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ABSTRACT. Estimates of glacier mass balance using geodetic methods can differ significantly from
estimates using direct glaciological field-based measurements. To determine if such differences are
real or methodological, there is a need to improve uncertainty estimates in both methods. In this
paper, we focus on the uncertainty of geodetic methods and describe a geostatistical technique that
takes into account the spatial correlation of the elevation differences when calculating spatially
averaged elevation changes. We apply this method to the western Svartisen ice cap, Norway, using
elevation differences from the surrounding bedrock derived from stereophotogrammetry. We show
that the uncertainty is not only dependent on the standard error of the individual elevation differences
but is also dependent on the size of the averaging area and the scale of the spatial correlation. To
assess if the geostatistical analysis made over bedrock is applicable to glacier surfaces, we use
concurrent photogrammetrical and laser scanning data from bedrock and a range of glacier surfaces to
evaluate the dependency of the geostatistical analysis on the surface type. The estimated geodetic
mass balance, and its uncertainty, is –2.6�0.9mw.e. for the period 1968–85, and –2.0�2.2mw.e.
for 1985–2002.

1. INTRODUCTION

There is increased interest in combining new geodetic
elevation data with historical data, mainly from oblique or
vertical aerial photographs, to determine the long-term mass
changes of glaciers due to climate change. The geodetic
mass balance is defined by Fountain and others (1997) as the
surface-elevation change integrated over the glacier, divided
by the total area and multiplied by the assumed average
density. Surface elevations for historical epochs can be
extracted from archived photographs and then compared to
more recent elevation datasets, which can also be derived
from photogrammetry or other more modern techniques
(e.g. laser/radar altimetry or global positioning systems,
GPS). Both datasets are usually presented as digital elevation
models (DEMs). Over the past 50 years, glaciers and ice caps
in Norway have been photographed from aircraft by the
Norwegian Water Resources and Energy Directorate (NVE);
we use the photographs of Svartisen ice cap in this paper.

The geodetic mass balance has been compared with the
mass balance estimated from direct glaciological field
measurements in a number of studies, and the differences
are often found to be large (e.g. Krimmel, 1999; Østrem and
Haakensen, 1999; Cogley, 2009; Haug and others, 2009).
The discrepancy is currently unresolved and may stem from
errors in either method. Due to the large reported dis-
crepancies, it is important to assess the uncertainties of both
measurement methods. In this paper, we focus on the
estimate of the geodetic mass-balance uncertainty using
geostatistical methods.

Both the geodetic and direct glaciological mass-balance
methods have several error sources. For the geodetic

approach, uncertainties arise from: (1) elevation uncertain-
ties from sequential DEMs; (2) accumulation/ablation
corrections; and (3) the assumption of constant snow
thickness and density. The absolute errors of the elevations
are of less importance, because they only indicate how
accurate the elevations are relative to a datum (Cox and
March, 2004). For the traditional field-based methods,
errors are often systematic and arise from: (1) spatial
sampling of the point measurements; (2) stakes sinking in
the firn area; (3) snow probes deviating from the vertical;
(4) snow stakes penetrating the summer surface; and
(5) internal refreezing and internal ablation (Krimmel,
1999; Østrem and Haakensen, 1999; Cox and March,
2004). Systematic errors increase linearly with time; hence
the error in the cumulative traditional mass balance
can increase considerably as the time interval increases.
The geodetic mass balance will not accumulate annual
systematic errors, and can be used to check that the
traditional mass balance is free of systematic errors (e.g.
Krimmel, 1999; Cox and March, 2004) and to adjust the
traditional method.

If the geodetic mass balance is determined by integration
over an entire drainage basin, then the spatial correlation of
the elevation differences in the DEMs will strongly
influence the integrated uncertainty of the geodetic mass
balance. If uncertainties of point measurements (i.e. the
standard deviation of the elevation error based on indi-
vidual gridpoints) are used to represent the integrated
uncertainty then the uncertainties are effectively implied to
be totally correlated. When estimating the integrated
uncertainty, there can be several orders of magnitude
difference between totally correlated or uncorrelated errors.

Journal of Glaciology, Vol. 55, No. 192, 2009666

https://doi.org/10.3189/002214309789470950 Published online by Cambridge University Press

https://doi.org/10.3189/002214309789470950


When the uncertainty is expressed in terms of the standard
deviation of the elevation error, uncorrelated integrated
errors will be a factor n1/2 smaller than correlated errors,
where n is the number of gridpoints over which the spatial
integration is carried out. For datasets with a grid resolution
of 10m, applied over an integration area of 100 km2, this
difference is of the order of 103. There is a clear need to
quantify the integrated uncertainty properly by including
the spatial correlation.

