the factorization system (E, M) is said to be proper if
every E is an epimorphism and every M a monomorphism; and that this is
not required in general. Recall that among the proper ones there are two
extreme ones given by (extremal epimorphisms, all monomorphisms) and by
(all epimorphisms, extremal monomorphisms), at least if A is a cocomplete

category admitting all cointersections of epimorphisms.

1.3. It follows from [7] that every fibred coproduct of maps in E
is again in E . It is not possible that all such fibred coproducts, of
whatever size, should exist, unless every E is an epimorphism. For let
f € E, let its cokernel-pair be u, v , let w be the unique map with
wu =wv =1, and let e be the idempotent ww . Then u, v € E as
pushouts of f , w € E since u and wu do, and hence e € E . To
prove f epimorphic is to prove e = 1 ; suppose the contrary. For some

cardinal © , let the fibred coproduct of (ei : A= , where each

A3)ieo

A. is A and each e; is e , be (g. A, > B) Then any family

7 1 7 1€0

h = (h. : A, > 4) , Where each h. is 1 or e , has the form
1 1 1€6 7

hi = kgi for a unique k : B+ A . Since there are 20 such families, we

have card A(B, 4) = 29 , which is a contradiction if 6 is as big as the

cardinal of the set of maps of A .

Nor is it possible for those E with a given domain always to form a
small set (to within isomorphism), if A is cocomplete and has small hom-
sets, unless every E 1is an epimorphism; for then in the above argument,

since 9; € E, B is one of a small set {Bj} of objects depending only

on A , and we get the contradiction already for a small 6 , namely

max ; card A(Bj, 4) . This was first pointed out by Addmek [71].

We call the factorization system (E, M) cocomplete if all fibred
coproducts of maps in E do exist; and we now make a blanket assumption
to hold throughout this paper (except in an occasional definition or remark
where it is clearly irrelevant): the category A <1is cocomplete, and so is
any factorization system (E, M) or (E’, M') on A that we actually use
(as distinct from those we merely discuss in §11). So every E will be an

epimorphism; however (E, M) need not be proper, an important case being
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(isomorphisms, all maps).

The E-quotients of an object A (that is, the isomorphism-classes of
maps in E with domain A4 ) then form an ordered set which is a complete

lattice {with 1,

between the fibred coproduct of a family of such quotients and that of the

as its greatest element). There is now no distinction

corresponding set; it is appropriately called their cointersection. We
say that A is E-cowellpowered if each object has only a small set of

such quotients; +this is by far the most usual case in practice.

1.4. A (not necessarily small, but possibly empty) family of maps
[fé : A > Bi) is jointly in M , or simply Zn M , if givenany p : C » D

in E , and any maps u : 4 > C and v, Bi + D such that vp = fiu
for all < , there is a "unique diagonal fill-in" ¢ : D+ A4 with ¢p =u

and f;t =V,

{ef. [7], p. 177). In our case, since is epimorphic, we
i p

only need some t with ¢p = u ; the other commutativity and the
uniqueness are then automatic. Since we are supposing pushouts to exist,
we can simplify the criterion still further, to that in the following

proposition: whose easy proof we leave to the reader.

PROPOSITION 1.1. (<) (f; : A+ B;) s in M if and only if,
whenever each f; factorizes through t : A+~ C with t € E, then t <is
an isomorphism.

(i1) If (f; : A > Bi] i8 in M and each f% factorizes through
t: A>C, then t €M .
is in M so is any bigger family

(2it) If (f; : 4> BJ),¢r

(r; : 4~B),, with JOI.

(iv) If (f; T A~ Bi] ig in M and each (gij : B> Cij) 18 in

M  then the family (gijfi A > Cij) is in M. o

PROPOSITION 1.2, Any family [gi : D~ Bi) factorizes wniquely as

some p: D+ A in E followed by a family (f% :A+B) in M.

Proof. Let {qj} be the totality of maps in E , with domain 4 ,
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through which each gi factorizes, and let p be their cointersection.

Then each g; factorizes through p as fép , say; and (fé) is in M
since there is no further E through which all the fi factorize. The

uniqueness is clear from the "unique diagonal fill-in". O

REMARK, Even without the cocompleteness of A , it is easy to see
that the truth of Proposition 1.2 implies, conversely, the cocompleteness
of (E, M)

REMARK. When the g, in Proposition 1.2 are in E , p is their

union in the lattice of quotient-objects of D . This is more familiar in
the dual case of M-subobjects, when every M is a monomorphism, in which
it was introduced in [7], and in which it will be used, for small families,

in §2.2 below.

1.5. The following result is well known in the case of a proper
factorization, at least in the cowellpowered case. It use in the present

context was suggested by Barr [3].

If B is a full subcategory of A , define its M-closure to consist
of those A € A admitting some family (fg : A > Bi) in M with each

Bi € B ., By Proposition 1.1 (1Z%Z), it comes to the same thing to say that
the family (4, B) , consisting of qll f : A+ B with B € B, is in M.
Say that B is M-closed if it is equal to its M-closure; by Proposition
1.1 (Zv), the M-closure of B is M-closed. Say that a reflective full

subcategory of A 1is E-reflective if the reflecting maps are in E .

PROPOSITION 1.3. 4 full subcategory B of A is M-closed if and
only if it is replete and E-reflective. Then B <s itself cocomplete,
and (E, M) restricts to a cocomplete factorization system on B .

Proof. Let B be E-reflective, with reflexion x4 : A > K4 , and
let A belong to the M-closure of E . Then the family (A4, B)
factorizes through kA , which is therefore in M by Proposition 1.1 (4%/,
since (A, B) is in M . Since x4 belongs to E , it is an isomorphism,

so that 4 € B if B is replete.

Conversely, if B 1is M-closed, and we factorize the family (4, B)
as in Proposition 1.2, it is immediate that the E-part kA : 4 - K4 of

the factorization is a reflexion of 4 into B .
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The factorization system restricts to B in the sense that, if a map.
B > (C in B has the factorization B+ D +( , then D € B ; for B is
M-closed and D » C is in M . 0

2. The effect of endofunctors on cones and colimits

2.1. A diagram (that is, a functor) X : K + A will be called an
o-chain if the category K is the (small) ordinal o , and will be called

a sequence if K =o . For a general K we shall write X, for the value

B
of X on objects, and X¢) : XB -+ XY for the value on maps; but mostly we

deal with chains or sequences, and then we write the connecting maps as

Xg : XB - XY for B =y . We say that a sequence X converges if the Xg

are isomorphisms for Yy = B = some §

An inductive cone r = (rB : XB -+ IV) over X , with vertex N and
generators rB , may be called a K-cone, or an ag-cone wvhen K =a . It
factorizes through the colimit~cone g as

(2.1) : XB — colim X — I ,

r
where in our applications r is in fact colim r , since K is always at

least connected, indeed filtered.

For a factorization-system (E, M) satisfying our blanket assumptions,

we call r an M-cone, or an (M, K)-cone, if each rg €M . This implies

(because the E are epimorphisms - ¢f. Proposition 1.1 (ZZ) or [7],

Proposition 2.1.4) that each g € M ; which we express by saying that X

is an (M, K)-diagram, or an (M, a)-chain. This in turn implies that the

connecting maps X¢ are in M , but is in general stronger (although not
when A =Set , K is filtered, and M is the monomorphisms).

2.2. Ve say that the cone r is E-tight, or just tight when [ is
understood, if »r € E in (2.1); thus when E 1is the isomorphisms, the
only tight cones are the colimit-cones. 1In general, if we take the

(E, M)-factorization of rg to be

(2.2) g XB —g; ZB J—B> N

3
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and make Z into a functor such that g is natural and j 1is a cone
(using the naturality of the factorization), we have »r = j * colim g
Since colim g € E because g € E , we see that »r is tight if and only
if the M-cone J is tight. If (E, M) is proper, to say that J is

tight is just to say that N 1is the union of the jB in the lattice of

M-subobjects; or that ¥ =U im rg (ef. the remark at the end of §1.k).

When M is the monomorphisms and K is filtered, an M-cone J has
7 €M ir A =Set ; nence also if A is Top or Haus (the categories
of topological or hausdorff spaces); hence too if A is locally
presentable, provided that now K is sufficiently-highly filtered. In
such cases an E-tight M-cone is a colimit-cone. But this is no longer
true for TOp or Haus if M is the subspace-inclusions; for an
uncountable power of the reals is not a k-space, and is hence the
(filtered) union of its compact subspaces without being their colimit. And
ig general nothing of the kind is true: in the category Comp of compact
hausdorff spaces, with E = the epimorphisms = the extremal epimorphisms
and M = the monomorphisms = the extremal monomorphisms , the one-point
compactification of the natural numbers is the union of the w-chain of
subspaces {0, 1, ..., n} , but not their colimit, which is the Stone-Cech

compactification.

2.3. The most general "smallness condition" we are going to consider

on an endofunctor T : A > A is:
(*) T preserves the E-tightness of (M’, K)-cones.

Here, in accordance with our blanket assumptions, (E, M) and (E', M')
are to be two cocomplete factorization systems on the cocomplete category

A . What we mean by (*) is that, whenever » = (rB : XB - N) is an
(M', K)-cone that is E-tight, then the cone Tr = (TrB : TXB > TN) is also
E-tight, although it need not in general be an M’-cone.

We may impose this condition for a single K , or for a set of such.
The only cases we in fact consider are the following, wherein o is a

regular cardinal:
(i) (*) is imposed for K = o alone;

(ii) (*) is imposed when K is any a-filtered (small)
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ordinal B
(iii) (#¥) is imposed when K is any a-filtered small category.

Of these, (i) is the weakest (at least a priori, but also in fact: see
§2.6 below); but is sufficient for our purposes so long as we consider a

single T . 1If we have a family (Ti) of endofunctors, we may want each
to satisfy (ii) for some a; , so that they simultaneously satisfy (i) for
any o > each o, . In fact we very often have (iii) if we have anything

at all; and although we do not need it here, it is very important in

universal algebra.

Special cases of (¥) have special names. When E 1is the
" isomorphisms, (*) is the condition that T preserves the colimits of all
(M', K)-diagrams, in the sense that the canonical comparison map
T : colim TX + T célim X 1is an isomorphism. When E’ is the
isomorphisms, so that M’ is all maps, it is the condition that T
preserves the E-tightness of all K-cones. When both E and E' are the
isomorphisms, it is that T preserves the colimits of all K-diagrams;
when this is so for all aq-filtered (small) K , it is common to say that
T has rank less than or equal to a (or loosely that T has rank o ).
When (E, M) and (E', M’) coincide and are proper, it is the condition

that, whenever N 1is a K-indexed union of M-subobjects N = U rB , we

have TF = U im Tr and if further TM c M , so that Tr, = im TrB , it

g} B

is the condition that T preserves K-indexed unions.

2.4. Since colimits commute with colimits, and since a colimit of
maps in E is in E , it follows that a colimit of E~tight cones is
E-tight. We conclude that if 7T : I > [A, A] is a functor such that each

T, : A > A satisfies (*), and such that colim T exists, then
colim 7 : A > A satisfies (¥).

Again, if ¢ : P> T' : A+ A is in E , and if T satisfies (%), so
does T' ; for colim ¢X € E and ¢N € E , so that colim T'r € E if
colim Tr € E .

What is not true is that, if T, Tl : A > A both satisfy (¥), so does

TlT ; unless perchance TM!' < M' . 1In some contexts (as when we are
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considering algebras for a monad, and need to look at both T and T2 ),
we can get around this difficulty by such a trick as that in Remark 4.3
below. But where, as in considerations such as those of §27.2 below, we
really do need closure under composition, we must in general impose (*)

with M' equal to all maps, to ensure that TM' ¢ M' .

2.5. This case of M’ equaling all maps is a very special one; it

cannot happen except in the important special case where we have
() TECE .

For, K being connected in our applications, we can take for X the
constant diagram at any object, whereupon (*) gives (1). Conversely, of
course, once we have (1), we get (¥) for any (M’, K)-cone r once we have

it for each colimit (M', K)-cone. Moreover we have:
PROPOSITION 2.1. If TE c E, the following are equivalent:
() T preserves the E-tightness of all K-cones;
(i) T preserves the E-tightness of all (M, K)-cones.

Proof. Given (i1) let r be an E-tight K-cone and let it factorize
as (2.2)., Since »r 1is tight so is j , and hence Tj by (iZ). On the
other hand, Tg €¢ E since g € £, so that colim Tg € E . It follows
that Tr is tight. n]

2.6. Because the case A = Set is both extremely special and
extremely important, we consider it separately. Here we take (E, M) to
be (epimorphisms, monomorphisms). Since every epimorphism is a retraction
(we assume the axiom of choice), (1) is satisfied by every endomorphism

T . Now we have (generalizing Reiterman [15], §5):

PROPOSITION 2.2. If K <s a filtered ordered set and T 1is an
endofunctor of Set , the following are equivalent:

(i) T preserves the colimits of all K-diagrams;

(1) T preserves the colimits of all (M, K)-diagrams;
(1i1) T preserves the E-tightness of all (M, K)-cones;
(iv) T vpreserves thc E-tightness of all K-cones.

Proof. (i) implies (<i) trivially, (Z%) implies (i7i) since

TE < E , by the remark before Proposition 2.1, and (27Z) implies (iv) by
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that proposition. It remains to show that (Zv) implies (7).

Let qg : XB > colim X be the colimit of a K-diagram. By (Zv/), the
canonical comparison 7 : colim 7X + 7 colim X is in € , and we succeed
if we prove that it is in M . Let &, y € colim TX with 7Tz = Ty .
Remembering how filtered colimits in Set are constructed, let =z, y Thave

representatives u, v 1in some TXY ; then Tqy'u = TqY'v . Since the
result is trivial if every X6 is the empty set O , we may suppose that
X #0.
Y
Let q, have the (E, M)-factorization q, = Jp » let 7 be a right

inverse for the epimorphism p , and write e for the idempotent

endomorphism <Zp of XY . For each B =2y let kB : XB c X& be the

s XB B < Q! /
equalizer of v and XYe ; then KB < KB’ for B =B’ , and
X = U K, , since pe = and hence e = . By setting X, = K if
Y gy B pe=p W Ty s &8 "%

=Y
B i Y , we can make K into a diagram defined on all of K .

Applying (Zv) to this diagram gives TX_ = U im TkB . 8o for some

gzy
B=Y wehave u = Tk, *u' and v =Tk,*v' . Since XBk = Xsek we
B B Y B Yy B

conclude that TXs'u = TXs'Te'u , and similarly for v

Since X& # 0 the domain of the monomorphism j is not 0 ; so J
is a coretraction and 7Tj is a monomorphism. From Z@Y'u = TqY'v we
therefore get Tpeu = Tp*v and hence Tecu = Te*v . The conclusion of the

last paragraph now gives TX$'u = TXs'v ;5 so that x =y , proving T

monomorphic. o

A functor A + Set is often called small (or petty) if it satisfies
the solution-set condition, or equivalently if it is the quotient of a
small coproduct of representables. The small endofunctors of Set are

precisely those that have some rank o (ef. [15], pp. 69, 70):

PROPOSITION 2.3. For T : Set + Set and a regular cardinal o , the

following are equivalent:
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(1) T preserves the colimits of all o~filtered diagrams;
(i) T preserves the colimits of all o-filtered M-diagrams;

(i11) T s the left Kan extension of its restriction to the

full subcategory Sa of Set given by the sets of

cardinal less than o ;

(iv) T 1is a quotient of a small coproduct E:Set(BA, -) of

representables with card By <a.

Proof. (%) implies (4Z) +trivially. To see that (Z7Z) implies (<i%),

let the counit of the Kan extension be

BE€S
o

e:J TB x Set(B, -) ~ T .

Any set A is the oa-filtered M-colimit of its subsets Ai of cardinal

less than o , and both the domain and the codomain of g€ preserve this

colimit; since each EAi is an isomorphism by Yoneda, so is €4 . (7217)

implies (Z) since Set(B, -) preserves a-filtered colimits for
card B < a , and (722%7) implies (Zv) trivially. On the other hand (iv)

implies that each €4 1is at any rate an epimorphism, since it is an
isomorphism when T is replaced by 3 Set(BX, —) . To conclude that (Zv)

implies (i12%7) it suffices therefore to observe that each €4 is a
monomorphism. If elements in the domain of €4 represented by

(x €TB, f : B+4A) and by (y € TC, g : C +4) have the same image in
TA , so that TIfex = Tgey , let % : D+ A dbe the inclusion of a subset of
cardinal less than a containing the images of f and g , and not

empty unless A is empty. Then 77 is a monomorphism since < is a
coretraction, so that Tf'ex = Tg'+y where f =1<if’ and g = ig' . Thus
(x, f) and (y, g) represent the same element of the domain of ¢4 . O

Reiterman [15] (ef. also Barr [2]) shows that an endofunctor of Set
preserving all colimits of w-chains may fail to be small, if and only if
there exists a large set of strongly measurable cardinals; with a

corresponding result for other regular cardinals o in place of w .

2.7. Although our interest is in endofunctors, not functors, an
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endofunctor of A may arise as the composite of T : A -+ Al and
Fo: A1 + A , where F (usually a left adjoint) preserves colimits and
satisfies FE1 C E , where (El, Ml] is a suitable factorization system on

Al . Then for FT +to have the property (¥) it suffices that T have it,

in the sense of sending every E-tight (M', K)-cone to an El—tight cone.
The remarks of §§2.4, 2.5 extend at once to this case.
Note in particular that, when Al = Set and El is the epimorphisms,

and when TM’ 1is contained in the monomorphisms (as it is when T has the
form A(4, -) and M’ 1is contained in the monomorphisms), 7T has the
property (¥) if and only if it sends each E-tight M’-~cone to a colimit~

cone: by the remarks in §2.2.

