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1. Introduction

It is the aim of this paper to introduce a new concept relating various subgroups
of the automorphism group of a graph to corresponding subgraphs. Throughout
'S will denote a (Michigan) graph on a vertex set K ( | F | = H) and F(^) = G will be
the automorphism group of ^considered as a permutation group on V. En,Cn,Dn and
Sn are the identity, cyclic, dihedral, and symmetric groups acting on a set of size n,
while Sp(q) is the permutation group of pq objects which is isomorphic to Sp but
is q-fold in the sense that the objects are permuted q at a time [6]. H S G means
that H is a subgroup of G. Other group concepts can be found in Wielandt [7].
The graphs <S^ U2?2>^i + @2,@l x @2, and ^ x [ ^ 2 ] along with their corres-
ponding groups are as defined in, for example, Harary [4]. Finally we use jTnfor
the complete graph on n vertices.

2. Stable Graphs

Let @ViVl...Vk be the graph obtained from 'S by removing the vertices
Vi> v2>'-m,vk and any edges attached to these vertices, from ^ . As in Wielandt
[7] we let GVIV2...VI. be the set of permutations of G which keep vi,v2,---,vk

individually fixed. Then if for ?§ there exists a sequences £f = {vl,v2,---,vn}
such that r(0ril,2...Vl) = Gvivi...vk for all k = 1,2,3, ••-,« we say that ^ is stable.
Otherwise it is unstable. We refer to the sequence SP as the stabilising sequence
of S?.

The concept of stability is not vacuous.

PROPOSITION 1. JTn is stable.

PROOF. For any v e, V(Jfn\ = J f n _ t . Now since F ( J T B ) = Sn, [ r ( j Q ] . =
r [ (^ n ) , , ] = Sn_ t . Then induction shows that any ordering of V is a stability
sequence of Xn.
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The following four propositions are readily established.

PROPOSITION 2. / / ^ 0 is stable for some veV, and T{^v) = Gv then 'S is
stable.

PROPOSITION 3. IfS is stable then there exists a v e V such that @v is stable.

PROPOSITION 4. / / <& is the complement of @ on V we have 'S is stable if

and only if & is stable.

PROPOSITION 5. If&v is unstable for all veV then & is unstable.

3. A class of unstable graphs

Here we show that, as was to be expected, the attribute of stability depends
to a large extent, but not completely, on the automorphism group of the graph.

LEMMA 1. If G S Dn then Gv ^ £„_! for all veV.

PROOF. NOW GV ^ (£>„)„ so it is enough to show that (Dn\ ^ Da_1.
By the orbit-stabiliser relation, and bearing in mind that Da is transitive we

The elements of order two in Dn are the product of (n — l)/2 2-cycles if n
is odd and the product or n/2 or (n — 2)/2 2-cycles if n is even and hence an element
of order two in Dn which fixes one vertex belongs to Dn _ 1.

Clearly then (/)„)„ ^ D n _ ! since Dn_x = < (123 ••• n - 1 ) , (1 n - l ) ( 2 n - 2 ) •••>
and we would have (£)„)„ = < (1 n — 1)(2 n — 2) ••• > where the members of V
have been reordered if necessary.

We can now prove

THEOREM 1. If & is a graph on n vertices V with T(&) = G ^ Dn and if
n S: 5 then & is unstable.

PROOF. If n = 5 then G could be D5,CS, S2(2) + Elt or E5. However Cs

and E5 do not appear as automorphism groups for any graph on five vertices.
(i) D5. The only graph whose automorphism group is Ds is shown in Figure

l(a). Now for any vertex i^ of (a) r(@vi) = (D5)Dl, but for another vertex v2 we
find that (D5)V1V2 = E3 and r(&ViV2) # E3. Hence the pentagon of Figure l(a) is
unstable.

(ii) S2(2) + Ev The graphs (b) to (/) inclusive in Figure 1 all have S2(2) + £ t

as their automorphism groups.

(b), (c). The graphs (b) and (c) are complements and so by Proposition 4
it is sufficient to discuss (b).
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(.0

Clearly T(?U1) = S2(2) = (S2(2) + E,)V1. But (S2(2) + E,)^ = E3 for
i = 2,3,4,5 and r(&BlVi) # £3. Hence (b) (and (c)) is unstable.

(d), (e). Again these graphs are complements so we discuss (d) only.

Here F(3T) = S2(2) + £ t = {e, (vtv2)(v3vs)} and hence (S2(2) + £,)P4 =
S2(2). But r(Sf,4) = S2[S2] * S2(2). Further for i * 4 (S2(2) + EX = E4 but
H ^ , ) ^ £4. Thus (d) is not stable.