Currently various methods are used to assess the inte-
grated mass-balance uncertainty. Some approaches use
representative bedrock statistics and assume the errors to
be totally correlated (e.g. Andreassen, 1999; Cogley and
Jung-Rothenhäusler, 2004; Cox and March, 2004). Other
authors (e.g. Thibert and others, 2008) estimate uncertainties
in glacier volume assuming spatially uncorrelated elevation
errors. Nuth and others (2007) acknowledge the importance
of spatial correlation in integrated uncertainty estimates and
approach the problem differently. They investigated the
semivariogram cloud and subjectively estimated that eleva-
tion differences were correlated over a distance of �500m.
Based on this they assumed that areas of 1 km2 were
uncorrelated with each other and then assessed the
uncertainty of the spatially averaged elevation difference
using standard uncorrelated error propagation methods.
Geostatistics have also been applied by Cogley and Jung-
Rothenhäusler (2004) to indicate the spatial correlation of
DEM errors. They found correlation distances of 50–250m
in that study, but no account was taken of the spatial
correlation in estimating the uncertainty of the average
elevation difference. Although there is a general awareness
that DEM elevation differences may be spatially correlated,
there has hardly been any attempt to quantify the effect of
this on the total uncertainty estimate of the geodetic mass
balance for a drainage basin.

The error in elevation difference is often estimated by
comparing the DEMs over bare rocks (Cox and March, 2004;
Nuth and others, 2007; Haug and others, 2009), but this
uncertainty may not be representative of the glacier surface.
Uncertainties and spatial scales of correlation in the
elevation data may depend on a wide range of parameters,
such as recording geometry, surface-type properties, slope
and terrain roughness. Whether the elevation difference
error and its spatial correlation scale determined for rocks is
representative of the glacier surface can be assessed by
comparing the DEM with independent data over the glacier
surface (e.g. laser or radar altimetry).

Our aim is to describe and test a method for estimating
the uncertainty in the elevation difference when spatial
averaging is applied. The method takes into account the
standard deviation of the elevation difference error as well
as the degree of spatial correlation of the elevation
difference, using the surrounding rocks of a glacier, to
assess the spatially averaged uncertainty for a specific area
(e.g. a drainage basin) in the geodetic mass balance. The
method is based on well-established geostatistical tech-
niques and is applicable to all types of elevation datasets
(e.g. photogrammetry, laser and radar altimetry and GPS).
We also seek to evaluate how representative the uncer-
tainty, determined for the rock surface, is for the glacier
surfaces for this dataset. We achieve this by comparing part
of the photogrammetric elevation dataset to coincident
laser altimetry data, and then applying the same geo-
statistical method to these data.

We first provide a short summary of the use of
photogrammetry in estimating the geodetic mass balance
of glaciers. We then describe the geostatistical method for
estimating the uncertainty when determining average
elevation differences. We present results of the geodetic
mass balance of western Svartisen estimated from photo-
grammetric DEMs from 1968, 1986 and 2002, and the
uncertainty assessment based on a statistical assessment of
the bedrock data. We make a comparison between
coincident laser altimetry data and photogrammetrical data,
and a geostatistical analysis of the different surface types.
Finally we discuss the results, and their implication for the
mass-balance calculations.

2. ESTIMATING GEODETIC MASS BALANCE USING
PHOTOGRAMMETRY
The geodetic mass balance of a glacier can be estimated
from surface-elevation data acquired at two different epochs
using various techniques (photogrammetry, laser scanning,
GPS or geodetic surveys). The ice volume change over the
intervening period is estimated by subtracting the surface
elevations, assuming a constant bedrock elevation, and
dividing by the glacier area. The volume change can be
converted to mass (water equivalent) if the column-averaged
ice density of the glacier mass is known.

Generating DEMs using digital photogrammetry is de-
scribed by Schenk (1999) and Kääb (2005). Details
concerning the method applied in this study are given by
Haug and others (2009), who calculated the geodetic mass
balance for Svartisen. A summary description of these
calculations is provided in section 4.2 of this paper.

Photogrammetrical-elevation errors arise mainly from
orientation errors and the inaccurate identification of
corresponding features in the stereo models. Since glaciers
are often situated in remote areas, deploying visible ground-
control point (GCP) targets in the terrain is difficult, time-
consuming and expensive. In addition, the poor contrasts in
snow-covered areas inhibit the identification of features in
the stereo models. Photogrammetrical absolute errors were
recently thoroughly assessed by Thibert and others (2008),
where standard error propagation was used to estimate the
uncertainty of the geodetic mass balance of a drainage
basin. In that case the elevation errors were assumed to be
spatially uncorrelated.

Uncertainties in photogrammetrical-elevation data and
the spatial scales of correlation may be different over rock
and glacier surfaces for three main reasons. (1) The image
contrast is different over rocks, blue ice and snow, and all
areas may have a varying degree of sun and shadows. Lack
of contrast, especially in snow areas, is a well-known
problem in photogrammetry over glaciers, and gridcells in a
DEM are often based on interpolated values from the
surrounding cells. (2) The terrain in glaciated regions is often
steep and an inaccurate horizontal position can lead to large
errors in the elevation difference. The surrounding hillsides
are often steeper than the glacier surface, and elevation-
difference errors may thus be larger for the hills than for the
glacier. (3) The roughness of the terrain will be different for
rocks and glaciated areas, which require a different spatial
resolution of the measured elevations. In general, the glacier
surface is smoother than the rocks, and with the same spatial
resolution the elevation-difference error over rocks may be
larger than for the glacier.
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3. ESTIMATING THE UNCERTAINTY OF THE
SPATIALLY AVERAGED ELEVATION DIFFERENCE
USING GEOSTATISTICS
Spatial statistics, or geostatistics as it is generally referred to,
is widely used in the geosciences and there are a range of
texts covering this subject (e.g. Cressie, 1993; Webster and
Oliver, 2001). There are also a number of examples where
geostatistical methods have been used for glaciological
applications, but these are chiefly related to estimates of the
semivariogram for use in kriging interpolation (e.g. Hock
and Jensen, 1999; Stosius and Herzfeld, 2004; Rotschky
and others, 2007; Herzfeld and others, 2008). Occasionally
semivariograms are utilized for other purposes, such as the
automatic detection of crevasses (Kodde and others, 2007).
The use of geostatistics for indicating uncertainty in mass-
balance calculations is limited to the studies of Cogley and
Jung-Rothenhäusler (2004) and Nuth and others (2007),
described in the introduction.

