DIVISORS ON VARIETIES OVER A REAL CLOSED FIELD

W. KUCHARZ

ABSTRACT. Let X be a projective nonsingular variety over a real closed field R such that the set X(R) of R-rational points of X is nonempty. Let $\operatorname{Cl}_R(X) = \operatorname{Cl}(X)/\Gamma(X)$, where $\operatorname{Cl}(X)$ is the group of classes of linearly equivalent divisors on X and $\Gamma(X)$ is the subgroup of $\operatorname{Cl}(X)$ consisting of the classes of divisors whose restriction to some neighborhood of X(R) in X is linearly equivalent to 0. It is proved that the group $\operatorname{Cl}_R(X)$ is isomorphic to $(Z/2)^s$ for some non-negative integer s. Moreover, an upper bound on s is given in terms of the Z/2-dimension of the group cohomology modules of $\operatorname{Gal}(C/R)$, where $C = R(\sqrt{-1})$, with values in the Néron-Severi group and the Picard variety of $X_C = X \times_R C$.

1. **Introduction.** Let k be a commutative field. Let X be a quasi-projective nonsingular variety over k (that is, X is assumed to be a quasi-projective integral scheme over k, which is smooth over k). We let Div(X) and Cl(X) denote the group of (Weil) divisors on X and the group of classes of linearly equivalent divisors on X, respectively. Given a divisor D in Div(X), let [D] denote its class in Cl(X). Assume that the set X(k) of k-rational points of X is nonempty and put

$$\operatorname{Cl}_k(X) = \operatorname{Cl}(X) / \Gamma(X),$$

where $\Gamma(X)$ is the subgroup of Cl(X) consisting of all classes [D] in Cl(X) such that the restriction of D to some neighborhood X(k) in X is linearly equivalent to 0.

Throughout the remaining part of this note *R* stands for a fixed *real closed field*. Our first result is as follows.

THEOREM 1. Let X be a quasi-projective nonsingular variety over R with X(R) nonempty. Then the group $\operatorname{Cl}_R(X)$ is isomorphic to $(\mathbb{Z}/2)^s$ for some nonnegative integer s.

This result is of interest since, in general, the group Cl(X) is not even finitely generated. For example, this is the case when X is an affine or projective cubic curve over $R = \mathbf{R}$. Let us also mention that $X(R) \neq \emptyset$ implies density of X(R) in X (*cf.* for example [1]).

REMARK. If in Theorem 1, X is projective and $R = \mathbf{R}$, then a more precise result is known. Namely, there exists a canonical monomorphism

$$\phi: \operatorname{Cl}_{\mathbf{R}}(X) \longrightarrow H^1(X(\mathbf{R}), \mathbf{Z}/2)$$

The author was supported by an NSF grant.

Received by the editors October 18, 1991.

AMS subject classification: Primary: 14C20, 14P05.

[©] Canadian Mathematical Society 1992.

W. KUCHARZ

(cf. [3] or [2, Definition 11.3.2, Corollary 12.4.7]). Here $X(\mathbf{R})$ is equipped with the metric topology and $H^1(-, \mathbf{Z}/2)$ stands for the first cohomology group with coefficients in $\mathbf{Z}/2$. The above statement follows also easily from [7] and [13, Theorem 2.2], which concern vector bundles.

In case of an arbitrary real closed field R, we still have the cohomology group $H^1(X(R), \mathbb{Z}/2)$ suitably defined (cf. [2, 6]). This group is, as in the classical case $R = \mathbb{R}$, a finite-dimensional $\mathbb{Z}/2$ -vector space. Moreover, one can easily define a canonical homomorphism ϕ_R : $\operatorname{Cl}_R(X) \to H^1(X(R), \mathbb{Z}/2)$, which coincides with the monomorphism ϕ for $R = \mathbb{R}$. Using Witt's theorem [9], one can show that ϕ_R is a monomorphism if dim X = 1. However, in higher dimensions it is not known whether ϕ_R is injective. For $R = \mathbb{R}$, injectivity is proved by applying the approximation theorem of Weierstrass.

Theorem 1 is an easy consequence of Theorem 2, stated in Section 2 and proved in Section 3. Section 4 deals with the Picard group of some R-algebras and is based on Theorem 1.