3. Examples and counterexamples

3.1. 1In spite of the results asbout special cases in §2.5 and §2.6,
the truth of condition (¥*) is in general highly sensitive to the
factorization systems (E, M) and (E', M") . As far as the dependence on
(E’, M') goes, the condition (¥*) is weaker the smaller M’ is, so that we
get the strongest results by taking the smallest possible M' -
consistently with our requirements that (E', M’) be cocomplete, or with
the stronger requirement of E’-cowellpoweredness where we need it. Since
every E' has to be an epimorphism, the smallest possible M’ is the
extremal monomorphisms; and this will suit whenever, as is usually the
case, A 1is epi-cowellpowered. Of course where we need (#) to be
preserved under composition, we are forced back to M’ = all maps , as we

said in §2.k.

In general (*) is strictly weaker for a smaller M' . This is of
course true in one trivial sense: if A is an O-generated but not
o-presentable object in a locally-presentable category A , the functor
A(4, -) : A > Set preserves a-filtered colimits of mono-diagrams but not
of all diagrams; yet in this case A is B-presentable for scme larger
cardinal B . We mean rather that, when M’ is enlarged, (¥) may cease to

be true for any a

3.2. For instance, consider T : Top + Top given by
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T = Top(4, -)*B , where S*B for S € Set denotes the coproduct of S
copies of B € Top . For o > card 4 , the functor Top(4, -) : Top + Set
sends a-filtered unions of subobjects to unions, and hence to colimits by
§2.7; so for M’ equals the subobject - inclusions equals the extremal
monomorphisms, 7T satisfies (*) for o-filtered K ©both for E equal to
the isomorphisms and for any proper (E, M) . Yet if we enlarge M' to
the monomorphisms, and take 4 to be the chaotic two-point space and B
the one-point space 1 , TOp(4, -) no longer preserves for any regular o
the unions of (M', a@)-chains, even of those that are colimits. The

example ([7], Example 3.3.3) is the O-chain X where each XB is o +1
as a set, the connecting maps are identities, and the open sets in XB are

the empty set, the whole set, and the sets {6 | § 2y} for Yy=B . It
follows that T no longer satisfies (¥*) for any of the above E , with K
equal to any ©

3.3. Again, for the same reasons, the endofunctor T = Haus(4, -)+*B
of Haus satisfies (*) for a-filtered K with o > card 4 if M’
equals the subspace-inclusions (and a fortiori if M’ = the extremal
monomorphisms = the closed-subspace inclusions), both for E = the
isomorphisms and for any E 1lying between the quotient maps and the

surjections. In the special case A =1 , this remains true (for filtered

K ) even for M' = the monomorphisms; for the colimits in Haus of mono-
diagrams are the colimits in TOp . Yet when 4 =B =1, T does not
satisfy (*) for K=any o , if E = the isomorphisms and M’ = all maps;

even if all the commecting-maps in the o-chain are'monomorphisms.
For consider the a-chain X in which every XB , as a set, is the

disjoint union of two copies of the.ordinal wo + 1 ; the elements
corresponding to Y £ wd in the two copies being denoted by Y' and Y" .
Give XB the topology in which each {y’} and {¥"} 1is open for

Y < wx , while a set containing (wa)’ is open if it contains all but a
finite number of the Y’ withY <wB , and all the Y"” with Y < wa
from some point on; and symmetrically for (wa)” . With identities for

the connecting maps, each XB is hausdorff but their colimit in Top is
not; so that T does not preserve their colimit in Haus

3.4. o0On the other hand, for a given M’ , even for M' = the extremal
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monomorphisms or M' = all maps , the strength of the condition (*) does
not vary monotonically with changes in E . Thus with M’ = all maps , the
endofunctor Hom(ZZ, -) of abelian groups satisfies (%*) for filtered K

and E = the isomorphisms , but not for K = any o if E = the
epimorphisms. On the other hand the Stone-Cech compactification

T : Haus - Haus satisfies (*) for any K with M’ = all maps , if

E = the epimorphisms (by §2.4, since there is an epimorphism 1 -+ T );
yet for any E contained in the surjections it fails for K = any o ,
even if M’ is changed to the extremal monomorphisms. To see this, take

XB to be B + 1 with the order-topology, for B8 < o , so that colim X
is o with the order topology. Since XB is compact, the canonical map

T : colim TX » T colim X is just the inclusion of & in 7To , which is a
subspace inclusion since o 1is completely regular, but not a surjection

since o 1is not compact.

3.5. Again, the endofunctor T = Haus(l, -)*B of Haus satisfies
(#) for any K with M' = all maps , if E is between the quotient maps
and the surjections: for Haus(l, -) sends colimit-cones to epi-tight
cones and sends surjections to epimorphisms. We have seen in §3.3 that
this fails, for K= any o , if & is the isomorphisms; it also fails,
again for K = any o , if E is the epimorphisms, even if now M’ = the
extremal monomorphisms. The example ([7], Example 3.3.3) is the a-chain
X of §3.4 above, with the epi-tight cone given by the embedding of
XB =B +1 into a + 1 , the latter again with the order topology.

3.6. 1In §10 below we have to consider an endofunctor T , knowing
only that it is a regular-epimorphic quotient of 1 + A(4, -)*B . TIf, say,
A = Haus , we can still conclude, by §3.3 and §2.4, that T satisfies (¥*)
for o-filtered K with a > card A , if M’ is the subobjects and E is
between the quotient maps and the surjections; but we can no longer

conclude it for & = the isomorphisms.

3.7. Barr [2] considers the example where T 1is the loop-space
endofunctor of the category A of pointed hausdorff k-spaces, showing

that T satisfies (¥) for M’ = subspace-inclusions and E = the
isomorphisms, if K = w . He remarks that his proof, using & result of
Dold and Thom, works for no other K than w . Yet his purpose - to show
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cocompleteness of the category of algebras for the corresponding monad -
can now equally well be served (see §25.1 below) by having T satisfy (¥*)
for M = M' = subspace-inclusions and for K sufficiently highly filtered;

and this may be easily shown to be so.

In fact A(1l, -)7 = A(S, -) : A > Set , where S is the circle.
Since A(S, -) preserves the unions of o-filtered M-cones for

o > card S , so does T .

4. A reduction in the well-copowered case

The trick is to get things to work even though we have (*) only for
(M*, K)-cones and not all K-cones. One way, suggested by Barr [3] in the
case € = the isomorphisms, is to use Proposition 1.2 (with M’ for its
M ). Another is to use the proposition below, due to Koubek and Reiterman
([713], §8.5, Lemma). This is stronger: not only does it give constructive
existence in the applications, but it is the only method the author knows
of which establishes cocompleteness of the algebras for a monad when E =
the isomorphisms and M’ is not all maps. On the other hand it requires
E'_cowellpoweredness rather than just cocompleteness of (E’, M') ; but

then this is a very mild restriction in practice.

If ( )' : o+ o is a strictly-increasing map (= injective functor),
and X 1is any sequence, we write X' for the sequence given by
+
Xé = XB' . In particular we write X for the sequence given by
+
Xg = XB+l ; we have the natural transformation ¢ : X > X with
X8+1 . . . . '
components ¢B = 8 . A cocontinuous strictly-increasing ( )’ : o + o
has 0’ = 0 and o' = sup B’ for a limit-ordinal o , and is hence

B<a

defined inductively by giving for each B some (B+1)’' > B’ .

PROPOSITION 4.1. Let A be E'-cowellpowered and X : @ » A any
sequence. Then there are a cocontinuous strictly-increasing map
()': o+>w g sequence Y : » + A, and a natural transformation
i:y»x" » such that

(i) Xzeﬂ)""e € M' for all vy = (B+1)'

(i) for any S : A +A and any limit-ordinal o , the map
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colim SiB : colim SYB -+ colim SX
B8<o, B<a B<a

(B+1)’
i8 an isomorphism.
Proof. We define ( )’ inductively; suppose B’ defined. The E'-
part of the (E', M')-factorization of XY, for Yy = B' gets smaller with

increasing Y , and ultimately becomes stationary by the E'-cowell-
poweredness; take for (B+l)’ +the first Y at which it achieves this

stationary value, and let

(4.1) g1 _f; g TB" Xg+1)r
s (B+1)"’ . .
be the factorization of XB, . Using the naturality of the

factorization, make Y into a functor in such a way that f : X' - Y ,

. + . Sy . R
7 : Y=+ X' are natural. Then (Z) is automatic from the construction.

Consider the diagram

+
(h.2) ¢ f+ ¥
+ 4+
¥ ——x,
Z
_ B+l . . ' .
where ¢B = YB and ¥ is the corresponding map for X' . Since (4.1)

expresses that ¢ = Zf , the bottom triangle of (L.2) commutes. Since
of = f+w by the naturality of f , we also have by (4.1) that ¢f = f&if .
whence ¢ = f+i since f € E' 1is an epimorphism. Thus the top triangle

of (Lk.2) commutes.

Now apply S to (4.2) and pass to the colimit over the segment

B < a . Writing for simplicity colim SZ for colim SiB and so on, and
B<a

observing that colim sy = colim SY with colim S¢ = 1 , and similarly
+
for colim S¢Y , we conclude that colim Sf and colim Si are inverse,
giving (2%). o
PROPOSITION 4.2. et A be E'-cowellpowered, let S : A + A
satisfy (*) for K = the regular cardinal o , and let X : ©» > A . Then
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there is a limit-ordinal o' such that, for each Yy = a' , if the cone

[Xg : XB > X ) is E-tight for some (E, M) , so is the cone
Y geq!
:
SX .
[ B B<a'

B)
X
B<a’

be tight (= E-tight). Since the B’ with B < o are final in o' , so

Proof. Let ( )', Y, ¢ be as in Proposition 4.1, and let [

that (XB)3<G’ and [XB')B<G have the same colimit, the cone [XB,)B<a

Y

is also tight; equally the cone IX(B+1)') , and so too the M'’-cone

B<a

Y , . .. . . R
X ,T ] , since colim z is an isomorphism.
+
[ (B+1)""B) gy g<a B
Since S satisfies (*), S of this last cone is also tight. Now
reversing the above steps, since colim SiB is an isomorphism, we have the

B<a

desired result that [SXY is tight. o

1

REMARK 4.3. 1If in Proposition 4.1 we start with two sequences
X, X : ©»>A , we can use the-same { )' for both, getting 7 : ¥ + x'*

- = =,+
and 7 : Y > X' with the desired properties; we merely rewrite the proof

taking for (B+l)' the first Yy at which the E'’—parts of both XY, and

78

achieve their stationary values.

If, in the proof of Proposition 4.2, we use this improved version of
Proposition 4.1, taking X to be SX , we get an improved version of

Proposition 4.2, in which the phrase after the last comma is replaced by

and [S2XB) ",

"so are the cones [SXE
B<a’

)B<al

IT. WELL-POINTED ENDOFUNCTORS

5. The free-algebra sequence

5.1. A pointed endofunctor (S, 6) on A is an endofunctor
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S : A > A together with a natural transformation ¢ : 1+ S . An (S, 0)-
algebra (A, a) is an object A of A together with an action a of
(§, 0) on A ; by which is meant a map a : S4 - A satisfying

a*0A = lA . VWhere confusion is unlikely we abbreviate (S, ) to S and

(A, a) to A , and speak of the S-algebra A . With an S-algebra-map
f: (4, a) » (4', a') defined as amap f : A +A' for which

f*a = a’*Sf , the S-algebras form a category S-Alg . The forgetful
functor U : S-Alg + A sending (4, a) to A clearly creates limits and
U~absolute colimits; and hence is monadic whenever it admits a left
adjoint.

We say that S = (S, 0) 1is a well-pointed endofunctor if

So =05 : §~ S2 . As we said in the Introduction, we shall first give
conditions for the existence of free S-algebras in the well-pointed

case, where the transfinite construction is particularly simple; and then
all our later existence results will be obtained by various reductions to
this case. From now to the end of §8 it is a standing hypothesis, repeated

occasionally for emphasis, that S is a well-pointed endofunctor.

LEMMA 5.1. For a well-pointed S and any map g : SB+ 4 , if
f : B~ A 1is the composite g+0B , then Sf = cA+g .

Proof. 0A+g = Sg+0SB by naturality; but this is S(g+oB) since
S0 = oS . o

Recall that amap h in A and an object 4 are said to be

orthogonal if A(h, A) 1is an isomorphism. Following Wolff [17], we have:

PROPOSITION 5.2. For a well-pointed (S, o) the following

properties of A € A are equivalent:
(1) A admits some S-action a ;
(7i) oA 1is an isomorphism, so that A admits the unique
S-action a = (cs.ll)-l 3
(iZi) A 1is orthogonal to OB for each B € A .

Thus S-Alg <is isomorphic to, and may be identified with, the full replete
subcategory of A determined by such objects; whereupon U : S-Alg - A

is identified with the inclusion.
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Proof. First, (Z) @ (i71): since a*04 =1 , Lemma 5.1 gives
OA*a = 81 =1 . Next, (tZ) = (iii): to say that 4 is orthogonal to OB
is to say that each f : B > 4 factorizes uniquely through oB . But

f= (OA)_lvsf-oB by naturality; and if f = g+0B , then g = (GA)—l'Sf
by Lemma 5.1. Finally, (ZiZ) = (Z): since A 1is orthogonal to O0A , we

have some a with a+04d =1 . a
5.2. Supposing A cocomplete, in accordance with our blanket

assumptions, we define inductively a sequence S = (SB)B<00 o+ A, Al .

AR+
SB+l = SSB with connecting-map SB 1 equal to

We set S0 =1 8

A s
OSB : SB - SSB ; and, for a limit-ordinal a , * = colim SB
B<a

with, as

connecting-maps gg : SB + s+ , the generators of the colimit-cone. If,

for a given A € A | the map o4 : &4 > 5* is an isomorphism for some

o , then EEA is an isomorphism for <Y = 8 = o , and the sequence
%4 = [SBA] converges; we may say that it converges at o .

PROPOSITION 5.3. If A converges at o , then S™ is the free

S-algebra on A , the reflexion of A into S-Alg beting §gA c 4> 5% .

Proof. It follows inductively from Proposition 5.2 (Z<%) that any map

from A into an S-algebra B factorizes uniquely through each ggA 5

and % is an S-algebra by Proposition 5.2 (17). a

We call gA the free-algebra sequence for A , and when it converges
we say that the free algebra on A exists comstructively. If this happens
for every A (the o at which convergence occurs depending in general on
A ) we may say that S-Alg is constructively reflective in A . The
idempotent monad on A corresponding to this reflexion is then
s = cglim B, this large colimit existing pointwise, 54 being the

<a

By

ultimate value of S

REMARK 5.4. S-Alg may be reflective without being constructively
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so. Take for A the cocomplete category <« + 1 , define S Dby
SB =B +1 for B<w, So=c and take for 0 the unique map 1+ S .

Then S-Alg = {®} is reflective but not constructively so.

LEMMA 5.5. The sequence st » tn the sense of §4, coincides with the

sequence S5 .

Proof. Since &Y = gY 'OSB for y > B8 , Lemma 5.1 gives

B B+1

gy+l O

AY _ aY.aY
s5Y = as¥.3 el

B B+1 °

which is

6. The constructive existence theorem

Theorem 6.2 below is the (slightly generalized) analogue, in the
present context, of Theorem 8.5 of Koubek and Reiterman [13].

PROPOSITION 6.1. Let A be E-cowellpowered, let A € A, and let
o be a .limit-ordinal such that, for each Y = o , if the cone

[.%YA . sPa - SYAJ

g is E-tight, so is the cone [S@EA) . Then 354

B<a B<o

converges.

Proof. We show inductively that the cone [ggA) is tight for all
B<a

Y=o . When Y =0a , it is tight because it is a colimit-cone. For the
passage from Yy to vy + 1 , we use the hypothesis of the proposition,
together with Lemma 5.5. For the passage to a limit-ordinal, we use the

observation of §2.4 that a colimit of tight cones is tight.

Now to say that [ggA) is tight is to say that SY4 is in E .
B<a ¢
Hence 3% converges by the E-cowellpoweredness. O

Combining this with Proposition 4.2 now gives:

THEOREM 6.2. Let A be E- and E'-cowellpowered, let S be a
well-pointed endofunctor, and for some regular cardinal o let S
preserve the E-tightness of (M', a)-cones. Then S-Alg 1is
constructively reflective in A ., ]

REMARK 6.3. When both E and E' are the isomorphisms, so that S

preserves all colimits of a-chains, the sequences 34 an1 converge at
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o . In the more general cases we have no such "uniformity" of the

convergence.

7. An’existence theorem without cowellpoweredness

We now give the analogue (once again generalized) of the alternative

existence proof of Barr's manuscript (3].

PROPOSITION 7.1. Let (S, o) be a well-pointed endofunctor, let
d : S+ S* be amp of endofunctors with each ¢A epimorphic, and set
o* =60 : 1 > S* ., Then (S*, o*) is a well-pointed endofunctor, and

S*-Alg consists of those S-algebras 4 for which ¢A is an isomorphism.

