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DIVISORS ON VARIETIES OVER A REAL CLOSED FIELD 

W. KUCHARZ 

ABSTRACT. Let X be a projective nonsingular variety over a real closed field R such 
that the set X(R) of /^-rational points of X is nonempty. Let C\R(X) = C\(X)/T(X), 
where C\(X) is the group of classes of linearly equivalent divisors on X and T(X) is 
the subgroup of C1(X) consisting of the classes of divisors whose restriction to some 
neighborhood of X(R) in X is linearly equivalent to 0. It is proved that the group C\R(X) 
is isomorphic to (Z/2)s for some non-negative integer s. Moreover, an upper bound 
on s is given in terms of the Z/2-dimension of the group cohomology modules of 
Gal(C//?), where C = R{\f—T), with values in the Néron-Severi group and the Picard 
variety of Xc = X xR C. 

1. Introduction. Let k be a commutative field. Let X be a quasi-projective nonsin
gular variety over k (that is, X is assumed to be a quasi-projective integral scheme over fc, 
which is smooth over k). We let Div(X) and C1(X) denote the group of (Weil) divisors on 
X and the group of classes of linearly equivalent divisors on X, respectively. Given a di
visor D in Div(X), let [D] denote its class in C1(X). Assume that the set X(k) of ^-rational 
points of X is nonempty and put 

C1*(X) = Cl(X)/r(X), 

where T(X) is the subgroup of C1(X) consisting of all classes [D] in C1(X) such that the 
restriction of D to some neighborhood X(k) in X is linearly equivalent to 0. 

Throughout the remaining part of this note R stands for a fixed real closed field. Our 
first result is as follows. 

THEOREM 1. Let X be a quasi-projective nonsingular variety over R with X(R) 
nonempty. Then the group C\R(X) is isomorphic to (Z/2)s for some nonnegative inte
ger s. 

This result is of interest since, in general, the group C1(X) is not even finitely gen
erated. For example, this is the case when X is an affine or projective cubic curve over 
R = R. Let us also mention that X(R) ^ 0 implies density of X(R) in X (cf. for example 
[1]). 

REMARK. If in Theorem 1, X is projective and R = R, then a more precise result is 
known. Namely, there exists a canonical monomorphism 

(/>:ClR(X)-,//1(Z(R),Z/2) 
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(cf. [3] or [2, Definition 11.3.2, Corollary 12.4.7]). Here X(R) is equipped with the metric 
topology and Hl (—, Z/2) stands for the first cohomology group with coefficients in Z/2 . 
The above statement follows also easily from [7] and [13, Theorem 2.2], which concern 
vector bundles. 

In case of an arbitrary real closed field R, we still have the cohomology group 
Hl (X(R), Z/2) suitably defined (cf. [2,6]). This group is, as in the classical case R = R, 
a finite-dimensional Z/2-vector space. Moreover, one can easily define a canonical ho-
momorphism 4>R: C\R(X) —> Hl(X(R),Z/2), which coincides with the monomorphism 
</> for R — R. Using Witt's theorem [9], one can show that (J)R is a monomorphism if 
dimX = 1. However, in higher dimensions it is not known whether (J)R is injective. For 
R = R, injectivity is proved by applying the approximation theorem of Weierstrass. • 

Theorem 1 is an easy consequence of Theorem 2, stated in Section 2 and proved in 
Section 3. Section 4 deals with the Picard group of some /^-algebras and is based on 
Theorem 1. 

2. The main theorem. Let X be a projective nonsingular variety over R with X(R) 
nonempty. Let C denote the algebraic closure of R, that is, C — R(y/^-\). Then Xc = 
X xR C is a nonsingular variety over C. The Galois group G = {1, a} of C over R acts 
on Div(Xc) as follows. Let &x'-Xc —» Xc be the involution corresponding to a. Given 
D = £ kiDt in Div(Xc), where the ki are integers and Dt are prime divisors, one sets 
D° = T,ki(Tx(Di). This action induces actions of G on C1(XC) and the Néron-Severi 
group NS(XC) of Xc. Thus Div(Xc), C1(XC) and NS(XC) can be regarded as G-modules. 
If P is the Picard variety of X, then P(C) = Mor/?(Spec C, P) is also a G-module. 

Recall that if M is a (right) G-module, then the second cohomology group //2(G, M) 
is the Z/2-vector space defined by 

H2(GM) = MG/{m + nf \ m G M}, 

where rrf is the image of m under the action of o and MG = {m G M \ rrf = m). 
We can now state our main result. 

THEOREM 2. Let X be a projective nonsingular variety over R with X(R) nonempty. 
Then the group C\R(X) is isomorphic to (Z/2)5 for some nonnegative integer s. More
over, //2(G,NS(Xc)) and / / 2 ( G , P ( Q ) , where P is the Picard variety ofXy are finite-
dimensional Z/2-vector spaces and 

s < dimz/2tf2(G,NS(Xc)) +dimz / 2 / /2(G,P(C)). 