2. The main theorem. Let X be a projective nonsingular variety over R with X(R) nonempty. Let C denote the algebraic closure of R, that is, $C = R(\sqrt{-1})$. Then $X_C = X \times_R C$ is a nonsingular variety over C. The Galois group $G = \{1, \sigma\}$ of C over R acts on $\text{Div}(X_C)$ as follows. Let $\sigma_X: X_C \to X_C$ be the involution corresponding to σ . Given $D = \sum k_i D_i$ in $\text{Div}(X_C)$, where the k_i are integers and D_i are prime divisors, one sets $D^{\sigma} = \sum k_i \sigma_X(D_i)$. This action induces actions of G on $\text{Cl}(X_C)$ and the Néron-Severi group $\text{NS}(X_C)$ of X_C . Thus $\text{Div}(X_C)$, $\text{Cl}(X_C)$ and $\text{NS}(X_C)$ can be regarded as G-modules. If P is the Picard variety of X, then $P(C) = \text{Mor}_R(\text{Spec } C, P)$ is also a G-module.

Recall that if *M* is a (right) *G*-module, then the second cohomology group $H^2(G, M)$ is the $\mathbb{Z}/2$ -vector space defined by

$$H^2(G,M) = M^G / \{m + m^\sigma \mid m \in M\},\$$

where m^{σ} is the image of *m* under the action of σ and $M^{G} = \{m \in M \mid m^{\sigma} = m\}$.

We can now state our main result.

THEOREM 2. Let X be a projective nonsingular variety over R with X(R) nonempty. Then the group $\operatorname{Cl}_R(X)$ is isomorphic to $(\mathbb{Z}/2)^s$ for some nonnegative integer s. Moreover, $H^2(G, \operatorname{NS}(X_C))$ and $H^2(G, P(C))$, where P is the Picard variety of X, are finitedimensional $\mathbb{Z}/2$ -vector spaces and

$$s \leq \dim_{\mathbb{Z}/2} H^2(G, \operatorname{NS}(X_C)) + \dim_{\mathbb{Z}/2} H^2(G, P(C)).$$

We should mention that Theorem 2 with $R = \mathbf{R}$ is related to [12, p. 58]. A proof of Theorem 2 will be postponed to Section 3. Here we show only how to derive Theorem 1 from Theorem 2.

PROOF OF THEOREM 1. By Hironaka's resolution of singularities theorem [8], we may assume that X is an open subvariety of some projective nonsingular variety Y over

DIVISORS

R. Clearly, the inclusion morphism $X \hookrightarrow Y$ induces an epimorphism $\operatorname{Cl}_R(Y) \to \operatorname{Cl}_R(X)$ and hence Theorem 1 follows from Theorem 2.

3. **Proof of the main theorem.** We begin with some preliminary results.

LEMMA 1. Let X be a quasi-projective variety over R with X(R) nonempty. Let N be a neighborhood of X(R) in X. Then there exists an affine neighborhood U of X(R) in N.

PROOF. We may assume that X is a locally closed subvariety of projective space \mathbf{P}_R^n for some n. Let Y be the closure of X in \mathbf{P}_R^n . Then N can be written as $N = Y \setminus V(H_1, \ldots, H_k)$, where H_1, \ldots, H_k are homogeneous polynomials in $R[X_0, \ldots, X_n]$ and $V(H_1, \ldots, H_k)$ denotes the closed subspace of \mathbf{P}_R^n determined by the zeros of the H_i , $1 \le i \le k$. Select nonnegative integers d_1, \ldots, d_k such that

$$H = \sum_{i=1}^{k} (X_0^2 + \dots + X_n^2)^{d_i} H_i^2$$

is a homogeneous polynomial. By construction, $U = Y \setminus V(H)$ is a neighborhood of X(R) in N. It is obvious that U is affine.

Recall that *R* (being real closed) is an ordered field and the order on *R* is uniquely determined. The open intervals $(a,b) = \{x \in R \mid a < x < b\}$, with $a, b \in R$, a < b, form a base of open sets of a topology on *R*, called the *order topology*.