Proof. By Lemma 5.1, 05*+¢ = So* since o* = ¢0 . Hence
o*Stedp = ¢S*+0S*-¢p = ¢$S*+So* , which is S*o*<d by naturality. Since ¢

is epimorphic, we have 0©*S* = S*c* as desired.

By Proposition 5.2, A is an S*-algebra precisely when 0% = ¢4°+04
is invertible. But then 0A has a left inverse, so by Proposition 5.2 is

already invertible; whence the result. (]

Now let (S, o) be a well-pointed endofunctor on A , and (E, M) a
cocomplete factorization system on A . Let B be the M-closure in A
of S-Alg, in the sense of §1.5, and let k¥ : 1 K : A > A be the

E-reflexion of A into B given by Proposition 1.3.

PROPOSITION 7.2. XS : A > A with ko : 1 » KS is a well-pointed
endofunctor on A whose algebras coineide with S-Alg .

Proof. ko0 : 1 -+ KS 1is the composite of 0 : 1 >S5 and kS : § > KS.
Since the latter is in E and hence an epimorphism, XS is well-pointed
by Proposition T.1. Moreover its algebras are those GS-algebras 4 for
which KS4 is an isomorphism; but this is all S-algebras. For if A is

an S-algebra, SA @A is already in B . o]

Write S* : B+ B for the restriction to B of XS , with o* for
the restriction of ko . Then S* is a well-pointed endofunctor on the
cocomplete B , the algebras for which again coincide with S-Alg . Recall
from Proposition 1.3 that (E, M) restricts to a cocomplete factorization

system on B .

PROPOSITION 7.3. For each B € B, all the connecting maps in the

free-algebra sequence 5% are in M ; and if B admits a reflexion
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f:B~>C into S-Alg , then f €M . Forany A € A, the reflexion of
A into S-Alg exists if the sequence S*KA converges; and when A is

M-wellpowered, it exists only if this sequence converges.

Proof. The first sentence follows from Proposition 1.1 (i), since

any map from S*BB into an S-algebra factorizes through each 527 , and

B
since, when the reflexion exists, every map from B into an S-algebra

factorizes through f . In this latter situation f factorizes as

fs-gssB for each B ; and fB € M, being the reflexion into S-Alg of

5+Bp ; so that 5*B is a sequence of M-subobjects of C , and
necessarily converges if A is M-wellpowered. The remainder follows from

Proposition 5.3. O

PROPOSITION 7.4. A cone [re P X > N) in B is E-tight as a cone

in B <if and only if it is E-tight as a cone in A .

Proof. If colim X denotes the colimit of X in A , so that its
colimit in B 1is X colim X , the induced map r : colim X + N factorizes
as K colim X : colim X + K colim X , followed by r* : K colim X + N ,

say. Since k € E we have r* € E if and only if r € E . O

THEOREM 7.5. Let S be a well-pointed endofunctor. If, for some
regular o , etther S preserves the E-tightness of (M, a)-cones, or
else S preserves the colimits of (M, a)-chains, the sequence 5+B

converges at o for each B € B, and free algebras exist.

Proof. Under the first hypothesis, by §2.4, since kS : § + XS is in
E , the endofunctor XS of A vpreserves the E-tightness of (M, o)-cones
since S does. But then, by Proposition 7.4, the endofunctor S* of B

preserves the E-tightness of (M, o)-cones.

Write X for the sequence g*B . Then [Xa X, + X is an

B B G)B<a

M-cone by Proposition 7.3, and is E-tight since it is a colimit-cone in

B . Hence by hypothesis [S*X‘é‘) is E-tight. But by Lemma 5.5 this
B<a

latter is [Xa+l

. . + .
B+1 ; its E-tightness means that Xg l, = G*Xa , lies in

Joe

E ; and since it lies in M by Proposition 7.3, it is an isomorphism; so
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that Xa = S*aB is an S-algebra, and the sequence converges.
Turning to the second hypothesis, we observe that (XB)B<G is an

(M, a)-chain in A , since [Xg is an M-cone; so that by hypothesis

Joe

the canonical map

(7.1) colim SXB + S colim X8
B<a B<a
is an isomorphism, where these are the colimits in A . Write Z for
colim X, , with generators gq, : X, > 2 .
oea B 8 "8
o

Now by Lemma 5.1, since kS+*0 = o* , the composite

(1.2) SXB = KSXB = XB+1 <t SXB+1
B B+1
. * - B+l s P . .
is So XB’ = SXB ; so that its colimit in A over B < a is the
identity map of colim SX, . Therefore colim kSX, 1is a coretraction;
B<a B B<a 8

since it is also in E because «k € £ , it is an isomorphism; so that the

cone
SX, —=— KSX_, =X —_— 7
B KSXB B B+1 qB+l
is the colimit over B < o of SX6 . It easily follows that (7.1) is just

SX_, by naturality, and by

6z : 2 »SZ ; for GZ°qB+l-|<SXB = Sq6+l'0X6+l.K 8

(7.2) this is SqBﬂ_-ng+l = SqB

Thus Z is an S-algebra, since 0Z 1is an isomorphism. Since 2Z is
therefore already in B , it is also the colimit in B of (XB)B<a ;  that

is, it is Xa = S*®B . Hence the sequence converges. B

REMARK 7.6. The author cannot see how to adapt this argument to the
slightly more general hypothesis, as in Theorem 6.2, that S preserves the
E-tightness of (M', a)-cones; however the hypotheses of Theorem 7.2 cover

most practical cases.

REMARK 7.7. The fact that free S*-algebras exist constructivelv in
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these circumstances by no means implies that free S-algebras exist
constructively. In the example of Remark 5.4, with M = the extremal
monomorphisms, both the hypotheses of Theorem 7.5 are trivially satisfied;

and B reduces to S-alg = {«} .

8. Thecase SEcCE

In the important but special case where the well-pointed S satisfies
SE c E , we can say a certain amount even when S satisfies no global

condition of the form (¥*) of §2.3. First:

PROPOSITION 8.1. Let SEcCE. Then if 04 € E for some A €A
the free S-algebra on A exists, and is given by the x4 : A > KA of §7.
If, moreover, A <is E-cowellpowered, the free S-algebra on A exists

constructively.

Proof. Since 0KA+*kA = SkA+*0d Dby naturality, since ¢4 and k4 are
in E , and since Sk4 € E because SEC E , we have OKA € E . But
OKA € M by Proposition 1.1 (%), since XA € B and every map from X4 to
an S-algebra factorizes through oKA . So O0X4 1is an isomorphism, so

that XA 1is already in S-Alg .

For the final assertion we argue inductively that §SA € E for all

8 , whence the sequence §A converges by the E-cowellpoweredness. The

assertion is trivial for B = 0 , and for B =1 it is the hypothesis
OA € E . for the passage from B to B+ 1, SEcC E gives SggA €E,

which by Lemma 5.5 says §E+1A € E, giving §g+lA € E . The closure of E

under cointersections gives the passage to a limit-ordinal. a

REMARK 8.2. When 04 € £ for all A , the well-pointedness of S
is automatic by Proposition 7.1, and SEC E is also automatic. Moreover
S preserves the E-tightness of all cones by §2.4. Hence Proposition 8.1

is then a special case of Theorems 6.2 and 7.5.

PROPOSITION 8.3. Let SECE, andlet f: A+ B bein E . If
the free S-algebra on A exists, so does that on B ; and if the first
exists constructively, so does the second, in the case where A 1is

E-cowel lpowered.

https://doi.org/10.1017/50004972700006353 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006353

A unified treatment of transfinite constructions 27

Proof. Consider the pushout

k

A N
S ——

- g
h

where g : A > C 1is the reflexion of 4 into GS-Alg . Then since f € E
we have k € E and hence Sk ¢ E . Since oC is an isomorphism we
conclude that OD € E , so that by Proposition 8.1, D admits a reflexion
t : D+E into S-Alg . Since g 1is orthogonal to every S-algebra, so
is its pushout h ; and since ¢ too is orthogonal to every S-algebra,
so is th ({ef. [71, Proposition 2.1.3). Since E is an S-algebra, it
follows that th : B > E is the reflexion of B into S-Alg .

For the constructive part, we observe that there is a natural

transformation s = Sf : 34 ~ 3B , given by 89 = ., SB+1 = SsB , and

s, = colim Sg for a limit-ordinal o . Since f € E , SECE , and E is
B<a

closed under colimits, we have s € E . It follows that, if §gA is an

isomorphism for Y =2 B =2 a , then ggB € E for y=RB =a ; whence by the

E-cowellpoweredness §B converges. o

We now consider the situation (which occurs in §9 and §16.2 below) of
well-pointed endofunctors (S, o) on A and (S', 0') on A' , together
with a functor G : A’ A (which commonly has a right adjoint

V:A->A'"), and a natural transformation 6 : GS' + SG satisfying

qu////* GS'
/////’

(8.1) G )
\\\\\\;E\\\\*

here A and A’ are to be cocomplete, and A is to have a cocomplete

S5G
factorization system (E, M) .

PROPOSITION 8.4. 1In the situation above, let SEC E and let
8 €E. Then if A is E-cowellpowered and the free S’-algebra on
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B € A' exists constructively, so does the free S-algebra on GB € A . If
A 18 not necessarily E-cowellpowered, but G has a right adjoint V ,
and the free S'-algebra on B exists, so does the free S-algebra on

GB .

Proof. For the first part, consider the natural transformation

~

6 : G&8' + 56 whose components 0, : GS'B > SBG are defined inductively as

B
follows: @0 =1:G6G~>G, §B+l is the composite
es's™® —— ses® — s s5P¢
GS'B SGB

and, for a limit-ordinal o , éa = ¢colim §B ; the naturality is immediate
B<a

from (8.1). It follows by induction that each 63 € E; sothat if 5'B

converges so does 36B s> by the latter argument used in the proof of
Proposition 8.3.

For the second part, let ¢ : S'V - VS be the mate of 6 under the
adjunction (ef. [10], §2); it satisfies the transform

5'v
a'v

(8.2) 14 o
\
Vs

of (8.1). For any S-algebra A , 04 1is invertible; hence by (8.2),
o'VA has a left inverse; so that VA is an S’-algebra by Proposition
5.2. Hence VA is orthogonal to the reflexion f : B+ C of B into
S'-Alg ; whence by the adjunction 4 is orthogonal to Gf : GB » GC . It
follows that the reflexion of GB into S-Alg exists if that of G&C
does; which it does indeed by Proposition 8.1, 0GC being in E by (8.1)

since 6 € E and since o'C is an isomorphism. o

9. The construction of well-pointed endofunctors
Recall that a pointed endofunctor (R, p) on A is called an

. . 2 . .
tdempotent monad if R° =R with pR =Rp =1 ; it is clearly well-

pointed, and its algebras are reflective in A . Moreover every full
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replete reflective subcategory of A consists of the algebras for such an
jdempotent monad (R, p) , which is uniquely determined to within
isomorphism.

There are a number of processes that, starting from well-pointed
endofunctors, produce others. The well-pointed endofunctors to which we
shall apply the results of this chapter all arise from the repeated

application of these processes, starting with idempotent monads.

The first such process is that of Proposition 7.1 above. Another is
the following; note that the family it refers to does not have to be

small, so long as the fibred coproduct exists - which it will do if Oi € E
for all but a small set of < .

PROPOSITION 9.1. et (5.

0 oi) be a family of well-pointed endo-

functors on A and let o : 1 > S be the fibred coproduct of the family
o, : 1~ Si . Then (8, o) 1is well-pointed and S-Alg <is the

intersection of the categories Si—Alg .

Proof. Let the generators of the colimit cone be Py Si + S5 . The
equa?lon Sici = OiSi , composed with PPt Sisi + 85 , gives the
equation 50°pi = OS'pi ; this being so for all < , we have S0 =05 .

The last statement is clear from Proposition 5.2. o

The final (and central) such process is that given by Wolff (171,
Theorem 2.1).

PROPOSITION 9.2. Let ¢—V : A > A’ be an adjunction with counit
e :GV>1, let (S', a') be a well-pointed endofunctor on A' , and
define a pointed endofunctor (S, o) on A by the pushout

Ga'v

GV ———————— GS'V

(9.1) € ¥

1 S

s

Then (S, o) is well-pointed, and S-Alg consists of those A € A for
which VA i an 8'-algebra. Moreover the natural transformations
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8 : GS' > 56 and ¢ : S'V + VS corresponding to ¢ satisfy (8.1) and
(8.2).

Proof. The last statement is immediate for ¢ and hence follows for
6 . Composing the equality S'oc'V =ad'S'V : S'V » S’2V with

¢SS’ : S'2V -> V52 , and simplifying by the use of (8.2), we get
VSg+¢p = VoS+¢ , or equivalently So*y = oSy . Since S50+0 = 05°C by

naturality, we have S0 = 0S because (9.1) is a pushout.

The following are successively equivalent: A4 1is an S-algebra; lA

factorizes through 04 ; €4 factorizes through Go'V4A ; lVA factorizes

through o©'VA ; VA is an S'-algebra. O

REMARK 9.3. The above proposition will most often be used when

(8", 0') 1is an idempotent monad (R, p) on A’

ITI. ORTHOGONAL SUBCATEGORIES AND RELATED QUESTIONS

10. Orthogonal subcategories

This chapter treats some applications where a subcategory to be proved
reflective may be exhibited fairly directly as the category of algebras for
a well-pointed endofunctor. The first of these is that mentioned in the

Introduction: given a set K of maps in A , we consider the full
1
subcategory K of A given by the objects orthogonal to each k ¢ X .

We suppose for this chapter that A has small hom-sets; then for
each object M we have the representable functor A{(M, -) : A » Set , with
a left adjoint sending X to the coproduct X*¥ of X copies of M .

The counit nkﬁ : A(M, A)*M > A of this adjunction has, for each

f € A(M, 4) , its f-component equal to f .

For eachmap k% : ¥ > N the functor V : A > Set2 sending 4 to
A(k, A) has a left adjoint G , whose value Gv at v : X + Y is given
by the pushout
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VM

XM ———— Y M

Xk

XN —— Gv

2

There is an idempotent monad R on Set sending v : X > Y +to

RBv =1, :7~> Y , with unit pv = (v, 1) ; its algebras consist of those

v that are isomorphisms; so that A 1is orthogonal to k if and only if

VA 1is an R-algebra.

It follows from Proposition 9.2 that the full subcategory kJ- of A
is S-Alg , where (S, o) is the well-pointed endofunctor on A given by
the pushout (9.1), with (R, p) for (S', ¢') . An easy calculation gives
(S, 0) explicitly as the pushout

(1-k,A(k,-)-1)

A(M,-)N + A(N,-) W - A(M,-) N

(10.1) Cnysny?

1 s 5
g

If we now consider a set K = {ki : Mi - Ni} of maps and rewrite

(10.1) replacing k, M, N, ¢, S by ki, M., Ny 0, Si , and then take

(S, 0) to be the fibred coproduct of the (Si’ oi) as in Proposition 9.1

4
(if it exists), we conclude that K = S-Alg for the well-pointed endo-
functor S .

For a cocomplete factorization system (E’, M’) on A , consider the

"local presentability" property

(P) for each A € A there is a regular cardinal o,

A(A, =) : A » Set preserves the colimits of (M’, 8)-chains

such that

for each aA—filtered ordinal 8

THEOREM 10.1. Let X be small, and for some regular cardinal
let each A(Mi’ -) and each A(N%, -) preserve the colimits of
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4
(M', a)-chains; which is the case if A satisfies (P). Then K 1is

reflective, and constructively so if A is E'-cowellpowered.

Proof. Each Si preserves by §2.4 the colimits of (M’, a)-chains,
since the other three corners of (10.1) do so and S; 1is the colimit of
that diagram. Hence S , as the fibred coproduct of the o, 1~ Si ,
does so too. The result now follows from Theorems 6.2 and 7.5. a

The above is essentially Corollary 3.1 of Wolff [!17]; the case M’ =
all maps includes Satz 8.5 of Gabriel and Ulmer [§] and the remarks in
their §§8.6 and 8.7. The smallness of K is used in Theorem 10.1 in two
ways: to ensure the existence of the fibred coproduct S - which might
be ensured in other ways - and to get from (P) the hypotheses we really
use, on A(Mi’ -) and A(Ni’ -)

The possibility of dealing with certain cases of a large K , at the
cost of strengthening (P), was first recognized in the (non-constructive)
treatment of Freyd and Kelly [7]. Suppose that, for some cocomplete

factorization system (E, M) , ki has the factorization

(10.2) M, k—7:> L _kT n,

Then, because ké is epimorphic, it easily follows (ef. [7], Lemma 4.12)

that Ko = kI n kP Let (5!, 0) ana (S%, 0%) be vhat we get in

7 z 7z A X AR S
(10.1) when we replace k by ké and by kg . If we now suppose further
that the system (E, M) is proper, we have that cé € E; for it is the

pushout of the top edge of (10.1), which is in E since its composite with

one of the injeciicns is the map l-ké of E (we are using Proposition
2.1.% of [71). Thus the oé : 1+ Sé admit a fibred coproduct
o' : 1+5' with o' €t

To proceed, we must suppose that the number of different kg (to

within isomorphism) is small; since A has small hom-sets, this is to

say that the numbers of different Li and Ni are small; and if A is

M-wellpowered, it is to say that the number of different Ni is small.
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We may then form the fibred coproduct o” : 1 + §" , not of the family

Og HE R g SZ , but of the small set of different elements which comprise it.