(/). In this case T{9) = {e, (vlV2)(v3v5)}. For i = 1,2 r(S*ri) = {e, (v4v5})
which is not of the form (S2(2) + Ej)vr

 w i t h J = 3,5 r(^Oi) = {c, (t>,«4)} i = 1,2,
and again this is not a subgroup of S2(2) + Et. However T(&V4) = (S2(2) + Et)V/l>
but then (S2(2) + E^v, = E3(l = 1,2,3,5) and T(9VtV) * E3.

Thus the theorem is true for n = 5.
We now assume that the theorem is true for n — 1 ^ 5. Let | F | = n and

V'= {ve V :Gv = r('&v)}. We need not worry about the vertices of V—V since
in trying to find a first member of the stabilising sequence for ^ these vertices
must be ignored.

But Gv ^ £)„_! by Lemma 1 and so by the induction hypotheses <SV is unstable.
This is true for all v e V — V and so & is unstable.

So we can see that the automorphism group of the graph plays a large role
in the determination of stability. However it is not the sole factor involved.

Consider the graphs of Figure 2. For both graphs the automorphism group
is S2(2) + S2. But in fact (a) is stable while (b) is not. For (a) T(^) = {e, (v2vs),
(viV4)(v3v6),(v1v4)(v2vs)(v3v6)} and vuv3,v4,v6,v2,v5 is a stabilising sequence.

For (b)r(&) = {e,(vsv6),(v1V4)(v2V3),(v1V4)(v2V3)(vsv6)}. Trouble arises
in the stabilising sequence when one tries to remove one of the points vl,vi,v3, or
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Figure 2.

vA from the graph. (As it happens @osVt is unstable and so the unstability of'S is
guaranteed by Theorem 5.)

At this stage it can only be said that most likely connectedness plays a part in

stability. One sees that for (a) & and S? are connected while for (b) @ is connected

while & obviously is not. We conjecture then that for graphs 'S and Jf, if <&, # , J f

and ct are all connected and ifT(^) =T(Jf) then ^ is stable if JT is. Similar

conjectures arise for unstability and also in the cases where '3 and JT are connected

and 3? and 3fT are not.

4. The union of stable graphs

Here we confine our attention to stable graphs and show that the union of n
graphs (U/Li^f) is stable if and only if each of the graphs <Si is. We first note
the well known Theorems 2 and 3, and prove Theorem 4.

THEOREM 2.

is isomorphic to a component of

THEOREM 3. Frucht [2] :

if and only if no component of

Y = ^ 2 and ^ t is connected then

The extensions of the above two theorems to the union of n graphs are clear.

THEOREM 41. For all positive integers n, Sn[G]v = Sn_j[G] + Gv.

PROOF. Let Sn act on Q = {1,2,3, ••-,«} and G act on

E = {1,2,3,•••,m}. Form Q x l and let
Ej = {(ij) :ieil is fixed and jel.}. Clearly Ef is just a copy of X.

Now If = I r for all g e Sn[G] and for some V e Q. Further if v = (a, j?)
and h e Sn[G~\v then Ej = E«. But Sn[G]0 acts on this set as Gv (if we identify $
with (a, P) here) and as S ^ ^ G ] on E' = (Q x E) - E«.

1 The proof here was suggested by Prof. W. Jonsson of McGill University.
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Then since Q x S = S ' u E , and £' n Sa = $ it can be seen that Sn[G]v =
S,_,[G] + G..

We can now prove

THEOREM 5. U?=i 'Si is stable if and only if each 'Si is stable.

PROOF, (a) We first assume that all the lSl are connected and ordered so that
for j < k, | V} | ^ | Vk |. (<=) If 'Sx has stabilising sequence {ya, vi2, •••,vimi} then
«n. "12. -,vlmi,v2l,--,v2mi,--,vnl, —,vnmj is a stabilising sequence of
Uf=ifr|. For if j f = U ; = 1 ^ then Jfou = (Sfi).,, U ( U ? = 2 ^ ) and by the
stability of ̂ t and using theorems 2,3 and 4 we have r ( JTVl,) = T(Jf)vl,. Induction
then produces the required result.
( =>) Let {t>ls«2,-".I'm} be a stabilising sequence of JT = U"=i^i- Assume v± e'S1

(reorder if necessary). Since 3f is stable r(Jfvl) =

Now r(jrPI) = rf[ar1]riu{js
\ i=2

U ^ ) provided
i=2 /

,-0 for some i0 = 2,3, •••,rt, when a wreath product would occur

Further {) \

depending on whether Jf" contains r connected components identical with ^ t or
not. In the first case the U^f is over all ^S^^S^.

f
Then r(JOBl = ^

r

\i = 2

And since JT is stable we have T('S1)VI =r([^1])(, l) provided [ ^ i ] n

If l<S1\x = <Sio then
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and

Here the union over A excludes only the u copies of @ia and that over B excludes
the u — 1 copies of &io.

