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Abstract

A problem of estimation of the critical Mach number for a class of carrying wing profiles
with a fixed theoretical angle of attack is considered. The Chaplygin gas model is used to
calculate the velocity field of the flow. The original problem is reduced to a special minimax
problem. A solution is constructed for an extended class of flows including multivalent
ones, hence M* is estimated from above. For a fixed interval [0, /JoL A) = 3JT/8, an
estimate of M* is given from below.

1. Introduction

An important problem in the theory of gas flow around a body with given shape is to
determine the range of Mach number M^ of the free stream in order that the flow be
subsonic everywhere. The upper bound M* of the range is called the critical Mach
number and serves as a parameter by which aerodynamical characteristics of transonic
wing profiles are evaluated.

The critical Mach number is a functional of the profile shape. Estimating M* for
various classes of profiles and determining configurations for which the maximum
values of M* are attained is not a simple problem. This problem was solved for some
classes of symmetric profiles with zero lift in [4,6,8,9] (see also [3]) by Gilbarg and
Shiffman, and Loewner in 1954, by Brutyan and Lyapunov in 1981 and by Kraiko
in 1987. Moreover, in 1992 Aul'chenko [1] used a method of numerical design for
some carrying profiles with increased critical Mach number. An analytical method to
estimate M* under isoperimetrical constraints was proposed in [2]. Thus, estimates
of M* for carrying profiles are of actual importance.
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FIGURE 1. Formulation of the problem for an isolated airfoil.

2. Statement of the problem and description of principal results

We consider the isentropic potential flow of an ideal gas with free stream velocity X^
and theoretical angle of attack /S. All velocities are referred to the critical velocity vt.

In this flow we consider an airfoil with closed boundary Lz. This contour is assumed
to be smooth except for the sharp edges A and B (see Figure 1). The edges are the
leading and trailing critical points of the flow to provide a finite maximum of velocity.
The exterior angles at the points A and B are equal to ns\ and ne respectively,
1 < e, «i < 2. We choose B to be the origin of coordinates. By fixing fi e [0, n/2]
we obtain a class of airfoils.

PROBLEM. For the described class of airfoils it is required to determine a value of
the free stream velocity k*{p) such that

(a) for Aoo < A*QS) there exist airfoils with subsonic velocities;
(b) for Xoo > X*(P) there exist no airfoils with subsonic velocities.

Obtaining an exact solution of the problem for an isentropic flow is difficult. To
simplify the problem we use a model of subsonic gas flow developed by Chaplygin (see
for example [3]). We make use of Chaplygin's gas model to guarantee a satisfactory
approximation in the whole subsonic region. By Stepanov [10] we find that the
relative error of the dependence of the density p on the Mach number is larger than the
error of an approximate dependence p on the relative velocity A.. Therefore, we use
Chaplygin's approximation only to determine the velocity X, and then we calculate M

M = (1)

where K is the isentropic exponent. In this case p{X) = (1 +4c2X2) 1/2, where c2 is the
positive constant chosen on the condition that in Chaplygin's gas model the adiabatic
curve has the best linear approximation. In particular, in [10] it was proposed that
c2 = 0.296. The choice c2 = 0 corresponds to incompressible fluid (p = const).
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Combining Chaply gin's gas model with formula (1) means that maximization of
M* is equivalent to maximization of A.̂  on the condition that A. < 1 everywhere in
the flow (see [2,5]).

It is well known [5] that in Chaplygin's model of gas flow the flow region is an
image of the region {£ : |£| > 1} under a quasiconformal mapping by a function
z = z(£), which satisfies Beltrami's equation

Zf + M(£kf = 0,

where

/*(?) = c2W) exp

the transition to the z-plane being realized by the formula

dz = uo{h(^)exp[—x(.K)\d$ — c h(^)e\p[x(^)]d%}. (2)
Here

= exp(-tf) [1 - e2*/?2 + ( ^ - 1)/?],

— - ^ d y , | f | > l , (3)

and S(y) is an integrable function. Set

The constant u0 in (2) sets a linear scale and does not influence the solution of the
problem. It can be uniquely defined, for example, by giving the perimeter L of the
profile contour. We set

= exp(7i)/(l - c2exp(2r,)), k = 1, 2, (4)

where 7i is the root of the equation

T - A0(c) + k sin fi ) * ^ f j ? . = 0, * = 1 , 2 . (5)
1 + c2 exp (27)

Our principal result is a proof of the inequalities

W ) < ^l(P) < A.̂ 08), (6)

the right-hand side inequality being proved for each /J € [0, n/2], and the one on
the left-hand side being proved for each $ e [0, 0O], PQ = 3n/S. The left-hand side
inequality is verified by examples which solve a certain auxiliary problem. Equality in
the right-hand side case is attained only for multivalent profiles. Thus for real profiles
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we have ^(P) < ^x(P)- I I means that if XTO > \™(P), then for each profile for
which gas flow is in accordance with Chaplygin's model with angle of attack P, there
exist parts of the profile contour on which k > 1.