Let X be a quasi-projective variety over R with X(R) nonempty. Suppose that X is a locally closed subvariety of \mathbf{P}_R^n for some n. Then X(R) is a semi-algebraic subset of $\mathbf{P}_R^n(R)$. The order topology on R determines a topology on $\mathbf{P}_R^n(R)$, which in turn induces a topology on X(R). This topology on X(R) is called the *order topology*. Recall that X(R)can be written as $X(R) = S_1 \cup \cdots \cup S_k$, where the S_i are pairwise disjoint semi-algebraic subsets of X(R), which are open and closed in the order topology on X(R), and S_i cannot be represented as a union of two semi-algebraic, closed, disjoint, nonempty subsets. Moreover, the S_i are uniquely determined up to permutation. They are called the *semialgebraic connected components* of X(R). The above constructions do not depend on the choice of the embedding of X in \mathbf{P}_R^n . All these facts, and others which will be used in the proof of Lemma 2 below, can be found in [2] [4] [5].

LEMMA 2. Let A be an abelian variety over R. Let c be the number of semi-algebraic connected components of A(R). Then considering A(C) as a G-module and setting $2A(R) = \{x + x \mid x \in A(R)\}$, one has

$$\dim_{\mathbb{Z}/2} H^2(G, A(C)) \le \dim_{\mathbb{Z}/2} A(R)/2A(R)$$

order $(A(R)/2A(R)) \le c$.

. .

PROOF. The first inequality is obvious by virtue of the definition of $H^2(G, -)$. Below we prove the second inequality.

W. KUCHARZ

Since A(R) is nonempty, it follows that A(R) is dense in A(cf. for example [1]). Hence $2A(R) = 2_A(A(R))$, where $2_A: A \to A$ is the isogeny multiplication by 2, is also dense in A. By a theorem of Seidenberg and Tarski [2], 2A(R) is a semi-algebraic subset of A(R). The last two facts imply that 2A(R) has a nonempty interior in the order topology on A(R) (*cf.* [2, Proposition 2.8.12]) and hence, using translations on A(R), one easily sees that 2A(R) is open in the order topology on A(R). By [2, Theorem 2.5.8], 2A(R) is also closed in the order topology on A(R).

Let S be a semi-algebraic connected component of A(R). Let x be a point in A(R) and let $f_x: A(R) \to A(R)$ be the mapping defined by $f_x(y) = y - x$ for y in A(R). It follows from the properties of 2A(R) discussed above that the set

$$S_x = S \cap f_x^{-1}(2A(R)) = \{y \in S \mid y - x \in 2A(R)\}$$

is semi-algebraic, and open and closed in the order topology on A(R). Thus $S = S_x$, which shows that

$$\operatorname{order}(A(R)/2A(R)) \leq c.$$

PROOF OF THEOREM 2. The short exact sequence of groups

$$0 \longrightarrow P(C) \longrightarrow \operatorname{Cl}(X_C) \longrightarrow \operatorname{NS}(X_C) \longrightarrow 0$$

gives rise to an exact sequence of $\mathbb{Z}/2$ -vector spaces

$$H^2(G, P(C)) \longrightarrow H^2(G, \operatorname{Cl}(X_C)) \longrightarrow H^2(G, \operatorname{NS}(X_C))$$

and hence

$$\dim_{\mathbb{Z}/2} H^2(G, \operatorname{Cl}(X_C)) \leq \dim_{\mathbb{Z}/2} H^2(G, (\operatorname{NS}(X_C)) + \dim_{\mathbb{Z}/2} H^2(G, P(C)).$$

Note that $\dim_{\mathbb{Z}/2} H^2(G, \operatorname{NS}(X_C)) < \infty$, the Néron-Severi group $\operatorname{NS}(X_C)$ being finitely generated [10]. Moreover, by Lemma 2, $\dim_{\mathbb{Z}/2} H^2(G, P(C)) < \infty$. Thus in order to complete the proof of Theorem 2, it suffices to find an epimorphism of $H^2(G, \operatorname{Cl}(X_C))$ onto $\operatorname{Cl}_R(X)$ or, equivalently, to construct an epimorphism

$$\phi: \operatorname{Cl}(X_C)^G \longrightarrow \operatorname{Cl}_R(X)$$

such that

(1)
$$\phi([D+D^{\sigma}]) = 0$$

for all *D* in $Div(X_C)$.