Estimation of changes in the total mass of a glacier
requires the difference in elevation between two DEMs. This
difference is averaged over a whole ice cap or individual
drainage basin, to obtain the mean change in height, and
thus volume, of the area. The surrounding bedrock, which is
assumed to be the same at both epochs, can be used to
obtain statistical information concerning the elevation
difference errors of the two DEMs when no other statistical
information is available. The error in the bedrock elevation
differences may be used to indicate the uncertainty in the
glacier elevation differences. Alternatively, if elevations are
measured concurrently in the same glaciated region, then
statistical information from these differences can be used to
aid uncertainty estimates.

The difference between two DEMs can be separated into
two components. The first is the large-scale bias, or spatial
trend, of the elevation difference. This may be due to a range
of errors inherent in the photogrammetrical method con-
cerning orientation of the stereo models or unaccounted for
distortions in the images. Such spatial trends can, to a large
extent, be removed by fitting spatially dependent analytical
functions to the elevation difference. Polynomial fitting is an
example of such a detrending method. The second com-
ponent is of a more stochastic nature and is present on
smaller spatial scales, from the individual-pixel level
upwards. Both components can be analysed using geostat-
istical concepts after detrending has been applied.

The standard error, ��z, of the elevation difference over
bedrock, �z, which is defined as the standard deviation of
the measured differences of two DEMs, is suitable for
providing an estimate of the uncertainty at the individual-
pixel scale. However, this is not enough to estimate the
uncertainty in the elevation difference when averaging over
an extended area, since there will be some degree of spatial
correlation that must be taken into account. Geostatistical
methods can be used to provide information about this
spatial correlation to improve the uncertainty estimation
when averaging over extended areas. This is achieved by
assessing the spatial covariance of the elevation differences
with the use of semivariograms, which are frequently used
for kriging interpolation. Semivariogram models are fitted to
the empirical data, and the integration of these enables the
uncertainty of the spatially averaged elevation difference to
be estimated. This section provides a description of the
method applied.

3.1. Geostatistics, covariance and the semivariogram
Uncertainty is estimated by determining the variance of
some quantity, in this case the elevation difference, �z. The
variance, Var, of the mean, written as the expectation value,
E, of the spatially varying quantity �z(x), where x represents
two-dimensional spatial coordinates, is given by:

Var E �zðxÞ½ �ð Þ ¼ E Cov �zðxÞð Þ½ �: ð1Þ
This means that in order to estimate the uncertainty of the
mean of �z(x) it is necessary to determine the mean of the
covariance, Cov, of �z(x). For simplicity of notation the left-
hand side of Equation (1) will be referred to as �2

A, which is
the variance of the spatial average over an area A.

In spatial applications the covariance can be described by
the auto-covariance function. This describes how covariance
changes as a function of distance, or lag, h, from any point in
space. For the case of elevation differences, �z(x), this is
written as

Cov hð Þ ¼ Cov �zðxÞ,�zðx þ hÞð Þ
¼ E �zðxÞ � �ð Þ �zðx þ hÞ � �ð Þ½ �, ð2Þ

where � is the mean of the elevation differences, or
�= E½�zðxÞ�. Implicit in this description is the assumption
of ‘first- and second-order stationarity’. In the current
application, this means that the mean, �, and the variance,
�2
�z , of the elevation difference are constant in space. For the

practical application of the theory, this requires that there be
no large-scale trends in the data and that there is no
significant variation in the variance in space.

The auto-covariance is further related to the auto-
variance, VarðhÞ, by

VarðhÞ ¼ 2 Cov 0ð Þ � Cov hð Þ½ �: ð3Þ
In geostatistics the most frequently used auto-variance
concept is the semi-variance or semivariogram, �(h), when
it is presented as a function of lag. This is simply half the
auto-variance (Equation (3)), and is written as

�ðhÞ ¼ 1
2
VarðhÞ ¼ Cov 0ð Þ � Cov hð Þ½ �, ð4Þ

where the covariance at h=0, Cov(0), is equivalent in our
application to the variance of the elevation difference, �2

�z ,
such that

�2
�z ¼ Cov 0ð Þ ¼ E �zðxÞ � �ð Þ2

h i
: ð5Þ

Equations (1), (4) and (5) can be combined to derive a
relationship for the variance of the spatially averaged
elevation difference, �2

A, in terms of the semivariogram and
the variance of the elevation difference, �2

�z :

�2A ¼ E �2
�z � �ðhÞ� �

: ð6Þ
The reason for expressing �2

A in terms of the semivario-
gram, �(h), is that it is used extensively in geostatistical
applications to specify the spatial variance, particularly for
interpolation using kriging methods. The empirical semi-
variogram can be calculated from the available data and
fitted with an analytical semivariogram model. There are a
number of well-established models that can be used to
describe the semivariogram (e.g. spherical, exponential and
Gaussian models). For more details concerning the above
definitions, and geostatistics in general, the reader is
referred to texts such as Webster and Oliver (2001) and
Cressie (1993) from which Equations (1–6) have been
adapted.
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3.2. Estimating the spatially averaged uncertainty
Equation (6) states that in order to estimate the variance of
the spatially averaged elevat{ = 0}on difference, it is
necessary to calculate the mean of the spatial covariance,
the right-hand side of Equation (6). Spatially, this is achieved
by integration over an area, A, and dividing by that area, i.e.