We should mention that Theorem 2 with R = R is related to [12, p. 58], A proof of 
Theorem 2 will be postponed to Section 3. Here we show only how to derive Theorem 1 
from Theorem 2. 

PROOF OF THEOREM 1. By Hironaka's resolution of singularities theorem [8], we 
may assume that X is an open sub variety of some projective nonsingular variety Y over 
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R. Clearly, the inclusion morphism X -̂> Y induces an epimorphism C\R(Y) —»• C\R(X) 
and hence Theorem 1 follows from Theorem 2. • 

3. Proof of the main theorem. We begin with some preliminary results. 

LEMMA 1. Let Xbea quasi-projective variety over R with X(R) nonempty. Let N be 

a neighborhood ofX{R) in X. Then there exists an affine neighborhood U ofX(R) in N. 

PROOF. We may assume that X is a locally closed subvariety of projective space 

Yn
R for some n. Let Y be the closure of X in P#. Then TV can be written as N = Y \ 

V(H\,..., Hk), where H\,..., Hk are homogeneous polynomials in R[Xo,..., Xn] and 

V(H\,. ..,//*) denotes the closed subspace of P# determined by the zeros of the ///, 

1 < i < k. Select nonnegative integers d\,...,dk such that 

is a homogeneous polynomial. By construction, U — Y\ V(H) is a neighborhood of X(R) 
in N. It is obvious that U is affine. • 

Recall that R (being real closed) is an ordered field and the order on R is uniquely 
determined. The open intervals (a,b) — {x G R \ a < x < b}, with a,b G R, a < b, 
form a base of open sets of a topology on R, called the order topology. 

Let X be a quasi-projective variety over R with X(R) nonempty. Suppose that X is 
a locally closed subvariety of P^ for some n. Then X(R) is a semi-algebraic subset of 
PR(R). The order topology on R determines a topology on PR(R), which in turn induces 
a topology on X(R). This topology on X(R) is called the order topology. Recall that X(R) 
can be written as X(R) = S\ U • • • U Sk, where the St are pairwise disjoint semi-algebraic 
subsets of X(R), which are open and closed in the order topology on X(R), and 5/ can
not be represented as a union of two semi-algebraic, closed, disjoint, nonempty subsets. 
Moreover, the Si are uniquely determined up to permutation. They are called the semi-
algebraic connected components ofX(R). The above constructions do not depend on the 
choice of the embedding of X in P^. All these facts, and others which will be used in the 
proof of Lemma 2 below, can be found in [2] [4] [5]. 

LEMMA 2. Let A be an abelian variety over R. Let c be the number of semi-algebraic 
connected components of A(R). Then considering A(C) as a G-module and setting 
2A(R) = {x + x | x G A(R)}, one has 

dimz/2 tf2(G,A(Q) < dimz/2A(R)/2A(R) 

order (A(R)/2A(R)) < c. 

PROOF. The first inequality is obvious by virtue of the definition of H2(G, —). Below 
we prove the second inequality. 
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Since A(R) is nonempty, it follows that A(R) is dense in A (cf. for example [ 1 ]). Hence 
2A(R) = 2A {A(/?)), where 2A: A —> A is the isogeny multiplication by 2, is also dense in 
A. By a theorem of Seidenberg and Tarski [2], 2A(R) is a semi-algebraic subset of A(/?). 
The last two facts imply that 2A(R) has a nonempty interior in the order topology on A(R) 
(cf. [2, Proposition 2.8.12]) and hence, using translations on A(R), one easily sees that 
2A(R) is open in the order topology on A(R). By [2, Theorem 2.5.8], 2A(R) is also closed 
in the order topology on A(R). 

Let S be a semi-algebraic connected component of A(R). Let x be a point in A(/?) and 
let fx:A(R) —> A(R) be the mapping defined by fx(y) = y — x for y in A(#). It follows 
from the properties of 2A(R) discussed above that the set 

Sx = Snf-\2A(R)) = {yeS\y-xe 2A(R)} 

is semi-algebraic, and open and closed in the order topology on A(R). Thus S 
shows that 

order(A(R)/2A(R)) < c. 

PROOF OF THEOREM 2. The short exact sequence of groups 

0 — P(C) — C1(XC) — NS(Xc) — 0 

gives rise to an exact sequence of Z/2-vector spaces 

H2(G, P(Q) — H2(G, C1(XC)) -^ //2(G, NS(XC)) 

and hence 

dimz/2//2(G,Cl(Xc)) < dimz/2//2(G,(NS(Xc)) +dimz / 2 / /2(G,P(C)). 