We proceed as follows. First recall that the canonical projection $\pi: X_C = X \times_R C \to X$ induces a monomorphism $\pi^* \colon \operatorname{Cl}(X) \to \operatorname{Cl}(X_C)$, whose image is equal to $\operatorname{Cl}(X_C)^G$ (cf. [11, V. 20]). We define $\phi: \operatorname{Cl}(X_C)^G \to \operatorname{Cl}_R(X)$ to be the composition of $(\pi^*)^{-1}: \operatorname{Cl}(X_C)^G \to$ $\operatorname{Cl}(X)$ and the canonical projection $\operatorname{Cl}(X) \to \operatorname{Cl}_R(X) = \operatorname{Cl}(X)/\Gamma(X)$ (cf. Section 1). By construction, ϕ is an epimorphism. Now it remains to prove (1), where without any loss

https://doi.org/10.4153/CMB-1992-066-3 Published online by Cambridge University Press

DIVISORS

of generality we may assume that D is a prime divisor. We precede the proof of (1) by some preliminary remarks.

Recall that X_C endowed with its canonical descent datum relative to C/R can be identified with X (cf. [11, V. 20]). Let $\sigma_X: X_C \to X_C$ be the involution corresponding to σ in G. We regard $X(C) = \operatorname{Mor}_R(\operatorname{Spec} C, X)$ as the set of closed points in X_C . Then $X(C)^G = \{x \in X(C) \mid \sigma_X(x) = x\}$ corresponds to the subset X(R) of X. In particular, by Lemma 1, for each neighborhood N of $X(C)^G$ in X_C , there exists an affine neighborhood U of $X(C)^G$ in N such that $\sigma_X(U) = U$ (observe that $N \cap \sigma_X(N)$ is a neighborhood of $X(C)^G$).

Let *O* be the structure sheaf of X_C . Given an open subset *V* of X_C , we identify elements of O(V) with morphisms from *V* into affine line \mathbf{A}_C^1 . If *f* is an element of O(V), then f^{σ} denotes the element of $O(\sigma_X(V))$ defined by $f^{\sigma} = \sigma_1 \circ f \circ (\sigma_X | \sigma_X(V))$, where $\sigma_1: \mathbf{A}_C^1 \to \mathbf{A}_C^1$ is the involution corresponding to σ . Observe that if $\sigma_X(V) = V$ and $f = f^{\sigma}$, then f(x) is in *R* for all *x* in $V \cap X(C)^G$, where *R* is considered as a subset of $\mathbf{A}_C^1(C) = C$. Furthermore, if $\sigma_X(V) = V$ and *g* is any element of O(V), then $(gg^{\sigma})(x) \ge 0$ for all *x* in $V \cap X(C)^G$.

Let us now return to the proof of (1). One can find affine open sets V_i and elements f_i in $O(V_i)$, $1 \le i \le k$, such that $X(C)^G$ is contained in $M = V_1 \cup \cdots \cup V_k$ and $D = (f_i)$ as divisors on V_i . Let U be an affine neighborhood of $X(C)^G$ in M and let $U_i = U \cap V_i \cap \sigma_X(V_i)$ for $1 \le i \le k$. Then the U_i form an open cover of U and $\sigma(U_i) = U_i$. Since U and the U_i are affine, one can find g_i in O(U) such that $D = (g_i)$ as divisors on U_i and $g_j = \alpha_{ij}g_i$ for some α_{ij} in $O(U_i)$, $1 \le i \le k$, $1 \le j \le k$. Note that

(2)
$$D + D^{\sigma} = (g_i g_i^{\sigma})$$
 as divisors on U_i .

We claim that if h is the element of O(U) defined by

(3)
$$h = \sum_{i=1}^{k} g_i g_i^{\sigma},$$

then there is a neighborhood U' of $X(C)^G$ in U such that

(4)
$$\sigma_X(U') = U'$$
 and $D + D^{\sigma} = (h)$ as divisors on U' .