But Su_ilTfl?,],,]=SB_^r^Jl.HoweverS.[r([Sft]ei)]*SU_xpXp^],,)]
+ r(^1)Ol and so T{Jfvl) ^ r^Jf),,, which contradicts vt's position in the stabilis-
ing sequence of Jf. Hence \_^i\i ¥" ^i0-

The proof is again completed by induction. We note that a stabilising sequence
for 1SV can be obtained from that of Jf" by taking the vertices of ^ j , in the order
that they appear in the stabilising sequence of Jf.

(b) If ^ not connected &, = U j = 1 J^- where the J^/are connected.
By part (a) <Si is stable if and only if each &u is stable. But Jf = Ur=i^i =

U,"=1 Uj = i^ij. So if X is stable then each ^i} is by part (a) and so each
,̂- is. On the other hand when each <Si is stable so is each J^y and by (a) so

is Jf.

COROLLARY. ^x + ^ 2 + ••• + ^n is stable if and only if each ^ is stable.

PROOF. NOW the complement of <&x + 02 + — + ^n= ^"=i^i- So by the
theorem the complement of ^ + ^ 2 + "• ^« is stable if and only if each ^ is.

The corollary then follows by application of Proposition 4.
One would hope that the result of Theorem 6 and its corollary could be extend-

ed to the Cartesian product of two (or more) graphs. However consider the
following counter example.

The Cartesian product [3], ̂ ! x ^ \ , of <&\ and ^ 2 is as shown in Figure 3.

sr, •-
Of, -9. X »

Figure 3.

^ ! and &2 are quickly seen to be stable. But r (^ x x
rem 1, 'Sy x @2 is unstable.

< D6 and so by Theo-
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5. Special examples

We consider below the stability of three well known graphs.
(a) Petersen's Graph is Unstable.

The automorphism group of the Petersen graph, P, Figure 4, is well known
[1]. It has degree 10, order 120, is isomorphic to S5 and T(P) = < (1429)(3765)
(8 10), (13) (46) (58) >.

4 3
Figure 4. Figure 5.

Now PVl = PV2 for all vuv2eV the vertex set of P, and so to test for stab-
ility we remove an arbitrary point, 10 say. Figure 5 shows P10.

After some work we have r(P10) = T(P)10 = < (169432) (587), (14) (23)
(69)(78)>,and|r(P10)| = 12.

1 1

Figure 6. Figure 7.

In P1 0 there are six vertices with degree 3 and three with degree 2. Removing
any one of the former set of vertices from P10 gives a graph isomorphic to P1 0 l 9

(Figure 6). On the other hand P10j7 is isomorphic to any graph formed by remov-
ing a vertex of degree 2 from P10 (Figure 7).
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Now 9 is in an orbit ofF(P10) of length 6 and 7 is in an orbit ofT(P10) of
length 3 and so by the orbit stabiliser relation we have

) , | - r ( j P l o ) |

and

I 7

However it can be quickly seen that
(56) (43), (13) (45) (63), (13) (58) (46) e r(P1 0 f 9) and (25) (34) (89), (14)(36) (29),

(13) (46) (58), (16) (34) (29) (58), (16) (28) (59), (1364) (2895), (1463) (2598) e
r(PiO,7)-HenceT(P1Oj9) ^ r ( P 1 0 ) 9 andr(P10i7) •£ r (P1 0)7 , and so P cannot be
stable.

(b) Desargues' graph is unstable.
As a corollary to (a) then, we see that Desargues' graph is also unstable, since

this graph is the complement of P [5].

(c) The Pappus Graph is Stable
The complement of the Pappus graph (see for example [5]) is shown in Figure 8.

Figure 8.

This is clearly the sum of three graphs K3. But K3 is stable (Proposition 1) and
hence K3(J K3(J K3 is stable (Theorem 5). Hence by Proposition 4 the Pappus
graph is stable.

6. Stability of graphs for 2 ^ | V \ ^ 6

Since either a graph or its complement must be connected we consider only
connected graphs. A list of these for 2 ^ | V | ^ 6 will be found in Appendix 3
of [6]. For a given | V\ we number the graphs of that list in the order they occur.
Below we note only the unstable graphs.

(i) \V\ = 2 , 3, all stable

(ii) | V\ =4, only graph 1 unstable

(iii) I v\ = 5, graphs 2, 4, 8, 12, and 16 are unstable
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(iv) | v\ = 6, graphs 1, 4, 9, 12, 14, 18, 19, 24, 30, 31, 32, 36, 37, 44, 45,
46, 53, 54, 55, 59, 69, 70, 71, 74, 77, 79, 85, 88, 91, 93, 100,

102, and 106 are unstable. (N. B. Graph 20 for | V | = 6 should be as in Figure 9).

Figure 9.
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