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Abstract

The main goal of this paper is to describe radical classes closed under essential extensions. It turns out
that such classes are precisely the homomorphically closed semisimple classes, and hence a radical
class is essentially closed if and only if it is subdirectly closed. Moreover, a class is closed under
homomorphic images, direct sums and essential extensions if and only if it is an essentially closed
radical class. Also radical classes are investigated which are closed under Dorroh essential extensions
only, such a radical class R consists of idempotent rings provided that R does not contain the ring of
integers, meanwhile all the other radicals satisfy this requirement. A description of (hereditary and)
Dorroh essentially closed radicals is given in Theorem 4.

1980 Mathematics subject classification (Amer. Math. Soc): 16 A 21.

1. Preliminaries

We shall work in the variety of all associative rings. Radical and semisimple
classes will mean such classes in the sense of Kurosh and Amitsur and for the
fundamentals of radical theory we refer to [6]. We shall make use of the upper
radical operator % and semisimple operator § acting on a class C of rings and
defined by

3l C = [A: A has no nonzero homomorphic image in C},

SC = {A: A has no nonzero ideal in C}

respectively.
A class C is said to be hereditary if / < A G C implies / G C, and C is strictly

hereditary, if for any subring B of A G C it follows B e C . A radical R consisting
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[2] Essentially closed radical classes 133

of idempotent rings will be referred to as a weakly subidempotent radical. A
hereditarily weakly subidempotent radical is called subidempotent radical.

In our investigations the well-known notions of direct product (that is complete
direct sum), direct sum (that is discrete direct sum) and subdirect sum will often
occur. A class C is said to be closed under direct products (direct sums or subdirect
sums) if any direct products (direct sum or subdirect sum respectively) of C-rings
is again in C. We say that C is closed under extensions or extensionally closed, if
B G C , A/B G C imply A G C. A class C is closed under essential extensions (or
essentially closed), if / G C implies A G C for any essential (that is large) ideal /
of A. A ring A is an essential extension of its ideal / if / is essential in A. If A has
also a unit element, in this case we say that A is a unital essential extension of /.

In what follows Z will stand for the ring of integers and («) will denote the
ideal generated by n G Z. If n and m are positive integers, then (m,n) denote
their greatest common divisor.

2. Radicals closed under essential extensions

Let A and M be two rings. We shall say that M is an A-algebra if
i) M is an ̂ 4-bimodule, and
ii) a(mxm2) = (am^m^; (m]m2)a = mx{m2a) hold for all a G A and m:, m2

G M.
For an A -algebra M let us consider the cartesian product A X M equipped with
the operators

(a,m) + (h, n) = (a + b,m + n),

(a, m) • (b, n) = (ab, an + mb + mn).

It is easy to check that in this way we have built a ring D(A, M) on the set
AX M such that

a) A ~A0 =:{(fl,0), a GA}.
b) M s Mo =: {(0, m), m G M) <l D(A, M),
c)D(A, M)/Mo =A.

In view of (a), D(A, M) can be considered as an ^4-algebra. An ̂ 4-algebra M will
be said to be faithful, if

M =•• {a G A : aM = Ma = 0} = 0.

LEMMA 1. / / / < D(A, M) and I n Mo = {0} then I is isomorphic to an ideal of
A.
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134 N.V. Loi [3]

PROOF. Since / < Mo = 0, using (c) it follows

/ s / / (/ n Mo) = (/ + Mo)/Mo < D(A, M)/Mo s A.

For any A -algebra M let us consider the direct sum N = 1XeA Mx of infinitely
many copies A/x of M. Clearly N is an /I-algebra in the obvious sense.

LEMMA 2. / / / < D(A, N) and I n JV0 = 0

/ C {(a, n): a e. Ann^ M andn E Ann^TV).

PROOF. Let (a, n) E / and « = 2finite wx . Since / n Af0 = 0, for any (0, m) E iV0

we have

(*) am + «m = ma + mn = 0.

In particular, for ju ¥= X, and for each element m^ E M^ such that for the
corresponding element mj of No, we have am^ = m°a = 0. Hence aM — aM^ = 0
= M^a — Ma holds, implying a E Ann^ M. Since a E Ann^ M, also a E

N. Hence (*) yields mn = nm = 0, that is K E Ann^ 7*/.

The proof of the following assertion is straightforward.

LEMMA 3.IfAx(\EA) are rings such that A n n ^ Ax — 0 for each X E A, then
their direct sum ^XeA Axis an essential ideal in their direct product UXsA Ax.