Note that dimZ//2//2(G,NS(Xc)) < oo, the Néron-Severi group NS(XC) being finitely 
generated [10]. Moreover, by Lemma 2, dimz i2 H2 (G, P(C)) < oo. Thus in order to 
complete the proof of Theorem 2, it suffices to find an epimorphism of 7/2(G, Cl(Xc)) 
onto C\R(X) or, equivalently, to construct an epimorphism 

<t>:C\(Xcf^C\R(X) 

such that 

(1) </>([£>+ £H) = 0 

for all D in Div(Xc). 
We proceed as follows. First recall that the canonical projection ir.Xc = XxRC —> X 

induces a monomorphism 7r* : C1(X) —> C1(XC), whose image is equal to C1(XC)G (cf. [11, 
V. 20]). We define </>: C\(Xcf —> ClR(X) to be the composition of (TT*)-1: C1(XC)G -> 
Cl(X) and the canonical projection C1(X) —> C1/?(X) = Cl(X)/r(X) (c/. Section 1). By 
construction, </> is an epimorphism. Now it remains to prove (1), where without any loss 

= Sx, which 
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of generality we may assume that D is a prime divisor. We precede the proof of (1) by 
some preliminary remarks. 

Recall that Xc endowed with its canonical descent datum relative to C/R can be 
identified with X (cf. [11, V. 20]). Let vx-Xc —* %c be the involution corresponding 
to a in G. We regard X(C) = Mor/?(Spec C, X) as the set of closed points in Xc. Then 
X(C)G = {xG X(C) | (Tx(x) — x\ corresponds to the subset X(R) of X. In particular, by 
Lemma 1, for each neighborhood TV of X(QG in Xc, there exists an affine neighborhood 
U of X(QG in N such that ax(U) = U (observe that N D ax(N) is a neighborhood of 
X(C)G). 

Let O be the structure sheaf of Xc. Given an open subset V of Xc, we identify elements 
of 0(V) with morphisms from V into affine line Al

c. Iff is an element of O(V), then/a 

denotes the element of 0(ox(V)) defined by / a = G\ of o (oxWxiY)), where a\ : Al
c —• 

A -̂ is the involution corresponding to a. Observe that if <7x(V) — V and/ = fa, then 
fix) is in R for all x in V n X(QG, where /? is considered as a subset of Al

c(C) = C 
Furthermore, if ax(V) = V and g is any element of O(V), then (gg'OOc) > 0 for all x in 
vnx(C)G 

Let us now return to the proof of (1). One can find affine open sets V, and elements/ 
in 0(Vi), l<i<k, such that X(C)G is contained in M = Vi U • • • U Vk and D = (/•) as 
divisors on V/. Let (/ be an affine neighborhood of X(C)G in M and let U( = UDViHaxiVi) 
for 1 < / < k. Then the Ut form an open cover of U and cr( /̂,) = U(. Since t/ and the Ut 

are affine, one can find gt in O(L0 such that D = (g,-) as divisors on Ut and gj = atjgi for 
some ay in 0(t//), 1 < / < k, 1 <y < k. Note that 

(2) D + Da = (g/gf ) as divisors on £/;. 

We claim that if /z is the element of 0(U) defined by 

(3) h = J28igf9 

then there is a neighborhood U' ofX(QG in U such that 

(4) ax(£/') = U' and D + Da = (h) as divisors on U'. 

Indeed, let x be a point in X(QG. Then x is in £// for some /, 1 < i < k. By renaming the 
indices, we may assume that / = 1. Then putting a7 = a//, we have g; = (Xjg\ on t/i, 
and substituting into (3), we obtain 

(5) h = gigï + EgjgJ = gigï{l + E ^ ) on ^ . 
7=2 7=2 

Since (ary-â )(jc) > 0 in /? for 2 < j < k, it follows that 

7=2 
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is an invertible element in the stalk Ox. Hence, by virtue of (5), (h) = (gig*) as divisors 
on some neighborhood of x in U. Applying (2), we see that (4) follows. 

Since h = h°\ it follows from (4) that (1) holds, which completes the proof of Theo
rem 2. • 

4. The Picard group of some algebras over R. Let A be a finitely generated R-
algebra with no zero divisors. Assume that the set Max/?(A) of maximal ideals of A with 
residue field R is nonempty, and that the localization of A with respect to every maximal 
ideal in Max/?(A) is a regular local ring. Let AR denote the localization of A with respect 
to the multiplicatively closed subset consisting of all elements in A not contained in any 
maximal ideal in Max#(A). 

THEOREM 3. With the notation as above, the Picard group Pic(A#) O/AR is isomor
phic to (Z/2)5 for some nonnegative integer s. 

PROOF. Let Y — Spec A. Observe that there is a neighborhood X of Y(R) in Y, which 
is a nonsingular variety over R. Hence, by Theorem 1, C\R(X) is isomorphic to (Z/2)5 

for some nonnegative integer s. 
Consider the ring ^(X) defined by 

3UX) = luniniOx(U), 

where Ox is the structure sheaf of X and U runs through the set of all affine neighborhoods 
of X(R) = Y(R) in X (cf. Lemma 1). One easily sees that ^(X) is canonically isomorphic 
to AR. Moreover, since Pic(0(£/)) is canonically isomorphic to C1([/), U being affine, 
one obtains that Pic(^(X)) is isomorphic to C\R(X). Thus the proof is complete. • 
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