Indeed, let x be a point in $X(C)^G$. Then x is in U_i for some $i, 1 \le i \le k$. By renaming the indices, we may assume that i = 1. Then putting $\alpha_j = \alpha_{ij}$, we have $g_j = \alpha_j g_1$ on U_1 , and substituting into (3), we obtain

(5)
$$h = g_1 g_1^{\sigma} + \sum_{j=2}^k g_j g_j^{\sigma} = g_1 g_1^{\sigma} \left(1 + \sum_{j=2}^k \alpha_j \alpha_j^{\sigma} \right) \text{ on } U_1.$$

Since $(\alpha_j \alpha_j^{\sigma})(x) \ge 0$ in *R* for $2 \le j \le k$, it follows that

$$1 + \sum_{j=2}^k \alpha_j \alpha_j^\sigma$$

is an invertible element in the stalk O_x . Hence, by virtue of (5), $(h) = (g_1g_1^{\sigma})$ as divisors on some neighborhood of x in U. Applying (2), we see that (4) follows.

Since $h = h^{\sigma}$, it follows from (4) that (1) holds, which completes the proof of Theorem 2.

4. The Picard group of some algebras over *R*. Let *A* be a finitely generated *R*-algebra with no zero divisors. Assume that the set $Max_R(A)$ of maximal ideals of *A* with residue field *R* is nonempty, and that the localization of *A* with respect to every maximal ideal in $Max_R(A)$ is a regular local ring. Let A_R denote the localization of *A* with respect to the multiplicatively closed subset consisting of all elements in *A* not contained in any maximal ideal in $Max_R(A)$.

THEOREM 3. With the notation as above, the Picard group $Pic(A_R)$ of A_R is isomorphic to $(\mathbb{Z}/2)^s$ for some nonnegative integer s.

PROOF. Let Y = Spec A. Observe that there is a neighborhood X of Y(R) in Y, which is a nonsingular variety over R. Hence, by Theorem 1, $\text{Cl}_R(X)$ is isomorphic to $(\mathbb{Z}/2)^s$ for some nonnegative integer s.

Consider the ring $\mathcal{R}(X)$ defined by

$$\mathcal{R}(X) = \lim \inf \mathcal{O}_X(U),$$

where O_X is the structure sheaf of X and U runs through the set of all affine neighborhoods of X(R) = Y(R) in X (cf. Lemma 1). One easily sees that $\mathcal{R}(X)$ is canonically isomorphic to A_R . Moreover, since $\operatorname{Pic}(O(U))$ is canonically isomorphic to $\operatorname{Cl}(U)$, U being affine, one obtains that $\operatorname{Pic}(\mathcal{R}(X))$ is isomorphic to $\operatorname{Cl}_R(X)$. Thus the proof is complete.

REFERENCES

- 1. E. Becker, Valuations and real places in the theory of formally real fields. In: Géométrie Algébrique Réelle et Formes Quadratiques, Lecture Notes in Math. **959**, Springer, 1982 1–40.
- 2. J. Bochnak, M. Coste and M.-F. Roy, *Géométrie Algébrique Réelle*, Ergebnisse der Math., 12, Berlin, Heidelberg, New York, Springer Verlag, 1987.
- 3. L. Bröcker, Reelle Divisoren, Arch. der Math. 35(1980), 140–143.
- 4. G. W. Brumfiel, *Partially Ordered Rings and Semi-algebraic Geometry*, Cambridge Univ. Press, Cambridge, 1979.
- 5. H. Delfs and M. Knebusch, Semi-algebraic topology over a real closed field I, II, Math. Z. 177(1981), 107–129; Math. Z. 178(1981), 175–213.
- **6.**_____, On the homology of algebraic varieties over real closed fields, J. Reine Angew. Math. **335**(1982), 122–163.
- 7. E. G. Evans, Projective modules as fiber bundles, Proc. Amer. Math. Soc. 27(1971), 623-626.
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79(1964), 109–326.
- 9. M. Knebusch, On algebraic curves over real closed fields I, Math Z. 150(1976), 49-70.
- **10.** S. Lang and A. Néron, *Rational points of abelian varieties over function fields*, Amer. J. Math. **81**(1959), 95–118.
- 11. J.-P. Serre, Groups Algebriques et Corps de Classes, Hermann, Paris, 1959.

DIVISORS

R. Silhol, *Real Algebraic Surfaces*, Lecture Notes in Math. 1392, Springer, 1989.
R. G. Swan, *Topological examples of projective modules*, Trans. Amer. Math. Soc. 230(1977), 201–234.

Department of Mathematics University of New Mexico Albuquerque, New Mexico 87131 U.S.A.