In the radical theory it is quite natural to demand that a semisimple class be
essentially closed. This condition imposed on a semisimple class is in fact
equivalent to the hereditariness of its radical class (see Armendariz [1]). It is not
surprising that this condition imposed on radical classes, will be rather restrictive.
Nevertheless, it is unexpected that the essentially closed radical classes are
precisely the subdirectly closed ones, and the latter are known as the homomor-
phically closed semisimple classes. In the next theorem we give several characteri-
zations of such classes.

THEOREM 1. For a class C of rings the following six conditions are equivalent:
i) C is an essentially closed radical class,
ii) C is closed under homomorphic images, direct sums and essential extensions,
iii) C is an essentially closed variety,
iv) C is an idempotent variety (that is, C is an extensionally closed variety),
v) C is a subdirectly closed radical class,
vi) C is a homomorphically closed semisimple class.
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I41 Essentially closed radical classes 135

PROOF. The implication (i) => (ii) is trivial, (ii) => (hi): we must only prove that
C is a variety. Let B be an arbitrary nonzero subring of a ring A G C. Consider the
unital essential extension M of A, and the direct sum

N= f
Since Ann B M = 0 and Ann^jV = 0, for an ideal / of the ring D(B, N) as given
in the preliminaries, which satisfies / n No = 0, Lemma 2 implies 7 = 0. Hence
iV0 is an essential ideal of D(B, N). Using that C is closed under essential
extensions and direct sums, A E C implies M G C, No = N G C and D(B, N) e
C. Since C is homomorphically closed, property (c) yields B G C. Thus the class C
is strictly hereditary.

Next let us consider unital essential extensions Mx of rings Ax G C, X E A.
Since C is closed under direct sums, we have 2 X e A MX ^ C and an application of
Lemma 3 yields IIX e A Mx G C. Taking into account that IIX e A Ax C n X e A Mx

and that C is strictly hereditary as we have already proved—we get IIX e A ^ \ e C.
Hence C is closed under direct products and strictly hereditary, thus C is a
variety.

(iii) =» (iv). Since C is a variety, it is subdirectly closed and hereditary. Taking
into account that C is also essentially closed an application of van Leeuwen's [3]
Theorem 8 yields that C is closed under extensions. Thus C is an idempotent
variety.

The equivalences of (iv), (v) and (vi) are well-known.
(vi) => (i). It is well-known that a homomorphically closed semisimple class is a

radical class (see Wiegandt [6] Theorem 32.1). Moreover if C is not the class of all
rings, then every C-ring is a subdirect sum of finite fields (see Stewart [4] Theorem
4.3 or Wiegandt [6]), hence it consists of semiprime rings. Suppose thatC is not the
class of all rings, and let B be an essential extension if its ideal A G C. By
Birkhoff s Theorem there is a set {/x : X G A} of ideals of B such that each B/I is
subdirectly irreducible and H X e A 7X = 0. Let us consider the set {/^: A £ 1^, /x
G A}. Since (H/^) n A C H / x = 0 and A is an essential ideal of B, it follows
D I = 0. Hence we can confine ourselves to the case A £ Ix for each X G A.
Further, we have

A' = A/(IxnA)^(A+ 7X)//X < B/Ix = B'.

Since C is a homomorphically closed class of semiprime rings every ideal of A' is
also an ideal of B'. Then the subdirect irreducibility of B' implies that of A'.
Hence by Stewart's result [4] Theorem 4.3 A' is a finite field. Consequently
A' — B' for all subdirectly irreducible components of B' of B. Taking into
consideration that C is subdirectly closed, it follows B G C proving that C is
essentially closed.
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Let us note that all homomorphically closed semisimple classes have been
explicitly determined (see Gardner and Stewart [2]). There are countably many
such classes and each of them is determined by a strictly hereditary finite set of
finite fields (see Stewart [4] and our Theorem 4).

Let us recall that by Armendariz [1] (see also Wiegandt [6] Theorem 15.2) a
semisimple class is essentially closed if and only if its radical class is hereditary.
Hence an immediate consequence of Theorem 1 is the following

COROLLARY. Let C be an essentially closed radical class, then the upper radical
31 C is hereditary and the semisimple class SC is essentially closed.