Finally we may form the pushout ¢ : 1 > S of ¢' : 1->S8' and

g” : 1 +S"; this need not of course coincide with our previous S , even

i
when K is small; but it still satisfies S-Alg = K . Moreover we have

amap ¢ : S" > S which, as the pushout of ¢’ : 1 -5’ , is in E .

In relation to the above proper (E, M) and some (E’, M') consider,

in place of (P), the "local boundedness" property

(B) for each A € A there is a regular cardinal 0y such that,
whenever B is an a-filtered ordinal, A(4, -) : A + Set sends
each E-tight (M', B)-cone to an epi-tight cone.

This condition is most often considered for M’ = M | and then asserts (ef.

§2.3) that A(4, -) preserves ~filtered ordinal unions of M-subobjects

%
(in the sense of taking them to ordinary unions in Set ). It may be a
little weaker than this if M' < M ; but there is no point in imposing it
for an M’ bigger than M . Since it is thus contemplated only for =
proper (E', M") , it is by §2.7 stromger than (P) - in general strictly
so, by §83.3 and 3.5. Yet with M’ =M it is satisfied by §2.2 by any
locally-presentable A with M = the monomorphisms, and by §§3.2 and 3.3
by any category like TOp or Haus with M = the subspace-inclusions;
similarly by any category like topological groups with M = the subgroups

that are subspaces.

The following improves in various minor respects - including the
dropping of the completeness hypothesis on A - Theorem L4.1.3 of Freyd and
Kelly [7].

THEOREM 10.2. For a proper (E, M) , with the ki factorizing as in
(10.2), let the number of different kg be small. For some regular o ,
let each A(Li’ -] send E-tight (M', a)-cones to epi-tight cones; which

4
is the case if A satisfies (B). Then K is constructively reflective
when A is E- and E'-cowellpowered; and is at any rate reflective when
E'=E.

Proof. Since the functor —-Ni : Set » A preserves colimits and
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sends epimorphisms to retractions which surely lie in E , the endofunctor

A(Li’ -).Ni preserves the E-tightness of (M’, a)-cones. Since 1 does
too, so by §2.4 does SZ , which by (10.1) is a regular quotient, and hence
an E-quotient, of 1 + A(Li’ —]'Ni . So then, by §2.4 again, does the
fibred coproduct S” of the different Sg . So again, by §2.4 once more,

does S , as an E-quotient of S"” . The result now follows from Theorems

6.2 and T.5. o

11. Factorization systems
A closely-related problem is that of whether, for a set XK of maps in

A as above, the pre-factorization system (F, N) = (K¢f, K+] , in the

notation of Freyd and Kelly [7], §2.1, is actually a factorization system.

We recall from [7] that, for any prefactorization system (F, N) ,

p:A~+B is in F if and only if, for every commutative diagram

. A B
(11.1) uJ Jv
c D

with 7 € N , there exists a "unique diagonal fill-in" w : B > C .

—pr

_—
(2

LEMMA 1.1, When A admits pullbacks, we may conclude that p € F
if the above "unique diagonal fill-in" property holds for those diagrams
(11.1) inwhich D=B and v =1.

Proof. We factorize p and u through the pullback of < and v ;

we leave the reader to complete the easy proof. 0O
For E € A , write NE for the full subcategory of A/E whose
objects are those maps in N with codomain % .

PROPOSITION 11.2. If the prefactorization system (F, N} 1is a
factorization system, then NE i8 reflective in A/E for each E € A ;

and the converse is true if A admits pullbacks.

Proof. The direct assertion is immediate: if f : 4 + £ has the
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(F, N)-factorization

. A B—E |
(11.2) > 3

it is clear that p : f + J 1is the reflexion into NE of f €A/E . For

the converse, let (11.2) be this reflexion; we use Lemma 11.1 to show that
p €F .

Suppose then that p = Zu with < € N (as in (11.1) with D =B and
v =1 ). Since ji € NE themap u : £+ ji of A/E factorizes uniquely

through the reflexion p ; that is, there is a unique w : B + (C with

wp =u and Jiw =g . In fact Zw =1 as desired; for it is a map
J*Jd in NE , and its composite with the reflexion p is
iwp =iu=p . O

We now proceed by applying Theorems 10.1 and 10.2 to A/E in place of
A . The category A/E is cocomplete, with colimits formed as in A ;
each factorization system (E, M) on A induces one, with the same name,
on A/E ; and A/E is E-cowellpowered if A is. As for the effect on
cones of (A/E)(a, -) , where a : A * E 1is an object of A/E , consider

a B-cone [rY P xy + n)Y<B in A/E , where xY : XY +E and n : N>E ;

it is clear from the formation of filtered colimits in Set that

(A/E)(a, PY) is a colimit cone or an epi-~-tight cone if the same is true of

Write KE

A4, ry

for the set of all maps in A/E of the form ki : f+g,
where ki : Mi > Ni is in X and where f : Mi +E , g: Ni +F . It is
1
KE

Since A has small hom-sets, KE is small if K 1is; and more generally,

clear that, if N = KJr , then NE is the full subcategory of A/E .

if K 1is such that the number of different kg in (10.2) is small, the

corresponding thing ig true of KE . Thus:

THEOREM 11.3. Let A admit pullbacks. Then in the circumstances of

either Theorem 10.1 or Theorem 10.2, (F, N) = (K++, K+) ig a factor-

ization system on A . o
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The requirement that A admit pullbacks, although a very mild
restriction in practice, is inelegant when the core of the argument uses
only colimits. In the simplest case, corresponding to Theorem 10.1 with
cowellpoweredness, we can remove it, and at the same time describe F more
concretely.

Write K+ for the smallest set of maps containing X , closed under
composition and containing the isomorphisms, closed under pushout, and

closed under colimits in the sense of §1.2.
. . +
LEMMA 11.4. Each component of the o of (10.1) lies in k

Proof. The top and bottom diremonds in the following commutative

diagram are pushcuts:

Yy
mw“W

Ms=) e + AlW,=) oM

(1A(k N
A(M,-) M

1

;/

1+ 1k lof
: l 1<k
1
) g
— m 'y _ :
A(M,=) oM + A(N,-) N S
(1+%,A(k,-)+1) ) %
A(M,-) N
Since 1 and 1+k lie in k' , SO too does o . 0O

THEOREM 11.5. Let the hypotheses be as in Theorem 10.1, with A

being E'-cowellpowered. Then (F, N) = (K++, K+) 18 a factorization

system on A , and F = *

Proof. C(Clearly kKT cF » since F has the desired closure properties
(ef. [71, Proposition 2.1.1). We argue just as before, except for the
appeal to pullbacks in the proof of Proposition 11.2, when we are to show
that the reflexion p is in F ; we replace this by a direct argument
that p € XK'

https://doi.org/10.1017/50004972700006353 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006353

A unified treatment of transfinite constructions 37

The 0 : 1 +S of Theorem 10.1 is in x* since it is the colimit of
the Oi , which are in K+ by Lemms 11.L. Hence the maps §§B of §5.2
are in x* by an evident induction, so that by Proposition 5.3 and Theorenm
6.2, the reflexion of A into K is in K' .

What we really need is the same conclusion when A is replaced by

A/E and XK by K, ; and we do get this since, colimits being formed in

+ L+
A/E as in A , each map in KE is clearly in KX when seen as a map in

AL O

The case M’ = all maps of this last result, with a slightly less-
sharp description of F , is Theorem 4.1 of Bousfield [5].

12. Continuous functors

The question of "continuous functors" was reduced by Freyd and Kelly

[7] to that of an orthogonal subcategory.

By a cylinder (J, x) : P+ @ in a small category K we mean
functors P : P+ K and @ : @ » K with small domains, a functor
J : @+ P, and a natural transformation ¥ : PJ - @ . A functor
F: K+A , wvhere A is complete, is said to be continuous with respect to

(J, x) if the induced map

(12.1) lim FP T lim FPJ —Hm'ﬁ(’ lim FQ

is an isomorphism. A cylinder with P the unit category 1 is just a
projective cone over & , and F is continuous with respect to it when F
sends it to a limit-cone in A . Those functors F continuous with
respect to each cylinder (J, X) of some family I form a full replete
subcategory [K, A]F of the category (K, A] ; and the question arises of

its reflectivity.

Let A :A > [P,A] and & : A+ [Q, A] denote the diagonal
functors. To say that (12.1) is an isomorphism is to say that A(4, -) of
it is an isomorphism for each A4 € A ; which by the definition of limit is

to say that each

(12.2) (M, FP) ——= (64, FPJ)

7] (64, FQ)

(1,Fx)
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is an isomorphism, where the parentheses denote homs in [P, A] and
(2, A] . In this form the problem can be stated without supposing A to

be complete.

Of course we retain our blanket hypothesis that A is cocomplete.
Then (A, FP) in (12.2) may be replaced by [K, A] (LanPAA, F) , and

similarly for the other terms. This left Kan extension LanPAA of M
along P is easy to compute: it is just P#*+A , where P* € [K, Set] is

the colimit of the functor PP » (K, Set] sending p € P to K(Pp, -) .
In this way we see that [K, A]F consists of these F € (K, A] which are
orthogonal to (J, x)**4 for each (J, x) € T and each A € A , where

(J, x)* 1is the induced map

(12.3) Q* ~ (PJ)#* 5 p*

Now suppose that A has, in the sense of [7], §2.5, a small
generating set G with respect to some proper factorization system
(E, M) . Freyd and Kelly give in [7], Lemma 5.1.1, an easy proof that
(K, A]F consists of those F orthogonal to each (J, X)*+G with G € G

and also orthogonal to a certain set ® of maps in E ; and they further
show in Remark 5.1.2 that orthogonality to & 1is an automatic consequence
of the rest if G is also a generating set for the factorization system

(extremal epimorphisms, monomorphisms).

An A with a small generating set is M-wellpowered if it admits
finite intersections of M-subobjects ([7], Corollary 2.5.2); in this case
the maps (12.3) have but a small set of different M-parts, in the sense of
the factorization (10.2), if there are but a small number of different
P : P~>K; in particular if all but a small set of the cylinders in T

are cones.

We therefore have the following, which slightly generalizes in various
ways Theorem 5.2.1 of [7]; the factorization systems involved are as usual

supposed cocomplete:

THEOREM 12.1. Let A have the small generating set G for the
proper factorization system (E, M) . If T <s small and G is also a

generator for the system (extremal epimorphisms, monomorphisms), [K, A]F

is reflective under the hypothesis (P) of §10 (for some (E', M') ). If
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A is M-well-powered - as when it admits finite M-intersections -
[K, A]F i8 reflective when the number of different P 1is small, under the

hypothesis (B) of §10 - if either E' =E or A is E- and E'-cowell-
powered.

13. Functors sending given maps into M

To ask of a functor F : K+ A from a small K that it send a given
morphism ¢ of K to a monomorphism in A , is to ask that it send the

diagram

/N
\
\/
in K to a pullback in A ; which falls under the considerations of §12
above. Koubek has observed in the manuscript [17] that problems of initial

automata lead to the more general consideration of those F : K+ A for

which Fy 1lies in the M of some factorization system (E, M) on A

Y : 2 > K induces a functor V = [¢, 1] : [K, A] - [2, A] with a
left Kan adjoint G . The full replete subcategory B of [2, A]
determined by those f : 2 » A with f € M is reflective, the reflexion
of an arbitrary f being (p, 1) : £+ 4 1in

__f
P 1
—_—

J

where f =Jp 1is the (E, M)-factorization of f ; this is immediate from
the unique-diagonal-fill-in property. Thus the corresponding idempotent
monad (R, p) has Rf =4 ama pof = (p, 1) .

It follows from Proposition 9.2 that the full subcategory (K, A]W of

{[K,A] given by those F : K + A with Fy € M consists of the
S-algebras, where § is given by (9.1) with (R, p) for (S', ')

Since p € E |, and since GE < E because (clearly) VM c M , we conclude
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that o € E .

Now consider a set Y = (‘Pz) of maps in K , along with a
factorization system (Ei’ Mi) on A for each 7 ; and let [K, A]\l/
consist of those F such that Fll)i € Mi for each % . If we now write
g; ¢ 1 - Si for the above o0 : 1 > S when ‘pi replaces Y , and then
define a new 0 : 1 - S as the fibred coproduct of the 07,' , we have
(K, A]W = S-Alg ; provided that S exists.

S certainly does exist if there is some cocomplete factorization

system (E, M) on A such that Eic E for each 7 ; and them o € E .

From Remark 8.2 and Proposition 8.1, we have the following result, which

includes Theorem III.T of Koubek [771].
THEOREM 13.1. If each E; < E, where (E, M) is cocomplete, then

[K, A]\P is reflective in [K, A] . G

IV. ALGEBRAS FOR GENERAL POINTED ENDOFUNCTORS

14. Reduction of the pointed to the well-pointed case

14.1. For any endofunctor T of A we have the comma category
T/A ; an object is a triple (4, a, B) where 4, B €A and a: TA + B ;
2 map (4, a, B) + (4', a’', B') isapair (f : 4> 4", g : B ~>B') such
that ge*a = a'-Tf .

The category T/A is cocomplete; a functor K > T/A is given by

functors X, Y : K+ A and a natural transformation x : TX - Y , and its

colimit is given by (colim X, a, B) , where

colim TX colim &, .o1im ¥
(1k4.1) 7 b
T colim X > B
a

is a pushout, 7 being the canonical comparison map.
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A natural transformation a : T’ + T induces a functor
a* . T/A > T'/A sending (4, a, B) to (4, a*a4, B) . This functor has a
left adjoint a, : T'/A - T/A which sends (C, ¢, D) to (C, e, D) given
by the pushout

T7'"¢ —————— D

(1k.2) ol ¢

7 ——— D
e
The (C, e, D)—compoﬁent of the unit n : 1 = a*a, of this adjunction is

given by

A

(14.3) n=1(1,¢): (¢, e, D) > (C, cal, D) ;
and the (4, a, B)-component of the counit € : a,a* + 1 is given by
(14.4) e=1(1,d) : (4, ¢, B) >~ (4, a, B)

where, in (14.2), we take C =A , D=B, ¢ =a*0d , and a is
determined by

(14.5) de=a, d =1

Our concern below is with pointed endofunctors (7, 1) on A . By a
map o : (', ©') +~ (T, 1) of pointed endofunctors we mean a natural

transformation o : 7' + 7 satisfying oT' = T . Note that 1/A is just

the functor category A2 ; and that for a pointed (7T, t) the adjunction

above has the special case

(14.6) T, o T* : T/A > A2

14.2. For any pointed endofunctor (T, T) we have the category
T-Alg of its algebras, as defined in §5.1. The functor J : T-Alg > T/A
sending (4, a) to (4, a, 4) and f to (f, f) is a full embedding;
for any mep (S, g) : J(4, a) » J(A', a') must have g =f , as a
consequence of a*TA =1 and a'+*1d’' =1 . We henceforth regard J as an
inclusion. T-Alg is evidently closed under limits in T/A , we are

concerned with the question of its reflectivity. Clearly

PROPOSITION 14.1. A functor K ~ T-Alg , given by a functor
X:K+A and an action x : TX + X , adnits a colimit in T-Ale 4if and
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only if, when we form the pushout (14.1) with Y = X , the object
(colim X, a, B) admits a reflexion in T-Alg . In particular, T-Alg is
cocomplete if it is reflective in T/A . o

If a: (7', 1') > (T, t) is a map of pointed endofunctors, the
functor o* : T/A > T'/A of §1b4.1 clearly restricts to a functor

a# : T-Alg > T'-Alg . For a T-algebra A = (4, a) and a T'-algebra

B = (B, b) we have T’—Alg(B, OL#A) >~ T'/A(J'B, a*JA) = T/A(a,J'B, JA) .
Hence:

PROPOSITION 14.2. of : 7-mlg > T'-alg has a left adjoint o, if

and only if, for each T'-algebra B , the object aJ'B of T/A admits a
reflexion in T-Alg . In particular the left adjoint oy exists 1f T-Alg
is reflective in T/A . a

This has the special case where 7' =1 and o =1 . The category
1-Alg (for the pointed endofunctor 1 ) is just A , and the embedding
J!' : 1-Alg > 1/A is just the diagonal embedding A : A » A2 . Of course
A is both reflective and coreflective in A2 , the domain and codomain

functors do, dl : A2 + A are respectively the right and left adjoints of

A . Clearly T# : T-Alg »+ 1-Alg 1is nothing but the forgetful functor
U: T-Alg + A of §5.1. Since T,0B , by (1k.2), is (B, Lpps TB) , we
have:

PROPOSITION 14.3. Free T-algebras exist - that is, the forgetful
functor U : T-Mlg > A has a left adjoint - if and only if, for each
B € A, the object (B, lops TB) of T/A admits a reflexion in T-Alg ;
which ig certainly so 1f T-Alg is reflective in T/A . O

The full subcategory 7T-Alg of T/A is not replete; clearly

(A, a, B) 1is isomorphic to a T-algebra precisely when q<T4 is an

isomorphism., In particular A , embedded by A , is not replete in A2 R
its repletion consisting of those (4, a, B) with a an isomorphism.