E �2
�z � �ðhÞ� � ¼ 1

A

ZZ
A

�2
�z � �ðhÞ� �

dx dy: ð7Þ

Converting the above integral to polar coordinates and
assuming the area, A, is a circular region of radius L, such
that A = �L2, Equations (6) and (7) can be combined to give

�2A ¼ 2
L2

Z L

0
h ��z

2 � �ðhÞ� �
dh: ð8Þ

Since the semivariogram, defined in Equation (4), ap-
proaches �2

�z when the covariance approaches 0, we also
expect the integral in Equation (8) to approach 0 over
sufficiently large distances.

3.3. Integration of an analytical form of the
semivariogram
In order to solve Equation (8) we use an analytical function
to describe the semivariogram. We choose the spherical
equation (Webster and Oliver, 2001) that is commonly
applied as a semivariogram model for kriging applications.
In the following derivation, only a single isotropic spherical
model is evaluated, for demonstration purposes. In the
Appendix the result of the integration is also provided for a
combined, or double-nested, model that uses two spherical
models with different parameters. This model accommo-
dates different scales of variance, as found in the data
provided below.

A spherical semivariogram model is described by

�ðhÞ ¼ 0 h ¼ �h

¼ c0 þ c1
3
2
h
a1

� 1
2

h
a1

� �3
" #

�h < h < a1

¼ c h > a1

ð9Þ

where c = c0 + c1, c0 is known as the nugget, c1 the sill and
a1 is the range; �h is the Kronecker delta part of the
semivariogram that describes the correlation of a point with
itself. A visual representation of these parameters, for the
nested model, is provided in the Appendix (Fig. 13).
Traditionally the nugget variance was introduced in mining
applications to represent small-scale discontinuities intro-
duced by solid ‘nuggets’ of minerals. In other spatial
applications, such as here, it generally refers to unresolved
scales of variance, i.e. variance on scales less than the
sampling distance, and represents the spatially uncorrelated
variance. The range indicates the distance within which
some correlation exists between spatially separated points;
at distances larger than the range there is no correlation.
The sill, c1, is the maximum spatially correlated variance.
The addition of this with the nugget, c0, represents the total
variance, c, for distances greater than the range, i.e. c= c0 +
c1, and should be equivalent to �2

�z if Equation (4) is to be
consistent over large distances, reflecting the assumption of
stationarity, i.e.

c ¼ �2
�z : ð10Þ

Equation (8), after implementation of Equations (9) and (10),
can be integrated to provide the following expression for the

variance of the spatially averaged elevation difference, �2
A:

�2
A ¼ c L � �h

¼ c0
�h2

L2
þ c1 1� L

a1
þ 1
5

L
a1

� �3
" #

�h < L < a1

¼ c0
�h2

L2
þ 1
5
c1

a12

L2
L > a1:

ð11Þ

In Equation (11) we have replaced the Kronecker delta, �h,
with the sampling distance, �h. This parameter is defined in
Equation (12) such that the sampling grid area, �x2, is
equivalent to the integrated area out to �h. This allows the
general application of the method to gridded data of
spacing �x:

�h ¼ �xffiffiffi
�

p : ð12Þ

For pure-nugget semivariograms, i.e. c1 = 0, Equation (11) is
equivalent to the assumption of totally uncorrelated data
and will provide the same relationship as the division of �2

�z
by the factor n, where n is the number of gridpoints over
which the elevation difference is averaged.

In Figure 1 the influence of the nugget and range
parameters on the spatially averaged uncertainty is visua-
lized. Increasing the range clearly has a significant
influence on the uncertainty estimates, with larger-scale
spatial correlation leading to larger uncertainties for any
given averaging area. An increasing nugget fraction of the
total variance leads to decreasing uncertainties for any
given averaging area, since the uncorrelated contribution to
the total variance increases.

For integration distances L > a1 (i.e. for distances over
which there is no correlation) the integral decreases with the
inverse of the area. Indeed, in many applications where the
scale of the variance, represented by the range, a1, is smaller
than the typical distance over which the integration is
performed, Equation (11) can be interpreted in a simpler
manner. Given a spherical semivariogram form with no
nugget (i.e. c0 = 0 and c1 = c), an effective ‘correlated’ area,
Acor, can be defined that is uncorrelated on scales larger
than its size. This can be written as:

Acor ¼ �a21 ð13Þ
and the variance of the mean of the area, A, would then be
approximated by:

�2A ¼ �2
�z

1
5
Acor

A
: ð14Þ

Equation (14) represents the simplest outcome of the
method. There may, however, be multi- or large-scale
variance in the elevation difference data, such that the area
to be averaged over is within the determined correlation
range, especially if individual regions, such as the ablation
area of a glacier, are to be assessed. Even so, Equation (14)
provides a ‘rule of thumb’ when assessing the likely un-
certainty in the spatial average of the elevation difference,
when the area to be averaged over is larger than the
determined correlation range.