From (1) and (6) it follows that both upper and lower estimates for the critical Mach
number obey

(7)

where for k = 1,2, Mlk) (P) is determined by the equality

2e»p(7»[l-c 'exp(27i)]
) - (K - 1) exp(27i)

Notice that we may state another corollary of (6) for the case of an ideal incompressible
fluid. Taking c = 0 we obtain A0(0) = 0 and Tk = -k sin £. We denote by v ^ the
minimum of all umax over the class of profiles with given Vao and p. Then from (6) it
follows that

sin 0 < lnCw^/Wc) < 2 sin p. (9)

In particular, for any profile in the path of the flow of an ideal incompressible fluid
with angle of attack 0, we have

iw/uoo >exp(sin£). (10)

Thus to prove that the estimates (7), (9) and (10) hold it suffices to prove (6).

3. An outline of the proof of (6) and comments on the figures

By (2) and (3), for each 2n-periodic function S(y) 6 L|[0, 2n] we have some
profile (which may be multivalent) if S(y) satisfies the condition [5]

r S(y)eiydy =2nieil>A(T,p), (11)
/o

where
A(T,/3) = sin 0(1 -c2exp(27))/( l +

The condition (11) provides the closeness of the profile contour. The condition
X = v/vt < 1 is equivalent to the inequality

S(y) < A 0 ( c ) , 0<y <2n. (12)

https://doi.org/10.1017/S1446181100012232 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012232


498 F. G. Avlchadiev and A. M. Elizarov [5]

Moo

.75

.50

.25

.00

\
\ N i

^ r
2

0 15 30 45 60 75 /3°

FIGURE 2. Dependences M = Af 0 )( /J) for* = 1.4.

Next we have X.^ = exp(r)/( l — c2 exp(2T)), where

rp S(y)dy. (13)

Hence maximization of A^ is equivalent to maximization of the functional T for
27r-periodic functions S(y) € Lt[0, 2n] under the restrictions (11), (12).

Using subordinate functions and Lindelof's principle (see, for example, [7]), we
can show that for a fixed T

inf sup = A(J, 0), (14)

where infimum is taken for all functions S(y) e L\ [0, In] which satisfy (11) and (12)
(D̂  denotes real part). Since

(15)

S{y) = T + m[x(eiy) - x(oc)],
the restriction (12) and the equality (14) imply the inequality

T-A0(c)+A(T,P)<0.

As the left-hand part of (15) is monotonic with respect to T, the maximum value of
T, satisfying (15), is obtained as the solution of (5) for k — 1 (taking into account
that (5) has a unique root for any 0 € [0, n/2]). Thus Tt = max T. Hence, by virtue
of the given relation between X^ and T, the right-hand inequality in (6) follows. The
formula (8) determines Mm(fi) by T and the right-hand inequality in (7). In the limit
case for fi = 0 we have 7i = A0(c), A/(1)(0) = 1, so we have a symmetric flow
around a plate. In the general case the graph of Mw = Mm(fi) for K = 1.4 may be
seen, labelled as line 1, in Figure 2. Notice that Mw(n/2) = 0.298.

To estimate A.̂  and M* from below, that is, to prove that the left-hand inequalities
of (6) and (7) hold, it suffices to take these values for some flow which satisfies
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FIGURE 3. Contours of univalent profiles for p — 10°, 20°, 40°.

the condition k < 1. We shall construct such a flow as a solution of a certain new
variational problem. We define a characteristic of the deviation of the flow from the
non-perturbed flow as

'Blkoo, B, k, 0] = sup [ln2(A/Aoo) + (0«, - 0)2]1/2 = sup |ln [Ae-''e/(A0Oe"/9~)]|.