These latter objects are of course the algebras for the idempotent monad

(R, p) on A arising from the adjunction dl —A: A A2 ; here
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R = Adl sends (4, a, B) to [B, 1z B] , and the component of its unit

p:1~+R is (a, 1)
It follows that the object (4, a, B) of T/A 1is isomorphic to a

T-algebra if and only if its image T#*(4, a, B) in A2 is an R-algebra.
Hence, if we define a pointed endofunctor (S, 6) on T/A by the pushout

T,.pT*
T* > T RT*

T

*
(k. 7) € v

1 - S ,

we conclude from Proposition 9.2 that:

THEOREM 14.4. 5 s a well-pointed endofunctor on T/A and S-Alg
is the repletion of T-Alg . O

Thus an object (4, a, B) of T/A admits a reflexion into 7T-Alg if
and only if it admits one into S-Alg ; we say that the first reflexion
exists constructively if the second does, in the sense of §5.2; and we say
that T-Alg is constructively reflective in T/A when this is so for
every (A, a, B) . We further say that a colimit in T-Alg , or a left

adjoint a# , or a free T-algebra, exist comstructively when the

reflexions needed in Proposition 1k.1-14.3 do so.

15. The existence theorem in the pointed case

15.1. We now show that a factorization system (E, M) on A induces

one (with the same name) on T/A .
First, we certainly have one, defined pointwise, on the functor
2 Cs .
category A~ ; themap (f, g) is in E or M precisely when both f

and g are.

Next, we consider the adjunction T, —T* : T/A » A2 , and the
prefactorization system (E, M) on T/A whose E-part is gemerated by the
T(f, g) with f, g € E . By [7], Lemma 4.2.1, we have

PROPOSITION 15.1. A map (f, g) in T/A is in M if and only if,
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as maps tn A, FfE€M and g € M. a

Finally, we show that this is indeed a factorization system on T/A ,
and we describe E explicitly. For any (p, q) : (A, a, B) - (A', a', B')

in T/A define r as the connecting map in

TA a + B
2
{15.1) Ip c q
/\
74" — »B'

where the top quadrangle is a pushout.

PROPOSITION 15.2. (&, M) <s a factorization system on T/A , and
(p, q) € E if and only <f, as maps in A, p ¢ E and r € E, where »r

18 the conmmecting map in (15.1).

Proof. It is easy to verify directly, using the unique-diagonal-fill-
in criterion, that in the situation of (15.1) with ( the pushout,
{(p, v) : {4, a, B) »(A', u, C) isin E if p € E and
(L, ») : (A", u, C) > (A", a’, B') is in E if r € E . We conclude that
(ps q) €E if p € E and r € E .

It remains to show that every map (f, g) : (4, a, B} » (4", a”, B")
factorizes as a (p, gq) with p € E and r € E , followed by an (%, 4)
with %, § € M . Begin by letting ip be the (E, M)-factorization of
f . Then define v, u, C by the pushout in (15.1), and define % : ¢ -+ B"
by hv =g , hu =a"+Ti . Finally let jr be the (E, M)-factorization

of h , and set a’ =ru . 0

PROPOSITION 15.3. ff every t in A is an epimorphism, or every M
a monomorphism, or both, the same is true of T/A . If A is E-cowell-
powered or M-wellpowered, the same is true of T/A . If the factorization
system (E, M) on A <is cocomplete, so is that on T/A .

Proof. All the verifications are immediate or straightforward, unless

perhaps the last. For this, consider a family
(p;» ag) : (4, a, B) » (af, a!, B))

of maps in E , and use the notation of (15.1) decorated with subscripts.
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Let the cointersection of the p. be given by ti : Aé + A, . Form the
pushouts
u, r.
TA! L c. z B!
T z i
Tti s; in
TA_ D - E,
Y i

observing that .y and D are independent of 7 because y 1is the push-

out of a by Tti.Tpi , which is independent of % . The zi are in E
as the pushcuts of the Pi 3 let their cointersection be given by

w., : E.>B . Write a_ for the common value of the w.z.y ; it is now
7 7 o0 bl 1

easy to verify that (ti’ wixi) : (Aé, aé, Bé) - (Am, as Bm) is the

cointersection of the (pi, qi) . 0

PROPOSITION 15.4. For any map o : T' » T of pointed endofunctors,
we have oM c M and oEc E .

Proof. Since o* is given on maps by o*(f, g) = (f, g) , the first

statement is immediate; the second is then an evident consequence. o

15.2. We now consider two factorization systems (E, M) and

(E', M') on A , along with the induced ones on T/A

PROPOSITION 15.5. If T : A » A preserves, for some regular
cardinal o , the E-tightness of (M', a)-cones, so does S : T/A + T/A .

Proof. It suffices by §2.4 to show that the vertices of (14.7), other
than § , have the corresponding property. Since T, preserves colimits
and (by Proposition 15.k) maps E into E , and since the same is clearly

true of R , it remains to prove that <t* has the corresponding property.

Consider an a-chain in T/A given (as in §14.1) by X, ¥ : a + A
and x : TX » Y ; and an E-tight M’-cone over it, with vertex

(A', a', B') and generators tB : XB > AT, sg YB +~ B' ;, giving

T :colim X > A4' and 5 : colim Y + B' . Since the E of A2 is given

pointwise, as are colimits there, and since T*(tB, SB) = (tB, sB) , what
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we have to show is that ¢, s € E .

Form as in (14.1) the colimit in 7T/A , and write 4 for colim X .
Let the comparison map in T/A , from the colimit to the vertex, be
(ps» q) ;3 and let this be analyzed as in (15.1). Then the tightness in
T/A is expressed by (p, q) € E ,or by p, r € E .

Since t is in fact p » we have t € E. since, by Proposition

15.1, (tB) is also an (M', a)-cone, the hypothesis on T gives the
tightness of (Tte) ; or equivalently that Tp-f € E. Since v and b

are the pushouts of Tp and 7 respectively, it follows that vb € E as
the pushout of Tp-% . Hence rvb € E ; but this is just s . ]

Theorems 6.2 and 7.5 now give our central result:

THEOREM 15.6. Let T preserve, for some regular o , the
E-tightness of (M', a)-cones. If A is E- and E’-cowellpowered,
T-Alg 1is constructively reflective in T/A . Even without the cowell-
poweredness, it is still reflective if M' =M or if E <is the

1somorphisms. 5]

16. Pointed endofunctors with TEc E

16.1. We now apply §8 to get partial results, without the full
hypotheses of Theorem 15.6, in the special case TEc E .

PROPOQSITION 16.1. When TEcCE , amap (p, q) in T/A is in E
if and only if p, q € E . Moreover we have SE c E .

Proof. The first statement follows easily from Proposition 15.2;
given that p € E , the map Tp and hence its pushout v in (15.1) are in
E , wvhence g € E if and only if »r € E .

It follows from this that T*E cC E . Since E is in any case
preserved by T, and by R , it is preserved by each vertex of (1L.T7)
other than S ; since E 1is closed under colimits, it is preserved by S
too. 0o

Propositions 8.1 and 8.3 now give:

PROPOSITION 16.2. When TECE, (A, a, B) admits a reflexion into
T-Alg , which in fact lies in E , whenever o(4, a, B) € E ; and if
(p, q) : (A4, a, B) > (A4', a’, B') is in E, then (A4', a', B') admits a
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reflexion if (A, a, B) does. In the E-cowellpowered case, we can add

"eonstructively"” throughout. o

Since a(4, a, B) is the pushout (14.7) of T,.pt*(4, a, B) , since

1,E € E, and since pt*(4, a, B) = (a*t4, 1) , we have:

PROPOSITION 16.3. When TEc E, (4, a, B) has an E-reflexion
into T-Alg whenever a+14 € € . a

Of course no consequences flow from TE c E if E 1is the
isomorphisms. To get sharper results we now suppose that (E, M) is
proper.

PROPOSITION 16.4. When (E, M) <s proper, the map ¢ : T,RT* > S
of (14.7) 28 in E (whether TEcC t or not).

Proof. ¢ is the pushout of € ; and each component of € 1is in
E , being by (14.4) and (14.5) of the form (1, @) where a is a

retraction. O

The following generalizes, to the pointed-endofunctor case, Theorem

9.3 of Koubek and Reiterman [13].

THEOREM 16.5. Let TEcC E where (E, M) is proper. Then
(A, a, B) € T/A has a reflexion in T-Alg <if the free T-algebra on B
exists. Thus T-Alg 1is reflective in T/A if and only if U : T-Alg > A
has a left adjoint. When A 4is E-cowellpowered, we can add

"eonstructive" to the conclusions i1f we add it to the hypotheses.

Proof. (4, a, B) admits a reflexion (or a constructive reflexion)
into T-a1g if S(A, a, B) does, by §5.2; and S(A, a, B) does if
T,RT*(4, a, B) does, by Propositions 16.4 and 16.2. But
T,RT*(4, a, B) = (B, 1, IB] ; and to give a reflexion of this is, by
Proposition 14.3, to give the free T-algebra on B . o

REMARK 16.6. As Koubek and Reiterman point out, this result is false
without the hypothesis that TE ¢ E for some proper (E, M) ; for Addmek
[1] has given an example where free T-algebras exist constructively, but

T-Alg 1is not cocomplete, lacking even coequalizers.

On the other hand, TE C E ensures coequalizers in T-Alg , whether
free T-algebras exist or not; ef. [13], Corollary 9.6. More generally:

THEOREM 16.7. Let TEcC E for a proper (E, M) . Then a functor
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K > P-Alg given by X : K>A , x: TX > X, has a colimit in T-Alg <if
T : colim TX » T colim X s in E . This is certainly the case when K
has a terminal object; thus in particular T-Alg admits coequalizers;

constructively so, in the E-cowellpowered case.

Proof. By Proposition 14.l, we seek a reflexion of the (4, a, B)
given by (14.1), where Y =X and A denotes colim X . Clearly
TA_: colim X - T colim X is the composite of T with
colim TX : colim X - colim TX . Since x+tX =1 , it follows from (1L4.1)
that aq*td =b . If T is in E , 50 is its pushout b , and the

reflexion exists by Proposition 16.3.
qB : XB - colim X

and PB : TX8 > colim TX of the colimit-cones are regular epimorphisms,

If K has a terminal object 6 , the generators

and hence in E . Since TqB = Ter, and TqB €t , wehave T € E . O

B

REMARK 16.8. TE c E does not ensure cocompleteness of T-Alg ;
when A = Set and E = the epimorphisms, T-Alg may lack even an initial
object; as when T =1 +H and H is the covariant-power-set functor.

See Barr [2], Example 6.8, or Proposition 20.6 below.

16.2. Now consider a map o : (7', 1') > (T, 1) of pointed
endofunctors, and let (S', 0’) be the well-pointed endofunctor on T'/A

corresponding to the above (S, ) on T/A .
PROPOSITION 16.9. We have a pushout diagram

a,0’at
o a* —+ oS 'a*

*
(16.1) EJ "
1

- S

o
where € 1s the counit of the adjunction o, — a* .

Proof. 5’ and o’ are defined by the primed analogue (14.7)' of the
pushout (1b.7). But (14.7)' remains a pushout when we compose each vertex,
on the right, with any functor; or when we compose each vertex, on the
left, with a left-adjoint functor. Thus a,(1h.7)'a* is again a pushout;

it exhibits o, 0’0* as the pushout by a*er,a* of a,TipT'*a* = T,pT* ;
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we are using subscripts here to distinguish one € from another.

If we suppose for the moment that S and o are defined by the push-
out (16.1), then pasting a,(14.7)'a* on top of (16.1) exhibits o : 1 + S
as the pushout of T, .pTt* by ea'a*ET,a* = €. 5 50 that this S, 0 is
indeed that originally defined by the pushout (1k.T). O

It now follows from Proposition 9.2 that the 8 : a,5' » Sa, ,
corresponding to the ¢ of (16.1), satisfies (8.1), where G = o, .

PROPOSITION 16.10. If (E, M) <s proper and o € E we have
6 € E.

Proof. It is immediate from the definition of maps in T/A that
a* , which is always faithful, is also full when 0o is epimorphic. Hence
the € of (16.1) is an isomorphism; so too is its pushout P . Since 8

is the composite

S ——— a,S'a*a, —— S
O g (X.,(,S'n Qg 070 wa* Qe >

we have only to show that a,S'm € £ ; since auE c E , it suffices to
show S'm € £ . By Proposition 16.4, S' 1is an E-quotient of TJRT'* ,
so it suffices in fact to show that T} Pt’*n € € , and therefore to show

that Rt’'*n € E .

By (14.3), n has the form (1, ¢) ; hence T’'*n has the same form,
and Rt'#*n = (6, ¢) . This is in E because & , being by (1L.2) the
pushout of of , is in E . o

Proposition 8.4, along with Propositions 14.2 and 1b4.3, now gives the
following, which generalizes to the pointed case Corollary 9.5 of Koubek
and Reiterman [13] and the results on pages 65 and 66 of Reiterman [15]:

THEOREM 16.11. Let TE c E for a proper (E, M) and let
a: (7', t") » (T, t) bein E . Then if an object (A, a, BY of T'/A
has a reflexion into T'-Alg , the object a (4, a, B) of T/A has a
reflexion into T-Alg . In particular the free [T-algebra on A exists if
the free T'-algebra does. Moreover the full inclusion

a# : T-Alg > T'-Alg has a left adjoint ay . If A is E-cowellpowered,

we can add "constructively" throughout. 0
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17. The explicit formof S, ¢ for a pointed T

17.1. The results above were obtained directly from the definition
(14.7) of (S, o) , without an explicit calculation of it. Yet such a
calculation is of interest as giving explicitly the sequence in T/A

which, in the constructive case, converges to the reflexion in T-Alg .

Given (4, a, B) in T/A , consider the coequalizer b : TB » ¢ of

Ta*TtTa and Ta<TtA in

TTA
(17.1) TA —23 T°4 ——> TB — C
: TTA Ta b :

PROPOSITION 17.1. S defined by the pushout (14.7) has
S(4, a, B) = (B, b, C) with b, C as in (17.1); the (4, a, B)-component
of o is (a*T4, be1B) ; and the (4, a, B)-component of the transform
¢ : Rt* > T* of ¢ is (1, betB) .

Proof. Consider what it is to give maps
(fs g) : (4, a, B) ~ (4", a', B')
and
(h, k) : 1 ,R1*(A, a, B) » (A", a', B")
in T/A satisfying (f, g)-e(4, a, B) = (h, k)1,01*(4, a, B)
To give (h, k) is equally to give its transform

(u, v) : Rt*(4, a, B) - 1*(A', a’, B')

in A2 , under the adjunction T, < T* ; that is,

(u, v) : (B, 1,, B) > (4', a'+T4", B'")

B,
Then the commutativity condition above transforms to
(£, g) = (u, v)+p1*(4, a, B) = (u, v)+(art4, 1) ;
or f =ua*tA and g =v .
But the condition that (u, v) be a map in A2 is v =a’-td'u ;
so that all is determined by u alone. There remains the condition for
(fs g) tobeamapin T/A ; namely a'*Tf = gea , or

a'*Tu*Ta"TTA = a'+*TA'*u*a . Since the right side of the latter is also
a'*Tu*Ta*TtTA by naturality, the condition is ultimately, by (17.1), that
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a'*Tu = w*b for some (necessarily unique) w : C -+ B'

Since this last is the assertion that (u, w) is a map
(B, b, ¢) » (4', a’, B') in T/A , and since (u, w)(a*t4, b*tB) = (f, g)
and (u, w)(1, b*1tB) = (u, v) , the result follows. ]

REMARK 17.2. Since S(4, a, B) = (B, b, C) where b is a regular
epimorphism, the value of S at the map (f, g) : (4, a, B) » (4', a', B")
has the form (g, k) : (B, b, C) >~ (B', b', C') , where h is determined
by hb =b'+Tg . Note that when T is itself well-pointed, so that

Tt = 1T , we have S(4, a, B) = (B, 1p, 7B) and o(4, a, B) = (a*14, 1B)

17.2. Now for any (A, a, B) in T/A , the free-algebra sequence

S(A, a, B) .of §5.2 may be called the algebra-reflexion sequence for
(4, a, B) . Ve give it explicitly.

We define inductively a sequence X : = + A and a natural
+
transformation x : 7X - X , such that the composite x+TX is the
+
canonical map X + X of §4. This fixes the values of the non-limit

connecting maps by

B+L _ .
(27.2) XB = xB TX8 .
We start by setting
(17.3) Xg=A4, X =B, zy=a:TA>B;
we define «x and to be e coequalizer in
defi B+1 XB+2 be th 1i
TTXB
— 2
(17.4) TX > T°X, ——— TX, . —— X ;
B TTXB B Txe B+1 Ta41 B+2

for a limit-ordinal o we set

(17.5) Xa = colim XB , with Xg the generators of the colimit-cone,
B<a

and we define xa and X& to be the coequalizer in

+1
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cg](.clxm XB+1 = Xa
colinm xB TX
B<a o
(17.6) colim TX — > TX — X .
B<a B 7 a x o+l

That x is indeed natural follows automatically from our inductive proof

of:
THEOREM 17.3. With X, x as above, the sequence
.§(A, a, B) : > 7T/A is (X, x, X+) , so that

24, a, B) = (XB, Tgs X8+l) .