3.4. Detrending
The semivariogram, and spherical variance model used, is a
bounded, isotropic model. This means that it assumes, at
sufficiently large scales, that the region is statistically
homogeneous, or stationary. This may not be the case for
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the often limited areas for which data are available from
DEMs. If there is a spatial trend in the data, this will be
reflected in a continuously increasing variance in the
empirical semivariogram, and the concepts outlined above
are less valid. It is thus recommended, and indeed necessary,
to remove any large-scale spatial trends from the elevation
difference dataset. In this study, we fit the data, using least-
squares methods, to polynomial models of varying orders.
The resulting polynomial regression model for the elevation
difference can then be subtracted from the dataset to remove
any large-scale spatial trends.

3.5. Summary of the uncertainty assessment method
Two DEMs are used to determine the change in glacier
volume. The uncertainty in the spatially averaged elevation
difference is estimated by applying the following steps:

1. An elevation difference grid of the bedrock region
surrounding the glacier is created.

2. If necessary, the grid is detrended using a polynomial
model.

3. The grid is statistically assessed to determine:

(a) the standard deviation of the elevation error derived
over the bedrock (��z);

(b) the semivariogram parameters of nugget, sill and
range by fitting the spherical semivariogram model to the
empirical semivariogram. Standard software packages
are available for this.

4. (a) If the correlation range is greater than the averaging
area, then the uncertainty of the spatially averaged
elevation difference, �A, is calculated using Equa-
tion (11), or Equation (A2) (see Appendix) for multiple
scales of variance.

(b) If the correlation range is less than the averaging area
and only one scale of variance is relevant, then �A is
estimated using Equations (13) and (14).

A simple example for step 4b above is as follows: given a
glacier of area A = 20 km2, with a correlation area
Acor = 1 km2, and bedrock-elevation standard error
��z=5m, the resulting uncertainty in the mean glacier
height difference is �A=0.5m. To put this in perspective, the
equivalent correlated uncertainty would be �A=5m (��z)
and the equivalent uncorrelated uncertainty, given a DEM
resolution of 20m, would be �A=0.02m.

4. APPLICATION REGION AND DATASET

4.1. Western Svartisen
The western Svartisen ice cap is located at �678N, 148 E in a
maritime climate in northern Norway and ranges in
elevation from 10 to 1595ma.s.l. (Fig. 2). The ice cap is
the second largest glacier on mainland Norway, with an area
of 190 km2. NVE has performed traditional mass-balance
measurements on the outlet glacier Engabreen annually
since 1970. Kjøllmoen and others (2003) report a positive
cumulative mass balance of 22mw.e. from 1970 to 2002 for
the Engabreen drainage basin.

Fig. 2. Map of Svartisen, Norway. The grey area shows the extent of
the ice cap and black curves outline the Engabreen and
Storglombreen drainage basins.

Fig. 1. Normalized standard deviation, �A/��z, of the spatially averaged elevation difference as a function of the averaging area (logarithmic
scale), based on Equation (11). (a) The effect of a progressive doubling of the semivariogram range, a1, on the standard deviation, for the case
where the nugget variance c0 = 0. (b) The effect of increasing the proportion of the nugget total variance, c0/c, where the range used for this
example is 400m.
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4.2. Photogrammetrical elevation data
Vertical aerial photographs were collected for western
Svartisen in 1968, 1985 and 2002 (Table 1). The 1968
DEM was digitized earlier by the Norwegian Mapping
Authority from an analogue contour map. A triangular
irregular network (TIN) was constructed from the analogue
contour map and the DEM was interpolated from the TIN
using bilinear interpolation.

DEMs are constructed from digital photogrammetry for
the years 1985 and 2002 using the software SocetSet and
ImageStation. In the photogrammetrical software, block
adjustment was conducted after registering the GCPs and
tie points in the stereo models. The digital images in the
stereo models were matched to identify identical features,
and elevations were calculated according to the determined
recording geometry. Mismatched points were edited manu-
ally. Where elevation points could not be measured, mainly
in the low-contrast snow regions, interpolation was con-
ducted using the photogrammetrical software package, to
form a regular grid of elevation data (a DEM). The geodetic
mass balance was calculated from these DEMs after
conversion of volume changes to water equivalents.

The root-mean-square (rms) error for the GCPs in the
absolute orientation is shown in Table 2. Elevation contours
over the three years are shown in Figure 3, before any
detrending was carried out. The successful matching points
from the digital photogrammetry of the 2002 photographs
are shown in Figure 4. As the figure illustrates, there are
relatively few measured elevation points in the snow-
covered area in the centre. There are more points in the
1985 DEM in the snow area, and only the results for the
2002 DEM are included to show the worst case.