Here ke'9 is a relative velocity vector of Chaplygin's gas flow,

A = [(1 + 4c2X2)1/2 - l] /(2c2A)

;is a generalized modulus of the relative velocity and the supremum is taken over
•all points of the flow region around a single profile with the same angle of attack
B 6 [0,7r/2]. We wish to minimize

£[*«,, 0, A., 0] (16)

for given Aoo and p. We denote this minimum by B[Aoo, B]. By (2) and (3), x{%) =
\n(Ae~'9), and by Lindelqf's principle we have

o, B] = min sup - x(oo)| = 2A(T, B),

the minimum being attained for the function x(K) — a(T,P)/^ + x(oo), where
a(T, p) = 2ieieA(T, P), T = *(oo) and 0«, = 0. Therefore by (2) we can restore a
profile which is the minimum of (16). For this profile the condition max k = 1, that
is, the condition max S(y) = A0(c), implies (5) for k = 2, where T2 < Tx. Then we
can determine M(2)(/6) by (8).

The graph of M(2)(y8) for K = 1.4 is shown by the line labelled 2 in Figure 2,
where M(2)(A>) = 0.11, p0 = 3TT/8. The values obtained for k%>(B) and M(2)(P) give
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FIGURE 4. Contours of univalent profiles for (a) fi = 60°; (b) p = /Jo = 3^/8; and contour of
non-univalent profile for (c) p = 72°.

the left-hand side estimates in (6) and (7) if and only if the corresponding profiles
are univalent. The calculations show that the functions x(£) = a(T, /*)/£ + T for
0 < T < T2 correspond to univalent flow regions only for 0 < yS < /So < n/2. The
corresponding contours for T = T2(fi) and for several values of fi are presented in
Figures 3 and 5. The contours in Figure 3 correspond to yS = 2n/9 (40°) (line 3),
0 = jr/9 (20°) (line 2) and /3 = jr/18 (10°) (line 1), respectively. As P decreases,
the contours tend to a plate. If j8 increases, then at first two points of inflexion appear
(for /3 = 7r/3 the shape of the contour is shown in Figure 4 (a)), next there appears the
self-intersection point on the upper surface of the profile (in Figure 4 (b) y3 = /30), and
further the flow region becomes multivalent (the contour in Figure 4 (c) corresponds
to /? = 72°). In addition the lower surface of the profile becomes straight and again
tends to a plate. The authors are not aware of the value of M(2)(/J) for /3 > f}0.

4. Generalization to the case of a straight uniserial profiles cascade

Let a cascade of airfoils be disposed along the ordinates axis with a given step t,
t > 0 (Figure 5). We denote the flow velocities at infinity in front of the cascade
and behind the cascade as k\ exp0'#i) and k2 exp(i62), respectively. Without loss of
generality we suppose d\ = 0. From the continuity equation and the condition of flow
potentiality it follows that

02 = arcsin
2dp(k1)

where d = T/[2tXpx{kx)], p(kx) = (1 + 4c2k2)~l/2 and T is the velocity circulation.
It is known that the flow domain around the cascade is an image of the infinite

Riemann surface R(, and also that the projection of the bounds of R^ coincides with
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FIGURE 5. Formulation of the problem for an airfoil cascade.

the unit circle. The sheets of R( are the exterior of the unit circle with two branching
points £ = ±/? exp(/<5). The point f = 1 corresponds to the airfoils' trailing edges.

For Chaplygin's gas model the flow domain is obtained from (2), namely

fi = exp(/(7r + 2fi)), u0 =

The parameters ft and S depend on R and d:

P = arcsin

S = p + arctan
d(R -

? - i

So a cascade of the considered class is determined by the function S(y) and two
parameters R and d.

The analogue of the problem (11)—(13) is variational:

/•2JT

L
= 2Wo max,

S(y) < A0(c),

where

= (fl4 - l)/[(/?2 + I)2 - 4R2 cos2 )/],

2R
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(R2 - 1) Id ,
A2(7) = -^— arcsin , H(T) = ^/(^+ 4d2)(l + 4c2g2(7),

and where the monotone function

_ . m _ exp7[(l + y/\ +4d2c2exp27)(Vl +4d2 + c2exp27]1/2

n. 1 —

— c2 exp 4 7)

connects Xt and 7.
The following statements are proved:

(1) A maximal possible value 7 is the greatest of the roots of the equation

7 - Ao = 0; (17)

(2) Uniqueness of the root of (17) is provided by the inequality R < l+2/(dt — l),
where

d, = (1 + Ac2)y/\ + Ad2/ [V(l+4c2+4rf2)(l+4c2) - 8c2</] .

As /? —>• oo (f —> oo) we have

lim d = 0, lim *(y) = 1, lim (A, + A2) = ieipA(T, 0).
R-KX R-KX> R-KX

Consequently in the limit case we obtain the problem (11)-(13).
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