The sequence 3‘(/1, a, B) converges at o precisely when the sequence X

does; and then (if‘ we take for simplicity Xgﬂ to be 1 ) the reflexion

of (4, a, B) in T-Alg <s X, with the action =z : TX - X1 =%y -

Proof. 1In view of Proposition 17.1l, the only point which is not
immediate is the identification of the two sequences at a limit-ordinal
o . Given the description (14.1) of colimits in 7/A , what we are to

prove is that

colim xB
<
colim TX B<a — X
B<a B >
T xa . TXa
Txa :x:a — Xa+1

is a pushout. If wu : TXa +D and v : Xa + D satisfy u°’f’ = pecolim xB s
B<a

they satisfy u-Txg = pex® for all B < o . On composing this with

B+1°B

T , the left side becomes u-rxa-x“ by naturality, while by (17.2) the

B
right side becomes vex% 'XB+1 =vex% It follows that v = u*tX_ ; so
B+1 "8 B - a’
that u*T = u+1X scolim xB , and the result follows from (17.6). O

B<a
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REMARK 17.4. 1In the special case when T 1is well-pointed, so that

Tt =17 , it is clear by induction that XB+1 = TXB and xB =1, for
B =1 3; here we use Lemma 5.5 to check that, for a limit-ordinal a , the
T in (17.6) is just TXa . So in this case the sequence x5 s just the

free-algebra sequence T8 of §5.2; and (4, a, B) has a reflexion into

T-Alg exactly when the free T-algebra on B exists.

Thus Theorems 6.2 and 7.5 are in fact special cases of Theorem 15.6,

while the results of §8 are special cases of those of §16.

V. ALGEBRAS FOR UNPOINTED ENDOFUNCTORS

18. Reduction of the unpointed to the pointed case

From any endofunctor H of A we get a pointed endofunctor (T, T) ,
by taking T to be the coproduct 1 +H and T : 1 ~>1 +H to be the
injection. To give an action of (T, T) on A 1is just to give any map
a: HA ~A ; we call a an action of H on A , and call (4, a) an
H-algebra. A map of T-algebras is just an f : A + A’ with
fea = a'*Hf ; we call it a map of H-algebras. Thus T-Alg and H-Alg
are the same category; confusion between the pointed and the unpointed

senses of the words is unlikely.
An object of T/A = (1+H)/A 1is now a co-span

(18.1) HA — B +— 4,
m n

the maps being pairs (f : 4 »A’', g : B+ B') for which the evident

diagrams commute.

Clearly T preserves the E-tightness of (M’, a)-cones if H does.
Further TEc E if HE c E . Moreover, in the case of a functor
X : K+A and the comparison-map H : colim HX » H colim X , we have
T €E if H €E . Finally, a natural transformation a : H' - H gives a
map l+a :1+H'+1+H of pointed endofunctors, inducing an

a# : H-Alg +~ H'-Alg ; and (1+a) € E if a € E . Thus:

THEOREM 18.1. In Theorems 15.6, 16.5, 16.7, and 16.11, if we replace
T by the unpointed H , replace T-Alg by H-Alg , replace T/A by -
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(1+H)/A , and veplace the hypotheses on T, T , and o by the same
hypotheses on H, H, and o , the conclusions still hold. o

It is this case of Theorem 15.6 which generalizes Theorem 8.5 of
Koubek and Reiterman [13]; while the other three theorems generalize, as

we have already remarked, various results of their §9.

The results in the pointed case are the stronger ones; for they

include as above those in the unpointed case, while the converse is false.

19. Partial algebras

Suppose for this section that A admits finite limits and is

E-cowellpowered for a proper factorization system (E, M)

A span

(18.2) HA «u—C—v+A

is called by Koubek and Reiterman [13] in their §5 a generalized partial
algebra for H ; if a map between two such is a pair

(f :4A+A4', h : C>C") for which the evident diagrams commute, they form
a category GPA . A full subcategory NDA is formed by the non-
deterministic algebras: those spans for which (u, v} : C »HA x A is in
M . Still smaller is the full subcategory PA of partial algebras, given
by those spans with u# € M . Another full subcategory of GPA smaller
than MDA is the category REG of regular generalized partial algebras,
namely those for which the span (18.2) is the pullback of some cospan
(18.1). Inside all of these sits the full subcategory H-Alg of honest
algebras, indentified with those generalized partial algebras for which

C =HA and u =1 . Thus we have full inclusions

o / wpa T Gr

Koubek and Reiterman point out in their §5 that there are left
adjoints to the inclusion HNDA - GPA (take the (E, M)-factorization of
(u, v) ), to the inclusion REG - GPA (take the pushout (18.1) of (18.2)
and then take its pullback), and to the inclusion P4 + GPA (a simple
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transfinite argument using the cowellpoweredness). It follows (this is

their Proposition 6.6) that:
PROPOSITION 19.1. If any one of the full inclusions
H-Alg > REG , H-Alg ~ PA , H-Alg > NDA , H-Alg + GPA
has a left adjoint, so do all the others. (]

Now if T again denotes 1 + H , the functor K : T/A > GPA sending
(18.1) to its pullback (18.2) has the left adjoint L[ : GPA + T/A which
sends (18.2) to its pushout. Since the composite of KX with the inclusion

J : H-Alg + T/A of §1L.2 is clearly the embedding H-Alg - GPA , we have:

THEOREM 19.2. The generalized partial algebra (A, u, v, C) of
(18.2) has a reflexion in H-Alg <if its image L(4, u, v, C) in T/A
does, and in particular when the algebra-reflexion sequence for this latter
converges. When H-Alg 1s reflective in T/A , each of the inclusions in
Proposition 19.1 has a left adjoint. (]

The first sentence here includes Theorem 7.1 of Koubek and Reiterman,
who use GPA as a well-behaved category in which to embed H-Alg , as we
use T/A , and whose "completion construction" is precisely our algebra-
reflexion sequence applied to L{4, u, v, C) ; as follows easily from §20

below. We further recapture their Theorem 9.4 in the form:

PROPOSITION 19.3. If HE c E, the generalized partial algebra

(4, u, v, C) has a constructive reflexion in H-Alg whenever u € E .

Proof. If L(4, u, v, €} 1is the pushout (18.1) of (18.2), we have
n€E . If a denotes (m,m) : TA=A +HA »4A , then a*14 =n € E ;
and the result follows from Theorem 19.2 and Proposition 16.3. o

20. The explicit form of the sequence for a mere endofunctor

20.1. Given a co-span (4, m, n, B) as in (18.1), consider the push-

out

HA ———— B
(20.1) Hn s

HB —— C
r
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PROPOSITION 20.1. The well-pointed endofunctor S of (14.7), with

T=1+H, is given by S(A, m, n, B) = (B, r, s, C) ;

(A, m, n, B)-component of o 1is (n, s} .

Proof. One verifies immediately that b = (s, r)

in (17.1) when a = (n, m) . a

and the

is the coequalizer

We now consider the algebra-reflexion sequence X of §17.2 in the

present case. Given (4, m, n, B) as in (18.1), we define a sequence

+
X : o+ A and a natural transformation y : HX »~ X .

(20.2) X, =4, X =B, X =n:A>B, y =m:

0 1 0

B+2

we define XB+2’ XB+1 , and y8+l

by the pushout

Yg
HX _— XB+1
+1 3+2
(20.3) ng x5y
- )
HXB+1 y6+l XS+2 3

for a limit-ordinal o we set

Starting with

HA » B ,

{(20.4) Xa = colim XB , with ¥ the generators of the colimit-cone;

B<a B
. +1
and we define Xot+1’ Xz , and Yy by the pushout
colim y
8<a B
colim HXB > Xot
B<a
(20.5) i Xt
o
HXa ” Xa+l
o

THEOREM 20.2. Let X, y be as above and let ¢ :

canoniecal map with ¢B = Xgﬂ . Then the sequence
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3(4, m, n, B) = (1+H)/A is (X, y, ¢, x*) . This sequence converges

at o precisely when the sequence X does; whereupon Xy with the

action Yo P HX > X g = X, s is the reflexion of (4, m, n, B) into

H-Alg .
Proof. This is what Theorem 17.3 reduces to in the present case: for

(17.%) reduces to (20.3) by Proposition 20.1, and it is equally immediate
that (17.6) reduces to (20.5). 8]

In the present case we can simplify and unify (20.3) and (20.5); for

an easy inductive argument gives:

PROPOSITION 20.3. For X, y as above the diagram

Y
0
_—
HXO X
f+1
(20.6) ng B
—_— X
HXB yB B+1
is a pushout for each B . O

Combining this with Propositions 14.1, 14.2, and 14.3, we get
simplified descriptions of what we might call the colimit sequence, the
algebraic-adjoint sequence, and the free-algebra sequence, for an unpointed
H ; cf. Koubek and Reiterman [13], §3, and Reiterman [15], §1.

We give the free-algebra sequence explicitly. By Proposition 14.3 we

are to apply Theorem 20.2 to the cospan

HA — A + HA ~— A
m n

where m and n are the injections. If O denotes the initial object,

we have a pushout

0O —— A

(20.7) n

HA —————— A + HA ,
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and we get another by pasting this on top of the pushout (20.6). Hence we

have:
THEOREM 20.4. Given 4 € A define X : w>A and y : HX » X* by
. . . _ e B+1

setting XO = A ; setting XB+l 4+ HXB with injections XO and

Yg ; and, for a limit-ordinal o , setting X = colim XB with generators

B<a
Xg . Then if X converges at o the free H-algebra on A 1is Xu with
, . - ) o
the action Yy * HXa > Xa+l Xa

20.2. Recall that an H-algebra (C, ¢) embeds in (1+f)/A as the
cospan (C, ¢, 1, C) . A map in (1+H#)/A from (4, m, n, B) to this is a
pair (f, g) of maps satisfying

m n

HA B + 4
(20.8) Hf ’9 r
HC = C < I c

and hence equivalently a single map g satisfying

A —2 B
Hn
J
(20.9) HB g
Hg
] J
H — — ¢

e

The following is an adaptation to (1+4)/A of Proposition 6.7 of Koubek
and Reiterman [13]:

PROPOSITION 20.5. If (20.8) is in fact the reflexion of
(4, m, n, B) into H-Alg , then (20.9) is a pushout.

Proof. Let the pushout of the top and left edges of (20.9) be given
by u: H > D and v : B+D , and let w : D > C be the unique map

satisfying wu = ¢ and wv =g . Make D into an H-algebra by giving it
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the action wu*Hw : HD - D , and observe that w : D > € is then an

algebra-map.

Since vm = w+Hg+Hn = weHw+Hv<Hn , it follows by analogy with (20.9)
that v provides a map in (1+H)/A from (4, m, n, B) to the H-algebra
D . Since (20.8) is the reflexion, we have v = tg for a unique algebra-
map t : C>D . But now g = wv = wtg ; whence the algebra-map wt =1 ,

because g gives the reflexion.

As an algebra-map, ¢ satisfies te = u*Hw<Ht ; since wt =1 , this
gives u = t¢c = twu . On the other hand v = tg = twv . Since u and v
constitut.e the pushout, we conclude that Zw =1 . Hence w is an

isomorphism, and (20.9) is the pushout. o

The following special case, obtained by pasting (20.7) on top of
(20.9) when B = A + HA , is Proposition 5.11 of Barr [2]:

PROPOSITION 20.6. If the free H-algebra on A € A 1is (C, &) ,
with unit f : A>C, then f and ¢ : HC » C express C as the
coproduct A + HC . o

REMARK 20.7. Propositions 20.5 and 20.6 seem to have no simple
analogue in the pointed-endofunctor case. Of course they follow
alternatively from Proposition 20.3 and Theorem 20.L4 when the reflexion
exists constructively; but the real point is their more general validity.
In certain rather restricted cases, this leads to a necessary condition for
the existence, and even for>the constructive existence, of the reflexion.
An example is given by Theorem 6.8 of Koubek and Reiterman [13], which is
easily modified to deal with out (1+#)/A instead of their GPA . Because
of the very restricted applicability of this result we pass it by, and

consider necessary conditions only for the important special case
A = Set

21. The special case A = Set

21.1. If E 1is the epimorphisms, every endofunctor H of Set has
HE < € , since epimorphisms are retractions. We need not have HM < M
but a monomorphism < with non-empty domain is a coretraction, so that Hi

is a monomorphism.

For a cardinal o , let us loosely write Ha for card Ha . The
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essence of the following result is due to Kirkovd-Pohlové and toubek [14]:

THEOREM 21.1. For an endofunctor H of Set , the following are
equivalent:
(i) free H-algebras exist constructively;

(i2) H-Alg <s constructively reflective in (1+H)/Set ;
(i17) free H-algebras exist;
(iv) there are arbitrarily large cardinals vy with Hy < vy .

Proof. (i) implies (ZZ) by Theorem 16.5, and (i) implies (£<%)
trivially; (ii%) implies (Zv) since, if the free H-algebra on the
cardinal o has cardinal vy , Proposition 20.6 gives o + Ay =Y , S0 that

o =Y and Hy =y . It remains to prove that (Zv) implies (Z).

Given a non-zero cardinal ao , wé can find by (Zv) an infinite
cardinal R satisfying o =B and HB =B , and hence satisfying
o+ HAB =B . Let B Dbe the least cardinal satisfying this last
inequality. If y =ao +HB we have O0<a =y =B ; hence Hy = HB
since there is a coretraction Yy +B . Thus o +Hy =o +H3 =y ; and

since B was the least solution we have y =8 , or o + HB =8 .

We first consider the free-algebra sequence X of Theorem 20.4 in the
case of a non-empty A . By the last paragraph we can find a set B and

an isomorphism k : A + HB » B . We define inductively maps r, : X, > B
B8 8

forming (as is easy to verify inductively) a cone over X with vertex B .

Let ry X0 = A > B be the composite of k with the injection
A+ A + HB , let rB+l be the composite
XB+1=A+HXBﬁ?B—*A+HB'—k—>B,

and, for a limit-ordinal o , let ra : Xa = colim XB + B be the induced
B<a

map. Since the domain of r is not empty, it follows inductively (using

B

§2.2 at the limit-ordinals) that each »r_, is a monomorphism. Hence the

8

sequence X converges since Set is wellpowered.

When A is the empty set O we have X. =0 and Xl = HO , so that

(]

the sequence converges trivially if HO = 0 . In the contrary case the
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free H-algebra on HO exists constructively by the above, so that by
Theorem 16.5 the reflexion in H-Alg of the cospan (HO -+ 0 + HO <« 0)
exists constructively; but by Proposition 14.3 the reflexion-sequence for

this cospan is just the free-algebra sequence for 4 = 0 . o

REMARK 21.2. The authors of [14] call H non-excessive if it
satisfies the necessary and sufficient condition (Zv) of the above theoren.
This condition is of course implied by the sufficient conditions given by
Theorems 18.1 and 15.6; which, since the only cocomplete factorization
systems on Set have for E the isomorphisms or the epimorphisms, fall
together by Proposition 2.2 into the requirement that H preserve, for
some regular cardinal o , the colimits of a-chains. This latter
requirement, by Proposition 2.3 and the remark following it, is implied by
the smallness of H ; and may or may not conversely imply this, depending
on the existence of very large cardinals. However non-excessivity is a
strictly weaker condition - the following example, suggested by G. Monro,
improves that of Koubek and Reiterman [72], §3, in being independent of the

Generalized Continuum Hypothesis.

EXAMPLE 21.3. There is a non-excessive H : Set »> Set which does

not, for any regular cardinal o , preserve the colimits of «-chains.

Proof. Define inductively the sequence ) of "beth-cardinals" by

AO =w ., A = A = sup A for a limit ordinal o . Define a

+ ?
B+l ¢ B

functor H : Set » Set on objects by

HA ={ ¥ Inj(AY, A)} +1,

YELim

B

where Lim is the set of all small limit-ordinals, where Inj(¥, 4) is the
set of all injective maps N - 4 , and where 1 1is the one-element set

{0} . Foramap f :4 >B let Hf send the injection g : AY >4 to

fg if fg is an injection, and to O otherwise; and let it send O to
0.

It is immediate that H is non-excessive, since for any B we have

the inequality of cardinals HXB+1 = XB+l . Yet, for any regular cardinal

B = g1

0 , H does not preserve the colimit of the a-chain X , where X
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and Xz is the inclusion of AB+ as an initial segment of AY* for

1 5
A
colim HX has cardinal Aa , while H colim X = HAa has cardinal 2% . O

1

REMARK 21.4. Koubek and Reiterman give in [13], §11, necessary and

sufficient conditions, in the case A = Set , for the weaker requirement
that a# : H-Alg - H'-Alg , induced by a : H' > H , have a left adjoint.

21.2. Following Reiterman [15], §4 and Koubek and Reiterman [12], §3,
we can extend from A = Set +to certain '"concrete" categories A , for
endofunctors with HE < E , the sufficiency (but not the necessity - see
{727, §3) of a cardinal-condition of the non-excessivity type; which here
too may in suitable cases be weaker than conditions of the Theorem 15.6

type:

THEOREM 21.5. Let A be E-cowellpowered for a proper factorization
system (E, M) , and let H : A > A satisfy HE c E . Suppose there is an
adjunction G—V : A » Set with its counit € : GV +1 in E . Then if
VHG : Set » Set <is nomn-excessive, H-Alg 1is constructively reflective in
(1+H) /A .

Proof. By Theorem 16.5 we have only to prove that free FH-algebras
exist constructively. Let X be the free-H-algebra sequence on 4 € A ,
and Y the free-VHG-algebra sequence on VA € Set . We produce a natural
transformation f : GY X in € ; then, since Y converges by Theorem

21.1, the convergence of X follows from the E-cowellpoweredness.
We define fB inductively, checking inductively that it lies in E .