4.3. Laser-elevation data
Airborne laser scanning data were obtained on 23 August
2002 (Geist and others, 2005), mainly for the Engabreen
drainage area (Fig. 3). The laser had a wavelength of 1.05 mm
and a measuring frequency of 25 000Hz. The scan angle
was �208. Average flying altitude was 900m and average
spacing between the data points was 1.4m, which gives an
average point density of 500 000 km–2. A DEM with a grid
size of 5m was interpolated from these data points. The
mean elevation difference between the DEM and 4761
differential GPS point measurements was –0.05m, and the
standard deviation was 0.08m.

Table 1. Photograph and DTM information

Date of photograph Scale No. of
flight-lines

No. of
photographs

Grid size

25 August 1968 1 : 35 000 unknown 19 25
19 August 1985 1 : 35 000 2 19 10
20 August 2002 1 : 15 000 3 30 20

Table 2. The rms errors of the GCPs used for constructing DEMs in a
digital photogrammetrical workstation

Year x y z

m m m

1985 0.098 0.101 0.068
2002 0.822 0.850 1.393

Fig. 3. Elevation contours for the three years. The contour interval is
20m. The drainage basins are indicated: 1. Memorgebreen;
2. Fonndalsbreen; 3. Engabreen; 4. Dimdal–Frukosttindbreen;
5. Northern-part; 6. Storglombreen; 7. Flatisvatnet; 8. Nordfjord-
breen. The grey area shows the coverage of the laser measurements.

Fig. 4. Measured points (black) in the DEM from 2002. The glacier
area is shown in grey.
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5. APPLICATION AND RESULTS: GEODETIC MASS
BALANCE AND ESTIMATED UNCERTAINTIES
5.1. Detrending of photogrammetrical-elevation
difference data
The photogrammetrical DEMs are subtracted for both
periods (1968–85 and 1985–2002). A detrending function,
using least-squares fitting to the data, is determined over
bedrock areas, and the function is applied to both bedrock
areas and glaciated areas.

Some areas are excluded when determining the detrend-
ing function. Western Svartisen is situated in a steep
mountainous area, but only 2% of the ice cap has a slope
>308. Areas steeper than 308, and shadow areas where few
identical features are matched in the stereo pairs, are
excluded when determining the function. Exclusion of steep
mountainsides reduces elevation differences that stem from
horizontal shifts of the DEMs due to uncertainty in the
absolute orientation.

Zeroth-, first-, second- and third-order detrending func-
tions are evaluated. The zeroth order represents a constant
value. A second-order detrending function is eventually used
because third-order terms did not reduce the rms errors of

the detrending function substantially. The rms errors of the
detrending functions for the four different orders and the
differences between orders are shown in Table 3.

The mean difference between the 1985 DEM and the
1968 DEM over bedrock before the detrending function is
applied is –0.14m, which means that the 1985 DEM is, on
average, slightly lower than the 1968 DEM. The difference
between the 2002 DEM and the 1985 DEM over bedrock
before the detrending is applied is 0.75m. The range of the
data points in the second-order detrending is –3.3 to 4.2 for
1968–85, and –6.1 to 4.6 for 1985–2002.

5.2. Semivariograms for bedrock
We estimate the elevation errors for both periods by
investigating the semivariograms of the detrended elevation
differences over bedrock. Semivariograms are used in order
to determine the scale at which the elevation differences
correlate (range) and to determine the nugget and sill
parameters. The empirical semivariograms are derived by
binning the variances at different discrete lag distances. In
order to capture the different scales, binning is carried out at
25m intervals for scales <1 km, and at 200m intervals for
scales <20 km. Individual spherical semivariogram models
are fitted to the two scales to identify the different scales and
their semivariogram parameters. Fitting is carried out using
an unconstrained non-linear optimization technique for all
three parameters. To combine the individually determined
semivariograms into a double semivariogram the fitted short-
scale sill + nugget variance is subtracted from the fitted long-
scale sill + nugget variance to determine the long-scale sill,
c2. The nugget variance, c0, and short-scale sill variance, c1,
are then determined by subtracting the long-scale semi-
variogram from the short-scale empirical semivariogram and
refitting.

Two scales of variance are identified for the 1968–85
elevation-difference data, with ranges of 430 and 3100m.
The fitted semivariograms are shown in Figure 5 and the
fitted parameters are listed in Table 4. The larger scale is less
well pronounced and only adds a small amount of variance
to the smaller scale.

Table 3. Rms errors for different orders of the detrending functions
for the two periods. The differences between the lower-order
functions are shown in parentheses. The different orders are:
zeroth – constant in space; first – linear; second – quadratic; and
third – cubic

Detrending function Rms error

1968–85 1985–2002

m m

Zeroth order 7.7 5.4
First order 7.18 (0.52) 4.82 (0.58)
Second order 7.03 (0.15) 4.48 (0.34)
Third order 6.98 (0.05) 4.42 (0.06)

Fig. 5. Semivariograms for the 1968–85 bedrock elevation difference: (a) the empirical values are binned using 25m bins over a distance of
1 km; (b) 200m bins are used over a distance of 20 km. A single spherical semivariogram model is fitted to the data and shown as a solid
curve. Although there is significant scatter on the larger scale (b) the fitted semivariogram indicates a weak larger-scale variance with a range
of 3100m. See Table 4 for the fitted semivariogram parameters.
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Two distinct scales of variance are identified for the
1985–2002 elevation difference, at 260 and 17000m, and
are shown in Figure 6. The smaller-scale variance is similar
to that seen in the 1968–85 bedrock semivariograms (Fig. 5)
and the fitted parameters are listed in Table 4. The large-
scale variability seems to indicate a trend that has not been
totally removed by the detrending. Though the larger scale
may be interpreted as a spatial trend in the data, its existence
will contribute significantly to the uncertainty when aver-
aging is carried out.