3. Dorroh essentially closed radicals

We have seen in Section 2 that the requirement of being essentially closed is an
extremely strong condition if it is imposed on a radical class. In this section we
shall demand that the considered radical should be Dorroh essentially closed (the
definition see below). This condition turns out to be a considerably weaker one
inasmuch as every radical containing the ring of integers, does satisfy it, and it
does not imply the hereditariness of the radical. Nevertheless, it is quite a
restrictive condition, such a radical class. R consists of idempotent rings whenever
R does not contain the ring of integers. If Z £ R for a Dorroh essentially closed
radical R, then there is an integer n > 0 with nA = 0 for all A G R (Proposition
3). A complete description of (hereditary and) Dorroh essentially closed radicals
will be given in Theorem 4.

Let D{A) denote the Dorroh extension of a ring A (that is D(A) = D(Z, A)).
We say that a class C of rings is Dorroh essentially closed if A G C implies
D(A)/I G C for every ideal I of A which is maximal with respect to the property
/ n A = 0. This terminology is justified by the fact that in this case A can be
embedded as an essential ideal in D(A)/I. Since D(A)/A = Z we get

PROPOSITION \.IfRisa radical class containing Z. then R is Dorroh essentially

closed.

For an arbitrary ring A the characteristic char A of A is defined as

, . f min(n : nA — 0 for some n = 1. 2 ) if exists,
char ,4 =

[ 0 otherwise.
PROPOSITION 2. / / R is a Dorroh essentially closed radical class and Z (£ R, then

char A ¥= 0 for every A G R.
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PROOF. If A G R, then also the direct sum B ~ 2°L, (>*,•: A, = A) is in R.
Assume that / is an ideal of the Dorroh extension D(B) such that / f 1 B = 0 and
/ is maximal with respect to this property. Since D(B) — D(Z, B), Lemma 2 is
applicable yielding

/ C {(z, ft): z G A n n z ^ and ft G Ann f l 5} .

Since Z £ R, it follows £>(#) £ R and hence I ¥= 0. Using Lemma 1 we get that /
is isomorphic to an ideal of Z. Hence / is generated by a single element (z, ft)
such that z ^ 0. Since / n B = 0,

(0. zc + ftc) = (z,b)(Q,c) = (0,0)

for any c G 5. By ft G AnnBB it follows zc = 0 for any c G B, implying zB = 0
and so also z4 — 0.

In analogy of the definition of the characteristic of a ring we introduce the
notion of the characteristic of a class C defined by

, „ _ / min(« : VA G C, nA = 0 for some n = 1,2,...) if exists,

0 otherwise.

By definition it is clear that if charyl = k, charC = n and A G C, then k divides

n.

PROPOSITION 3. / / R is a Dorroh essentially closed radical such that Z & R then
charR =£ 0.

PROOF. Since Z £ R, by Proposition 2 char ,4 ^ 0 for all i £ R . Let us

consider the set

<? = {« : « = char ^ for some/I G R} .

We show that 9 is a finite set. Suppose that 9 is infinite. Since R is Dorroh
essentially closed, to any n E 9 there exists a ring An such that 1 E An GR and
char.4,, = n. Let us consider the direct sum B — 2ne$An, clearly AnnBB — 0.
For any ideal / of D(B)(D(B) - D(Z, B)) with I n B = 0 Lemma 2 gives

/ C {(z ,0) : z G A n n z 5 } .

If 0 ¥= (z, 0 G / ) , then as \? is an infinite set, there exists an n (n > z) such that

0 ^ Zy4n C zB = 0, contradicting Z £ R. Thus <? is a finite set. Hence charR =£ 0.

PROPOSITION 4. / / R is a Dorroh essentially closed radical and Z £ R,
Z/(charR) G R. Moreover, for every A GR: Ann^ ,4 = 0.

https://doi.org/10.1017/S1446788700024812 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024812


138 N. V. Loi [7]

PROOF. By Proposition 3 we have char R ^ 0. Since R is obviously closed under
direct sums, there exists a ring A in R, such that char A — char R. Without loss of
generality we may assume that 1 £ A as R is Dorroh essentially closed. Let us
consider the direct sum B — 2°L, (At,: At = A), and apply Lemma 2 for an ideal /
of D(B) with / n B = 0. As AnnBB - 0, we get

I Q {(2,0): z GAnn 2 B} .