For fb : GYO - XO we take €4 : GVA + A , which lies in E . Using

Theorem 20.4 we take for f8+l : GYB+l + XB+l the composite

G(VAH/HGYB) % GVA + GVHGY, —mms—» A + HGY, T@B—» A+ HXg

which is in E since € and fé are. Finally for a limit-crdinal o we

take f

o - colim fé , which makes sense because § preserves colimits;

B<a
again it lies in & . The naturality of f is eagily checked by

induction. G

We can moreover deduce similar results in the pointed-endofunctor
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case: we content ourselves with the following, for the case A = Set :

THEOREM 21.6. For a pointed endofunctor (T, 1) of Set , T-Alg
is constructively reflective in T/Set if there are arbitrarily large

cardinals v with Ty < vy .

Proof. Write H for T considered as a mere endofunctor, write T'
for the pointed endofunctor 1 + H , and observe that the map o : 7' > T
of endofunctors given by o =(t1, 1) : 1 + # > T is a retraction. The

result now follows from Theorem 16.11 in the light of Theorem 21.1. ]

VI. FREE MONADS AND FREE MONOIDS

22, Free and algebraically-free monads

22.1. That reliance on the context, which has enabled us to manage
without a notational distinction between a mere endofunctor H and a
pointed endofunctor T = (T, T) , becomes too stretched when we pass to a

third level and consider a monad [P A >A T 1P, v P° > P)

Accordingly we denote the monad (P, m, v) by the bold-face letter P ,
but use the ordinary letter P for the pointed endofunctor (P, m)
whenever confusion is unlikely. Then P-Alg is the full subcategory of
P-Alg determined by those (4, a) where the action a satisfies, in
addition to the unit condition a<md =1 , also the associativity condition

a*Pa = q-vA
If P is such amonad, 7T = (T, T) is a pointed endofunctor, and

o : (T, 1) » (P, ™) is a map of pointed endofunctors, we write a' for

the restriction
P-Alg + P-Alg — T-Alg
[0

oL
of a# ; observe that o' commutes with the forgetful functors P-Alg + A
and T-Alg *A . Proposition 5.2 of Barr [2] has the following simple

extension to‘the pointed case:
PROPOSITION 22.1. Zvery functor P-Alg + T-Alg commuting with the

forgetful functors is a+ for a unique o , namely the composite
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T TP P,

T
where (PA, pA) <is the image of the free P-algebra (PA, vA) . Moreover,

if (T, 1) wnderlies amonad T = (T, 1, u) , then a+ takes its values
in T-Alg € T-Alg <if and only if o is a monad-map T + P . O

We say that the monad P , with the pointed-endofunctor map

o : T+ P, is the algebraically-free monad on T if a+ is an
isomorphism of categories; that is, if every ZT-action a : TA > 4 is
a+0A for a unique P-action E-, and every T-algebra map f : A + A4’ is
also a P-algebra-map. The phrase is meant to suggest that P is the
"free monad-with-the-same-algebras"; its adverbial form is justified by

the following consequence of Proposition 22.1:

PROPOSITION 22.2. If the algebraically-free-monad on the pointed
endofunctor T exists, it is the free monad, in the ordinary sense, on

this pointed endofunctor. O

The observation of §5.1, that the forgetful functor T-Alg > A is

monadic whenever it has a left adjoint, gives:

THEOREM 22.3. The algebraically-free monad on T exists 1f and only
if the forgetful functor U : T-Alg + A has a left adjoint F ; and then
it is the monad P arising from the adjunction F —U . In particular it
exists if T satisfies the hypotheses of Theorem 15.6 or Theorem 21.6, O

In the case where I =1 + H for a mere endofunctor H , we speak of
the algebraically-free monad on H ; which by Proposition 22.2 is also the
free monad, in the ordinary sense, on the endofunctor H : since

T =1+ H 1is clearly the free pointed-endofunctor on H .

22.2. Barr gives an example in [3], §5, for an A that is neither
complete nor cocomplete, where the free monad on an endofunctor H exists

without being the algebraically-free-monad.

Observe that, for any monad P = (P, m, v) , we have a monad-map
m:1+>P from the unit-monad 1 . If A is a one-object category that
is a group, every map is an isomorphism, and hence every monad is

isomorphic,to 1 . An endomorphism of the mere endofunctor 1 = lA is an

element in the centre of the group A ; if this centre is trivial, the

category of monads on A is equivalent to the unit category, and hence the
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endofunctor # =1 is |1
An object of 1l-Alg is an element & of the group A , and a

-1
morphism x +y is an element 2z with 2 "3 =y ; there are no such
morphisms if 2 is the unit element of A and y 1is not. However

T-Alg = A ; so that in general 1-Alg is not equivalent to I-Alg .

22.3. Yet the converse of Proposition 22.2 does hold if A is
complete and has small hom-sets : this is Corollary 5.10 of Barr [2];
but his proof, in its appeal to his Proposition 5.6 with its use of the
special adjoint functor theorem, seems to be incomplete unless A is well-

powered.

PROPOSITION 22.4. If A <is complete (but not necessarily
cocomplete) and has small hom-sets , and i1f the free monad (P, a : T » P)
on the pointed endofunctor T exists, it is the algebraically-free monad;

and similarly when T <s replaced by a mere endofunctor H .

Proof. The actions on A , and on the arrow-category A2 , of the
strict monoidal category End A of endomorphisms of A , both admit right

adjoints; in that we have, for any endomorphism H of A ,

A(HA, B) = (End A)(H#, {4, BY) ,

R

A2(af, g) = (End A)(H, <F, g)) ,

where {4, B} is the right Kan extension of B : 1 +A along A : 1+ A,
given by

@, ic = AEA)

and where (f, g) 1is defined by the pullback

(22.1) (f, g7 {4, B'}

\\\\\\\\‘ ///T?;j/z
{

A', B'}

{4, B}

By the general principles of such actions with right adjoints, {4, 4} and

{f, f? have canonical monad-structures. Pointed-endofunctor maps
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T > {4, A} and monad-maps P = {4, A} correspond respectively to
T-actions TA + A and P-actions PA + 4 , while pointed-endofunctor maps

T +{f, f) and monad-maps P =+ {f, f> correspond to morphisms of the

respective algebras. It follows at once that ar is an isomorphism if
(P, a) is the free monad on the pointed T ; and similarly of course in

the unpointed case. o

23. Free and algebraically-free monoids

23.1. Amonad P on A is a monoid in the monoidal category
End A , the tensor product in which is composition; and conversely a
monoid P in any monoidal category A gives a monad P ® - on A . So
each of monads and monoids can be discussed in terms of the other; we in

fact find it convenient to refer monoids back to monads.

Suppose then that A is a monoidal category - not in general
symmetric - with tensor pr'oduct ® and unit object I . We change
notation to the extent that # [respectively T=(T, 1) ,

P = (P, m, V) ) represents an object (respectively pointed object, monoid)
in A rather than the corresponding endofunctor H @ - (respectively
pointed endofunctor T ® - , monad P ® - ). By an action of H on A we
now mean an action of H ® - , and we write H-Alg for (A ® -)-Alg ;
similarly for T-Alg and P-Alg . Observe that if a : T®A - 4 is an
actionof T on A , then a®B : TO®AQ®B +>A®B is-an actionof T
on A®B , so that - ® B gives a functor T-Alg » P-Alg ; and similarly

for actions of # or P . Givenamap o : (7, 1) + (P, ) of pointed

)

objects we write OL+ : P-alg » T-plg for the (a ® -)' of §22.1; observe
that o ((4, @) ®B) =a'(4,3) ®B .
We say that the monoid P , with the pointed-object map o : T > P ,

is the algebraically-free monoid on T if a+ : P-Alg + T-Alg is an
isomorphism of categories; that is, if every T-action a : T® A4 + 4 is
a*(a ® A) for a unique P-action a , and every T-algebra map is also a
P_algebra map; in other words, if a® - : T® - + P ® - gives the
algebraically-free monad on T ® - . Similarly when T is replaced by a
mere object H ; the algebraically-free monoid on H is the

algebraically-free monoid on the pointed I + H . The uniqueness of the
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algebraically-free monoid on T , when it exists, can be deduced from the
observations above, or directly from the last assertion of the following;
which is stated for the pointed case but applies equally to the unpointed

one:

THEOREM 23.1. The algebraically-free monoid on T exists if and
only if there is a T-algebra (P, p) and amap w : I + P such that, for
each A €A, P®A with the unit T®4 : A >P QA 1ig the free
T-algebra on A . When it does exist, P <is the free monoid on T , with

unit o : T + P the composite

(23.1) TWT@P?P.

Proof. First, let o : T+ P give the algebraically-free monoid on
T . Then, since the free P-algebra on A4 is (P® A, v® 4) with the
unit W ® A , the free T-algebra on A is (PQ® A, p ® A) with the same
unit; where p =v (a0 ®P) : TQRP~>P .

Next, suppose that the forgetful functor U : T-Alg + A has a left
adjoint F sending 4 to P®A , for some T-algebra (P, p) , with unit
of the form "TQ®A4 : AP ®A . Then, since m® P is the unit of the
free T-algebra on P , there is a uniquemap v : PP » P of
T-algebras with v*(mT @ P) =1 ; whence moreover
VRA : PRIPR®A »P®A must be the unique map of T-algebras with
(vReA)(T®PQ®A) =1 . Hence V® - is the multiplication of the monad
UF on A , which therefore has the form (P® -, T® -, v® -) and thus
arises from a monoid P = (P, m, v) in A . The isomorphism
P-Alg -+ T-Alg , whose existence follows from Theorem 22.3, is now by
)1"

Proposition 22.1 given by a+ ={a®1 , where o is defined by (23.1).

Lastly, suppose o:..1~ to be an isomorphism as above, let R = (R, p, A)
be any monoid and B : I + R a map of pointed objects. Then, by

Proposition 22.1, B+ : R-Alg » T-Alg 1is a+6+ for a unique monad-map

§ :P®-+>RQ®-. For a P-algebra A4 and an object B we have

61-(,4 ® B) = [GTA) ® B , since the corresponding thing is true for B-r and
the isomorphism a‘f . It follows that 6+ has the form Y+ = (y® l)f
for some Yy : P +R , namely vy = &I ; then that Y is a monoid-map

P >R ; and finally that it is the unique one with vya = B . O
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23.2. Unless the monoidal structure has special properties, the
existence of the algebraically-free monoid on T 1is a strong conditionm,
even for very good categories A ; it does not follow from the existence
of the free monoid on 7T , nor from the existence of the algebraically-free
monad on T ® -~ : +the latter may well exist without being of the form

P® - with a unit of the form o & - .

Consider for example the monoidal structure on A = Set having as
tensor product the eoproduct + , for which the unit object is the empty
set O . For any monoid P = (P, m, v} , theunit ® : 0 > P is the
unique map, while the left and right unit-axioms force v : P + P > P to
be the codiagonal. Hence the category of monoids in A is A itself, and
the free monoid on the (mere) object 0 is O . Yet the functor
0+ -:A+>A is the identity, and the algebraically-free monad on this is
N x -, where N is the X-monoid of the natural numbers under addition.
This monad is quite different from the monad O + - given by the free

+-monoid O on O .

However it is otherwise when the monoidal structure on A is right-
closed, in the sense that A(4 ® B, C) 1is isomorphic, naturally in 4 , to
A(4, [B, ¢1) for some [B, C] .

PROPOSITION 23.2, If A <is right-closed, the algebraically-free
monoid on T exists if and only if the free T-algebra on I exists. If
moreover A has pullbacks, the free monoid on T , if it exists, is

algebraically free.

Proof. Let (P, p) be the free T-algebra on I , with unit
w: I>P . For any T-algebra (4, a) and any object B let

a T® [B, 4] » [B, A] be the map corresponding under the adjunction to

B:
a*(1®e) : TQ [B, A]®B + A4 , where ¢ : [B, Al ®B 4 1is the

evaluation. Then the composite of ap with T®1 : [B, 4] ~ 7 ® [B, 4]

corresponds under the adjunction to a*(l1 ®e) (T ®1) =a' (1 Q1) (1 Re),
vhich is e since a*(T ® 1) =1 and we are notationally suppressing

isomorphisms I ® X =2 X . Thus aB-(T ®1l) =1, and aB is a T-action
on [B, 4] .

It is immediate that f : P® B+ 4 is a T-algebra map if and only

if the corresponding f : P -+ [B, A] 1is; since fm corresponds to
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Ff(m ®B) , it follows that T® B : B> P®B is the free T-algebra on

B ; and we now appeal to Theorem 23.1.

For the final assertion, we define (f, g) as in (22.1), but with
[4, B] 1in -place of {4, B} , and imitate the proof of Proposition 22.4. 0

23.3. 1In some cases the slightly weaker condition that - ® 4
preserves colimits can replace right-closedness in the first part of

Proposition 23.2.

THEOREM 23.3. If each -®A : A + A preserves colimits, the
algebraically-free monoid on T exists if the free T-algebra on I
exists constructively. In particular it exists if, for some regular o ,
T® - : A+ A preserves the E-tightness of (M', a)-cones, where A <is
E- and E'-cowellpowered.

Proof. If X 1is the free-algebra sequence for I , it is clear from
the construction of X in §17.2 that X ® 4 is the free-algebra sequence
for A . 1If the first converges to (P, p) , the second converges to

(P®A, p®A) ; and we appeal again to Theorem 23.1. (]

In these circumstances; we may say that the free monoid on T exists
constructively, being given by the convergence of X . The explicit form

of X is simplest when T =1 + H for amereobject H ; then Theorem

20.4 gives
(23.2) X0=I, XB+1=I+H®XB, X =colimXB
B<a
If the sequence converges at o , so that Xot o Xa+l =1 +HQ Xa , then P
is Xa , T is the injection I ~» Xa , Vo Xa ® Xa -> Xa is the colimit

of the maps XB ® Xor. > Xa defined by induction on R using the injection
H® Xa -+ Xoc , and the map H + P is the composite of the latter injection
with 1®m : H>H® X,

Of course the formula (23.2) simplifies in the classical case where
both -®A and A® - preserve colimits, as when A 1is biclosed. In
fact we then only need preservation of coproducts, not all colimits: as we

have when A is TOp and ® is X . For we have the classical result

whose proof is immediate:
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THEOREM 23.4. When -® A and A ® - preserve countable
coproducts, the algebraically-free monoid on a (mere) object H is

p=7Y &, wnere 50"

neN

=H®H® ... QH . o

REMARK, Free monoids, as distinet from free monads, in cases where
Theorem 23.4 does not apply, were first considered by Dubuc [6], under the
hypothesis that T ® -~ or H ® - has some rank.

VII. THE CATEGORY OF ALGEBRAS FOR A MONAD

24 . Reduction to the well-pointed case

24.1. Nowlet T = (T, t, u) be a monad on A , and write T for

the pointed endofunctor (7, T) ; so that we have full inclusions
T-Alg < T-Alg < T/A

Given (4, a, B) in T/A consider the pushout

7% L 74
(2k.1) Ta d
B —— > D

c

Since lTTA = p4+17A =1 , the map P4 is the coequalizer of Ttd-4
and 1 ; or equally of TTA+*p4 and 1 . Thus ¢ is the coequalizer of
the maps ZTa-TtA-y4d and Ta in

TA
V w
2 2
T7A 1 A T

a

(24.2)

‘TB?D,

or equally of the maps we get if we replace 714 here by 1TTA . Moreover,
composing (24.1) with T14 shows that

(24.3) d =c*Ta-TH4
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Now define an endofunctor L of T/A by setting
(24 .4) {4, a, B) = (B, e, D) ,

and making L functorial in the obvious way. We compare L with the
endofunctor S of §17.1, using the notation of (17.1). Since

MATTA = YA*Ttd it follows from (24.1) that c+Ta*tTA = ¢+*Ta*TTA , so that
¢ factorizes through the b of (17.1) as ¢ = gb for a unique ¢ ; and
moreover ¢ 1is a regular epimorphism, since both b and ¢ are. Ve

therefore have an epimorphism
(2k.5) (1, q) : (B, b, C) » (B, e, D)

in T/A , which is clearly the (4, a, B)-component of an epimorphic

natural transformation
(24.6) ¢ : S~>L

If we now define A : 1+ L by A =¢0 , it follows from Proposition 7.1
that (L, A) is again a well-pointed endofunctor on T/A . In fact we

have:
THEOREM 24.1. L-Alg is the repletion of T-Alg .

Proof. By Proposition 7.1, an [L-algebra (4, a, B) is an S-algebra
for which ¢(A4, a, B) is an isomorphism; that is, for which g 1is an

isomorphism, or equivalently for which the coequalizer b in (17.1)

already equalizes the two maps 7°4 > T8 in (24,.2). But by Theorem 1.k,
an S-algebra, to within isomorphism, is a T-algebra (4, q) ; and for

this we have b = a . The requirement that g equalize the two maps

7?4 > 1B = TA in (24.2) is, because a+TA = 1 for a T-algebra, exactly

the associativity axiom for a T-algebra (4, a) . ]

24.2. We can now form the free-L-algebra sequence L(4, a, B) in
T/A , and say that (4, a, B) admits a constructive reflexion in T-Alg
if this converges. We can further give L(4, a, B) explicitly. We
define a sequence X : ® > A and a natural transformation z« : TX »> X+ by

(17.2)-(17.6), except that we replace (17.4) by
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TXB

uXB TXB

2 2
(24.7) X — T°K, — TX,  ——
B 1 B 1@8 R+l xB+l

X3+2 ;

then, corresponding to Theorem 17.3, and with the same proof, we have:

THEQOREM 24.2. E(A, a, B) is (X, x, X+) , and converges at o
exactly when X does. Then the reflexion of (4, a, B) in T-Alg is X&

. . ) - O
with the action Ty Z%d - Xd+1 Xa .
We may call X the T-algebra reflexion sequence for (A4, a, B) . It

is at once seen to coincide with the sequence of Koubek and Reiterman [73],

§10.3, modulo the difference between our T/A and their GPA

25. Existence theorems for the reflexion of 7/A into T-Alg

25.1. An analysis of the argument used in the proof of Proposition

15.5 gives:

LEMMA 25.1. Consider an oa-chain in T/A given by X, Y : a + A
and x : TX Y , and a cone (tB, sB) : (XB, g5 YB) +(A', a', B') over

it. If the cone (tB, sB) in T/A is E-tight, so is the cone (tB) in

A . If the cones [tB) and (Tt in A are both E-tight, the cone

g)
(tg» sg) in T/A is E-tight if and only if the come (sg) in A is

so. 0

THEOREM 25.2. Let T preserve, for some regular o , the
E-tightness of (M', a)-cones. Then if A is E- and E'-cowellpowered,
T-Alg is constructively reflective in T/A . Even without the cowell-
poweredness, it is still reflective if M' =M and (E, M) 1is proper.