5.3. Uncertainty in the spatially averaged elevation
difference
Based on the values of sill, nugget and range that are
determined by fitting of the semivariograms (Table 4) the
uncertainty, �A, in the spatial average elevation difference
is calculated as a function of the averaging area using
Equation (A2). The results are shown in Figure 7. In spite of
the higher standard error (��z) for the 1968–85 differences,
the uncertainty decreases faster due to the relatively short
spatial scale of the variance. The standard error for the
1985–2002 differences is lower, but due to the longer
spatial scale of the variance, the uncertainty decreases
more slowly. Also indicated in Figure 7 are the estimated
uncertainties assuming the standard errors, ��z, to be
totally correlated and totally uncorrelated in space.

5.4. Geodetic mass balance and its uncertainty
The geodetic mass balances of the western Svartisen ice
cap and the eight different drainage basins are listed in
Table 5. The calculated surface-elevation change is shown
in Figure 8. In both periods all the drainage basins have
negative or close to zero mass balance, with Memorgeb-
reen as most negative in the first period. In the period
1985–2002 the Northern-part drainage basin is most
negative, while Memorgebreen is not mapped. The mass
balances of the two largest drainage basins, Engabreen and
Storglombreen, are less negative than the mass balances of
the other glaciers.

In addition to the uncertainty in the elevation difference,
the total uncertainty in the geodetic mass balance depends
on the ablation corrections and density assumptions. The
ablation correction is calculated based on the sum of
positive degree-days and the glacier melt rate calculated by
Schuler and others (2005). Because the sum of positive
degree-days is measured only at the glacier plateau and the
glacier melt rate is calculated only for Engabreen, un-
certainties are introduced. These uncertainties are the same
for all drainage basins. The density of the glacier mass is
assumed to be constant over the 34 year period, and this also
introduces uncertainties. Here the uncertainties vary from
drainage basin to drainage basin depending on the size of
snow, firn and blue-ice areas in the basins. Further
information on the calculation of ablation and density
uncertainties can be found in Haug and others (2009).
Ablation corrections and density uncertainties are assumed
to be uncorrelated with the elevation measurements, and the
total uncertainty in geodetic mass balance is estimated using
standard error propagation for uncorrelated variables. In
Table 5 the estimated uncertainties, in terms of standard
deviation, are shown for each of the drainage basins. These
are based on the geostatistical analysis of the bedrock
variance as shown in Figure 7, as well as on the ablation and
density corrections. For the first period, both sources of

Fig. 6. Semivariograms for the 1985–2002 bedrock elevation difference: (a) the empirical values are binned using 25m bins over a distance
of 1 km; (b) 200m bins are used over a distance of 20 km. A single spherical semivariogram model is fitted to the data and shown as a solid
curve. There is a discernible larger-scale variance (b) that can be seen to vary with lag distance. See Table 4 for the fitted semivariogram
parameters.

Table 4. Table showing the deduced semivariogram parameters of
nugget (c0), sill (c1, c2) and range (a1, a2) for the double-spherical
model described in the Appendix

Bedrock elevation
difference year

Semivariogram parameter Standard
error, ��z

c0 c1 c2 c a1 a2

m2 m2 m2 m2 m m m

1968–85 18.8 23.8 5.0 47.6 430 3100 6.9
1985–2002 4.9 8.7 8.8 22.4 260 17000 4.4
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uncertainty contribute to the mass-balance uncertainty. For
the second period the elevation difference uncertainties are
significantly larger than the other uncertainties and the latter
hardly contribute to the total uncertainty.

6. APPLICATION AND RESULTS: COMPARISON OF
LASER SCANNING AND PHOTOGRAMMETRICAL-
ELEVATION DATA
The DEM derived from laser scanning is subtracted from
the 2002 photogrammetric DEM, and the result is shown
in Figure 9. These two DEMs were separated by a period
of 3 days. Large elevation differences are found in the
snow-covered areas, where elevation differences are as
high as �15m. This area corresponds to the area with few
successful matching points due to poor contrast in the 2002
digital photogrammetrical DEM, shown in Figure 4. In this
area most elevations are based on bilinear interpolation of

the available matching points (Fig. 9). When the elevation
difference over bedrock is calculated, areas containing
forest are avoided, since the DEM constructed from
photogrammetry reflects the vegetation height instead of
the bedrock height. No spatial detrending is carried out on
the elevation difference. The mean difference between the
two DEMs, zeroth-order detrending, is subtracted from the
elevation difference map.