For any (z, 0) G / the characteristic n of R divides z, hence {(z, 0): z e Annz2?)
equals to the ideal J generated by (n,0). Thus J n B = 0 and by AxmBB = 0, /
is maximal with respect to this property. Since D(B)/J = D(Z/(n), B), and
hence it follows D(Z/(n), B ) 6 R and also

Thus Z/(n) G R.
Next assume that A G R and Ann^ A ¥= 0. Let a ^ 0 be in Ann^ A, then the

ideal / generated by (n2, a) in ring D(A) satisfies that / D A — 0. Let J be an
ideal containing /, which is maximal with respect to / n A = 0. Then by Lemma
1 J is isomorphic to an ideal of Z. Hence / is generated by a single element (z, b)
such that k(z, b) = (n2, a) for some integer k. It is known that Z/(z) =
D(A)/(J + A)GR. This implies that z divides n. On the other hand kz - n2

and kb = a, hence n divides k and consequently a = kb = 0, a contradiction.
Thus Ann^ /I = 0.

A characterization of Dorroh essentially closed radical classes not containing
the ring Z of integers is given in the following

THEOREM 2. Let R be non-empty class of rings. The following conditions are
equivalent:

i) R is a Dorroh essentially closed radical and Z & R,
ii) R is a radical class of nonzero characteristic and

a) Z/(n) G R, where n = charR,
b) Ann ̂  A = 0 holds for any A G R.

PROOF, (i) implies (ii) from Proposition 3 and 4.
(ii) => (i). Because R is a radical class, we have only to show that Z £ R and R

is Dorroh essentially closed. Since char R ^ 0 it follows Z £ R. To prove that R
is Dorroh essentially closed let 4̂ G R and J be an ideal of D(A), which is
maximal relative to / D A — 0. By Lemma 1 / is generated by a single element
(z, a). Let us introduce the following notations: m — char A and

m = p?p? • • -pf-, oa = p^pfr • • -pf-,
z ~ P\'P22 ' ' ' Pr' ' ° w n e r C (a, 7M ) = 1.
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Since J D A = 0, for every x £ A we have za + ax — 0 = zx + xa and hence
(o(a), z)x = 0. Thus m divides o(a)z and consequently a, < /?, + y, for each
/ = l ,2 , . . . , r . Let

K P\ Pr '

we shall show that (o(a), k)= 1.
If a = 0, theno(a) = 1, hence (o(a), A:> = 1.
Suppose that a ^ 0. Obviously 4̂ is the direct sum of its /^-components

(m/p"')A, i = 1,2,...,r, and hence the element a has the form a — a, + a2

+ • • • +a r , a, E m/pf'A, i = 1,2,... ,r. Since a ^ 0, there exists an index i such
that a, T^ 0. In this case /?,. ^ 0 and o(a,) = />f'. We shall show that a, = /?, + y,..
Assume that a $ / ? , + y,, then by (z,a)EJ it follows that the element
(z(o(a)//?/*'),(o(a)//>/*•>) of D(A) is in the ideal / . Consequently,
(z• (o(a)/pi),(°(a)/Pt)ai) ^J also holds. Since a,^/8, + y,, it implies that m
divides z • (o(a)//»,-)• By (z • (o(a)/p), (o(a)//;,-)a,-) £ / we have that for all x £ 4̂

o(«) o(fl) o{al

P ' Pp, Pi ' Pi

n °( f l ) i ° ( f l ) O(a)
0 = z • — — x H—^-^-G.JC = atx.

P, Pi Pi '
Hence {c{a)/pi)xai — (o(a)/pi)aix for all x £ A. This means that
Ann/(/l = 0. Thus (o(a)/pi)al• = 0. But o(a(-) =/>/*', a contradiction. Hence

«, = A + Y, for a11«/ ^ °-
If dj — 0 then o(ay) = 1, thus )87 = 0, and hence (pj, o(a)> = 1. This reasoning

has proved (k,o(a))= 1. By (k,o(a)>= 1 there exists an element c GA such
that o(a) = o(c) and a = Ax. Let us consider the ideal / generated by the element
(z/k, c) then for any elementy £ A

k I — y + yc\ = zy + y(kc) = zy + ya — 0

and similarly ^((z/A:)^ + cy) = 0. On the other hand

is valid which implies that if ((z/k)y + yc) ¥= 0 then o((z/k)y + yc) divides m.
By (k,o(a))= 1 and fc((z/fc);> +>>c) = 0 we get that (z/k)y + yc = 0 =
(z/A:)^ + cy. Hence the intersection of / with A is zero. Since / contains J, by the
maximality of / it follows that J = I. Hence k = 1 and c = a hold. It implies that
q = 1 and at = /?, + y, for all / = 1,2,...,r. Moreover, z divides m and also
n = charR. By condition (a), Z / ( n ) £ R implies Z / ( z ) £ R. We have now
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D(A)/{J + A) = Z/(z) G R. Furthermore as (/ + A)/J ~ A and

D(A)/J .