Proof. We deal first with the latter assertion, which is easier. By
Proposition 15.5, S  preserves the E-tightness of (M, a)-cones since
T does; so then does L by §2.4 since ¢ : S+ L 1lies in E (for the
regular epimorphism ¢q of (24.5) lies in any proper E ]; and the result
follows by Theorem T.5.
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Turning to the first assertion, we apply Proposition k.2 with Remark

4.3 to T, and to the sequence X of Theorem 24.2, to obtain a limit-

ordinal 6 such that, for each ¥ = 6 , if the cone [XE} is E-tight,
B<§
so are the cones TXY and T2XY We then conclude the proof by
B B<d B B<§

applying Proposition 6.1, with S and o replaced by L and 6 ; so it
remains to show that L and & satisfy the hypotheses of Proposition 6.1.

Writing L for L(4, a, B) = (X, =, X') and "tight" for "E-tight",

suppose then that Iig) is tight. By Lemma 25.1, IXE) is tight;
B<é - T/ B<d
then, by our choice of § , [TX;) is tight; so that by Lemma 25.1
B<d
+ +
again, [Xg+i) is tight; and by the choice of & again, [Txg+i)
B<§ B<§
is tight. Moreover, by our choice of 6 , [T2xg) is tight.
B<S
Now XB+2 is given by the coequalizer (24.7), and XY+2 by a

+
similar one. Hence Xg+§ is the colimit of a natural transformation

between these diagrams, whose various components are T2XY TXY , and

B* "B

TXY+1 . XY+2 , as a colimit of tight cones, is
B+1 B+2 B<s
+ ++)

tight. Since, by (24.4) and (24.7), LI = (x', x*, x

Thus by §2.% the cone {
, it now follows

from Lemma 25.1 that [LEE)
B<$

REMARK 25.3. The author does not see how to prove the reflectivity

is tight, as required. O

without E’-cowellpoweredness when E is the isomorphisms - contrast
Theorem 15.6. The first part of Theorem 25.2 is essentially Theorem 10.5
of Koubek and Reiterman [73].

As in §1b.1, we have as an immediate corollary:
THEOREM 25.4. Under the hypotheses of Theorem 25.2, T-Alg 1is

cocomplete. Moreover any a+ : T-Alg » T'-Mg induced by a monad-map
a:T"»>T has a left adjoint. O
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The cocompleteness of T-Alg was proved by Schubert [16] when T
preserves the colimits of a-chains. Barr deals in Theorem 3.3 of [Z] with
the case where 7T preserves the colimits of (M, o)-chains; but his proof

seems faulty to the present author, who sees no easy way to set it right.

25.2. The results of T-Alg are especially simple in the special
case where TE € E . Of course the free T-algebra on B always exists,
being (TB, WB) . But in fact it exists comstructively; for when, in
accordance with Proposition 14.3, we apply I to (B, 1, TB) to get
(X, =, X+) as in Theorem 24.2, X converges already at o =1 ; since

xl , as the coequalizer of TtB*pB and 1 , is uB

We can now imitate the argument of Theorem 16.5. (4, a, B) has a
reflexion (respectively,constructive reflexion) into T-Alg if L(4, a, B)
does. But, by (24.4), L(A, a, B) = (B, ¢, D) , where e from (24.2) is a
regular epimorphism and hence in the E of any proper (E, M) ; so that
(1, e¢) : (B, 1, TB) ~ (B, ¢, D) is in E . Moreover LE c E , since
SE € E by Proposition 16.1 and since ¢ : S+ L is in E (as we saw in

the proof of Theorem 25.2). Hence Proposition 8.3 gives:

THEOREM 25.5. Let TEC E where (E, M) <is proper. Then T-Alg

is reflective in T/A , and constructively so when A is E-cowellpowered.

Consequently T-Alg <is cocomplete, and algebraic functors

a+ : T-Alg + T'-Alg have left adjoints. O

VIII. COLIMITS OF MONADS AND MONOIDS

26. Algebraic colimits of monads

Denote by Monad A the category of monads on A and monad-maps, and
consider a functor T : K > Monad A with K small; writing

T, = (74> 15 W) for the value of T at the object k , and T, for its

value at themap ¢ : k » k'

Even when A = Set , T may admit no colimit; as is shown by
Proposition 6.10 of Barr [2]. What he does show, in his Theorem 6.6, is
the cocompleteness of the full subcategory of Monad Set given by the

monads with rank. However, as Blackwel| pointed out in his thesis [4],
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this does not suffice for practical applications; one wants a (colim T)-

algebra to be an A with compatible Tk—actions, and for this colim T

must be the colimit in the whole category Monad A . Blackwell [4]
established the existence of the colimit in this "algebra-related" sense

when each Tk has a rank and A is complete as well as cocomplete, with
small hom-sets . We now take this somewhat further.

We define a T-algebra to be an object A4 € A together with, for each
kekK, a Tk—action a : ZkA + A , subject to the compatibility

requirements ak,'T¢ = ay for ¢ : k~>k’" . Amap f : A~>A" of
T-algebras is to be a map of Tk-algebras for each k . 1In other words,

T-Alg is the limit of the functor K - Cat sending k to Tk-Alg and

sending ¢ to Tl 5 Wwe may write Qk : T-Alg > Tk—Alg for the projection
functors.
Any cone r = (rk : Tk > P) over T in Monad A induces a functor

r+ : P-Alg + T-Alg which commutes with the forgetful functors to A ;

namely the functor with components ri+ = PZ . It is moreover immediate
from Proposition 22.1 that:

PROPOSITION 26.1. Every functor P-Alg + T-Alg commuting with the
underlying functors is r for a unique cone r as above. O

We now say that the monad P , with the cone r»r , is the algebraic

colimit of T : K+ Monad A if r+ is an isomorphism of categories. From

Propositions 26.1 and 22.1 we conclude that

PROPOSITION 26.2. When the algebraic colimit of T exists, it is
the colimit in the ordinary sense of T : K + Monad A . a

The proof of Proposition 22.4 adapts at once to give:

PROPOSITION 26.3. If A 4is complete and has small hom-sets , the

colimit of T <s algebraic whenever it exists. o

It is immediate that the forgetful functor U : T-Alg + A creates

limits and U-absolute colimits; whence
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PROPOSITION 26.4. The algebraic colimit of T exists if and only if
the forgetful functor U : T-Alg » A has a left adjoint F ; and then it
is the monad P arising from the adjunction F U . =]

27. An existence theorem for algebraic colimits of monads

27.1. Given T : K - Monad A as above, we do not change T-Alg if we
extend K and T by adding to K a new initial object O , by setting

To equal to the identity monad 1 , and by taking T0 -+ Tk to be the

monad-map T : 1 > Tk . We suppose this done, and now use K and T in

this new meaning.
Write T , with Tyt Tk + T, for the colimit of T seen as a

functor K +End A . Then 7 is a pointed endofunctor (7, 1) , where

T = PO : 1+ T, and the Pk are pointed-endofunctor maps. We write as

usual T-Alg for (T, T)-Alg , and similarly Zk—Alg for (Tk, Tk)-Alg .

To give amap a : TA > A 1is just to give component-maps
P ZkA *> A4 for each k , subject to the compatibility condition
a, = ak,'T¢A ; and the unit-axiom g°*t4 =1 for a is Jjust ag = 1, and

hence equivalent to ak'TkA =1 for each k . It follows that T-Alg is

a, = ar
k

the full subcategory of T-Alg given by those (4, a) such that, for each
k , the Ty -algebra Pg(A, a) = (4, ak) is in fact a Tk—algebra. We have
the full inclusions
T-Alg € T-A1lg c T/A ,

and we shall have shown free T-algebras to exist if we prove T-Alg
reflective in T/A

Given (4, a,B) in T/A 1let ¢ : TB > D be the joint coequalizer,
for all k € K , of the parallel pairs

K
wA \\\ff:kA
2 2
t o N N
(27.1) K 1 W B8 v
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where here too ak stands for ark . Define an endofunctor L of T/A
by
(27.2) L(4, a, B) = (B, e, D) ,

meking it functorial in the obvious way; ef. §24.1. As there, we compare

L with the endofunctor S of §17.1.

The {three) squares in the diagram

T hd » Tya
T A = 194 — 7B
K oy K K
(27.3) r A ’rkrkA r,B
T4 114 > 724 7 B
TTA a

clearly commute. The map ¢ : TB =+ D equalizes the two maps in the top

leg of (27.3), this leg being the composite of (27.1) with TkaA

Therefore ¢ equalizes the two maps in the bottom leg; and since the r,4

K
are jointly epimorphic, it equalizes Taq*T1A and Ta+*1TA . It therefore
factorizes through the coequalizer b in (17.1) as ¢ = gb for a regular
epimorphism .¢ . Thus as in §24.1 we have an epimorphic ¢ : § > L with
(A, a, B)~component (1, q) ; and (L, X) becomes a well-pointed

endofunctor when we set A = ¢0 .

Arguing as in the proof of Theorem 24.1 - for an S-algebra, that is
a T-algebra, B =A and b =a , and then ¢ is an isomorphism if and
only if a equalizes all the pairs (27.1), which means exactly that each

a, is a Tk—action - we have the formally-identical conclusion that [L-Alg

is the repletion of T-Alg . We then have Theorem 24.2, except that in the
description of (X, x) we replace (24.7) by the analogue using (27.1) in
place of (24.2).

THEOREM 27.1. For some regular o , let each T, preserve the

E-tightness of (M', a)-cones. Then the algebraic colimit of T ewxists if
A is E- and E'-cowellpowered, or if M' =M and (E, M) is proper.
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Proof. The second case is dealt with exactly as in the proof of

Theorem 25.2; for the first case we modify that proof appropriately.

We begin by observing that the improvement of Proposition 4.1 given in
Remark 4.3, to deal with two sequences instead of one, applies equally well
to any small set of sequences. By applying it to the sequences X and

T.X for k € K , we get under our present hypotheses an improved version

k

of Proposition L4.2: +there is a limit-ordinal & such that, if [Xg)
B<s

is tight (= E-tight) for some Yy = § , so are each [Tkxg) and each

B<S
2 Y]
T, X
[74),.-

The proof now proceeds as that of Theorem 25.2, by showing that L

and & satisfy the hypotheses of Proposition 6.1. From the tightness of

[2%) we get as there that of [Xg) ; hence of [Tkxg) and of
R<S B<$ B<6
[Tng) ; also that of [Xg:i) and hence of [Tng:i) We get
B<§ B<§ B<§
the tightness of [TXE:%) as the colimit of the tight cones
B<S
[T XY+1 ; and then the tightness of lXY+2 as the colimit of
kK"B+1 8<$ B+2 B<6

tight cones in the (27.1)-analogue of (24.7). This gives the required

tightness of [LEY O

B)3<6
27.2. 1In some contexts the question arises whether, under the

hypotheses of Theorem 27.1, the algebraic colimit P of T inherits the

property of preserving the E-tightness of (M', a)-cones. The author does

not see how to show this unless M' = all maps

THEOREM 27.2. Let A be E-cowellpowered, and let each T

preserve the E-tightness of all o-cones. Then P too preserves the
E-tightness of all o-cones, where P is the algebraic colimit of T .

Proof. If we write (¥*) for the property of preserving the E-
tightness of all a-cones, (*) is satisfied by each Tk and hence by each

https://doi.org/10.1017/50004972700006353 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006353

A unified treatment of transfinite constructions 79

Ti , and also by the colimit T of the Tk . By Lemma 25.1 therefore, an

a-cone in T/A is E-tight if and only if each of its components in A is

SO.

It follows that L satisfies (¥). For if L sends a tight oa-cone
(s, t) to (u, v) , we have u =s by (27.2), while v by (27.1) is a
colimit of tight cones and hence itself tight.

B of L

It then follows inductively that the transfinite powers L
satisfy (*), and in particular Lm ; Wwhich is the composite JR of the
inclusion J : T-Alg - T/A with the reflexion R : T/A » T-Alg . The
forgetful U : T-plg A is VJ , where V : T/A > A sends (4, a, B) to
A and has the left adjoint G sending € to (C, 1, TC) : and the left

adjoint F of U 1is RG .

By Proposition 26.4, P = UF = VJRG = VL6 . But G preserves
colimits, and sends E to E by §15.1, so that G satisfies (*); r

satisfies (¥) by the above; and V satisfies (¥) by Lemma 25.1. Hence P

satisfies (%), a

28. Algebraic colimits of monoids

Suppose now that A is a monoidal category, and that we change
notation as we did in §23. Denote by Mon A the category of monoids in
A , and now consider a functor T : K > Mon A with K small, sending k

to the monoid Tk . We define a T-algebra to be an A4 with compatible
Tk—actions a Tk ®A>A ; that is, a (T ® -)-algebra in the sense of
§26. Again a cone (rk : Tk +P) over T, this time in Mon A , induces

1.

r :P_alg » T-Alg , namely the (r® l)f

of §26.
We say that the monoid P , with the cone r , is the algebraic

colimit of T if r+ is an isomorphism of categories; that is, if the
monad P ® - is the algebraic colimit of T ® - . By a proof exactly
analogous to that of Theorem 23.1, but using Propositions 26.1 and 26.L4 in
place of Proposition 22.1 and Theorem 22.3, we get:

THEOBEM 28.1. The algebraic colimit of T ewxists if and only if
there is a T-algebra (P, p) and amap 7 : I P such that, for each
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A €A, P®A with the unit T Q®A <is the free T-algebra on A . When

it does exist, P is the colimit of T , with Ty Tk + P the composite

TkWTk®P?k—>P. O

Then a proof exactly analogous to that of Proposition 23.2 gives:

PROPOSITION 28.2. If A is right-closed, the algebraic colimit of
T exists if and only if the free T-algebra on I exists. If moreover A
has pullbacks, the colimit of T , if it exists, is the algebraic colimit.U

Finally, as in Theorem 23.3, but appealing now to Theorems 27.1 and
27.2, we get:

THEOREM 28.3. If each - ® A preserves colimits, and if for some
regular o each 7 ® - preserves the E-tightness of (M', o)-cones,

where A is E- and E’-cowellpowered, the algebraic colimit P of
exists. When M’ = all maps , P too preserves the E-tightness of

o-cones. ]

29. A comment on polyads

It is clear that, in their formal aspects, the descriptions of T-Alg
in the sense of §26, of T-Alg for a single monad T , of T-Alg , and of
H-Alg , follow a pattern and admit of a common abstract generalization.

This was given by Blackwell in his thesis [4].

By a polyad Blackwel! means a strict monoidal functor T from a small
strict monoidal category V to the strict monoidal category End A , A

T-aqlgebra then consists of an A4 € A with compatible actions a, : TLA>A

for x € V , related to the tensor products (written as juxtaposition) by

the requirement that axy be the composite

T A=TTA——TA—>4
xy ¥ Ta, a,

and that a, : T\4 = A + A Dbe the identity. When A is (not only

cocomplete but) complete and with small hom-sets , we may regard the
monad {4, 4} of Proposition 22.4 as a (non-strict) monoidal functor

1+ End A, or again as the composite constant monoidal functor
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V-*l-mrEndA.

Then a T-action on A corresponds to a monoidal natural transformation

T > {4, A} , or a "monoidal cone" over T with vertex {4, 4} . A
universal such mononoidal cone over T , with vertex the monad P say -
what we might call the "monoidal colimit" of T - exists precisely when
the forgetful functor T-Alg > A has a left adjoint. Blackwel| proves its

existence, in these circumstances, if each T& has some rank.

In the various situations we have considered, V is in effect
presented by generators and relations, while T is given on the generators
and subjected to axioms corresponding to the relations. We have given
existence theorems under hypotheses weaker than having rank, namely that

the generating T, should preserve the E-tightness of (M', a)-cones. It
is because this is not inherited by the composite TxTy , unless
TyM’ < My , that we have been forced to more subtle arguments, such as

those using the Koubek and Reiterman reduction of §4 above. At the same
time the individual situations we have considered present various
particular features, sometimes allowing étronger results than are available
for general polyads, or leading to side-results without meaning in the

general case.

Blackwel |l 's thesis goes further, and considers 2-polyads on a
2-category, where new phenomena appear which are of importance in the study
of algebraic structures borne by a category. ©Some of these aspects will be

pursued in forthcoming articles by him and by the present author.
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