(J + A)/J
G R

the extension property of R yields D{A)/J G R; hence R is Dorroh essentially
closed.

COROLLARY. / / R is a Dorroh essentially closed radical and Z $. R, then R is a
weakly subidempotent radical. Moreover, if A G R, then a G Aa + aA + AaA
holds for all a G A.

PROOF. Taking into consideration that A G R implies A/A1 G R and (b) it
follows that A/A1 = 0. Hence R consists of idempotent rings.

Since the element a + (Aa + aA + AaA) G A/(Aa + aA + AaA) = B is in
the annihilator of 5 , condition (b) yields the second assertion.

Let us consider the class

B = {A : Anns2? = 0 for every homomorphic image B of A}.

This class of rings has been introduced by F. A. Szasz (and denoted by B6) and it
has been proved in [5] that B is a non-hereditary radical class consisting of
idempotent rings. Further, let Tn denote the class T,, — [A : nA = 0} for any

PROPOSITION 5. The class Bn — B D Tn is the largest Dorroh essentially closed
radical of characteristic n.

PROOF. Obviously Bn is homomorphically closed and has the inductive prop-
erty. (The class C has the inductive property, if for any ascending chain /, C
• • • C / C • • • of ideals of a ring A such that Iy G C for each y, it follows
U y / y G C.) Next, let A < B such that A, B/A G Bn. Since B is a radical class, it
suffices to show that nB = 0. As B/A G Tn, we have nB C A, implying nBA =
BnA = 0. Thus nB C Ann,, A - 0 holds as A G Bn, and hence nB - 0. Thus Bn is
a radical class. Applying Theorem 2 Bn is a Dorroh essentially closed radical with
Z £ Bn. By the definition of Bn and by Theorem 2 the maximality of Bn is
obvious.

Next we turn our attention to Dorroh essentially closed radicals, which are
hereditary.
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11 o 1 Essentially closed radical classes 141

THEOREM 3. Let R be a hereditary radical. The following two conditions are
equivalent:

i) R is Dorroh essentially closed and Z £ R,
ii) R is subidempotent of nonzero characteristic n and Z/(n) G R.

Moreover, n = char R is a square-free integer.

PROOF. By the corollary of Theorem 2 R is subidempotent, moreover, by
Theorem 2 R satisfies the further conditions.

Conversely, as R is hereditary, condition (b) of Theorem 2 is satisfied and
hence by Theorem 2 R is Dorroh essentially closed and also Z £ R holds.

It is well-known that if A is a hereditarily idempotent ring of nonzero
characteristic n, then n is a square-free integer. This proves the second assertion
of the theorem.

Summarizing our results concerning essentially closed, Dorroh essentially closed
and Dorroh essentially closed hereditary radicals, respectively, we obtain the
following description of such radicals. We say that a class C of rings is the direct
s u m C = C { © ••• 0 Cr of subclasses C t , i = \ , 2 , . . . ,r,if A - Ax ® A 2 ® ••• ® A r ,
A, G C,, / = 1,... ,r, holds for each A E C.

THEOREM 4. Let R be any radical with Z & R.
1) / / R is Dorroh essentially closed, then

R = R, © R 2 © ••• © R r

where each R, = R D Bp,,, is a Dorroh essentially closed radical and charR =
n,r=i P?'- Conversely, / /R,, ; = \,...,r, are Dorroh essentially closed radicals such
that char R, — p"1, />, ¥= Pj for i ¥=j( every pt is prime), then also their direct sum is
a Dorroh essentially closed radical.

2) / / R is in addition hereditary, then a, = 1 for each i = l,...,r and each R, is
hereditary. Also the converse implication holds.

3) / / R is any essentially closed radical, then R is a direct sum

R = R, © R 2 © ••• ©Rr

where charR, = p-, i = 1,... ,r, pt ¥= Pjfor i ^j and for each i = \,...,r there is a
strictly hereditary finite set F, of finite fields such that each ring A o/R, is a subdirect
sum of fields from F,. The converse statement is also true.

PROOF. The assertion of (1) and (2) are straightforward in view of our proved
results, further (3) is Stewart's [4] Theorem 4.3.
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Let us remark that, obviously there exist radicals satisfying the conditions of (1)
but not those of (2) and radicals satisfying the conditions of (2) but not those of
(3) respectively.
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