We want to investigate whether the geostatistics of
elevation errors determined over bedrock are representative
for glacier surface types, and three different glacier surface
types are identified according to surface properties and
slope. The elevation gradients of the laser DEM are
calculated from the eight neighbouring gridcells with 20m
resolution. To define continuous-surface-type areas, the
areas are separated manually into four surface types and
the average gradient values are calculated for the areas. The
surface-type areas of bedrock, flat blue ice, steep blue ice

Table 5. Summary of the mass-balance calculations and uncertainty estimates for western Svartisen and its drainage basins for the two
investigation periods. Provided are the drainage basin area, the geodetic mass balance, the contribution of the spatial average uncertainty to
the mass balance and the total mass-balance uncertainty. Drainage basins without complete coverage are not included

1968–85 1985–2002

Basin Area Mass balance Elevation
uncertainty, �A

Mass-balance
uncertainty

Mass balance Elevation
uncertainty, �A

Mass-balance
uncertainty

km2 mw.e. mw.e. mw.e. mw.e. mw.e. mw.e.

Western Svartisen 190 –2.6 0.4 0.9 –2.0 2.1 2.2
Storglombreen 61.8 –2.9 0.7 1.1 –0.3 2.4 2.5
Engabreen 40.0 –2.1 0.9 1.2 –0.3 2.5 2.6
Flatisvatnet 28.8 – – – –5.3 2.6 2.7
Nordfjordbreen 16.5 –3.4 1.3 1.5 –2.5 2.6 2.7
Northern-part 12.0 – – – –5.7 2.6 2.7
Memorgebreen 11.7 –4.7 1.5 1.6 – – –
Dimdal–Frukosttindbreen 11.5 –0.6 1.5 1.5 –3.3 2.7 2.7
Fonndalsbreen 7.7 –2.3 1.6 1.7 – – –

Fig. 7. Uncertainty, �A, of the spatially averaged elevation difference as a function of the averaging area (logarithmic scale) based on the
analysis of the elevation difference statistics determined over bedrock (Table 4): (a) the 1968–85 result and (b) the 1985–2002 result.
Included in the plots, for reference, are the estimated uncertainties assuming that the standard error of the elevation difference is totally
uncorrelated (thin red continuous curve) and totally correlated (thin red dotted line) in space.
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and snow are shown in Figure 10, and their corresponding
average slopes and standard errors are given in Table 6.

Semivariograms of the elevation difference grid (Fig. 9)
have been made for the same four surface types (Fig. 10).
From these the spherical semivariogram parameters, as
described above, have been deduced and are given in
Table 7. The empirical semivariogram and the fitted spher-
ical semivariograms are presented in Figure 11. For these
surfaces, only one scale of variance was found.

The differing spatial ranges of the correlation of the
surfaces types, as well as their standard errors, have
consequences for the estimated uncertainty when spatially
averaging to obtain average elevation differences. Using
Equation (11) and the semivariogram parameters presented
in Table 7, it is possible to estimate the uncertainty for each
of the surface types described above as a function of
averaging area. This is presented in Figure 12. The
uncertainty in snow is the largest of all the surface types,
due to the combination of a high standard error, ��z, and a
long correlation distance (range). Even though bedrock has
the highest standard error (Table 6), it has a short correlation
distance (range) and also an estimated nugget variance that
is approximately half the total variance. As a result, the
spatially averaged uncertainty is low compared to snow. The
two blue-ice types have very similar uncertainties, close to
that calculated for bedrock.

7. DISCUSSION
Comparison of the traditional and geodetic mass balance
for Engabreen drainage basin shows that the two methods
give significantly different results. For the period 1970–
2002 the cumulative traditional mass balance is 22mw.e.
(Kjøllmoen and others, 2003). The geodetic mass balance
for the period 1968–85 is –2.1�1.2mw.e., and from 1985
to 2002 it is –0.3�2.6mw.e. Given the validity of the
uncertainty assessment carried out here, the deviation
cannot be explained by the uncertainty in the geodetic
mass balance. Elvehøy and others (2009) showed that
incorrectly defined drainage basin boundaries can lead

to significant differences in mass-balance estimates for
Engabreen, but these are not sufficient to explain the
differences between the geodetic and traditional mass-
balance methods. Possible additional explanations for the
excess of mass according to the field measurements are
annual systematic errors. It is known that stakes sink into
the snowpack and that snow probes deviate from the
vertical, especially in high-accumulation areas. There may
also be basal melting and internal ablation that is not
accounted for in the traditional mass budget. These
explanations require further investigation.

The elevation differences of the photogrammetrical DEMs
are analysed to determine the spatial correlation, and three
spatial scales are found: (1) at hundreds of metres (260 and
430m for both periods); (2) at kilometres (3100m for the first

Fig. 9. The difference between the 2002 DEM constructed from
photogrammetry and the DEM constructed from laser scanning.
Green indicates areas where the DEM constructed by photogram-
metry has higher elevations, and red indicates areas where it has
lower elevations. The black curve marks the area of poor contrast in
the 2002 DEM.

Fig. 8. Surface-elevation change for the western Svartisen ice cap: (a) 1968–85; (b) 1985–2002. The black curves mark the different drainage
basins. The hatched area is where poor contrast is found.
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period); and (3) at tens of kilometres (17 000m for the second
period). We suggest that the hundred-metre scales are due to
the matching procedure in the digital photogrammetrical
software for identification of conjugate points in the stereo
models for elevation measurements. Pyramids of coarse-
resolution images are established and the matching is
typically conducted on squares of 15�15 pixels, which
may correspond to ground coverage of some hundreds of
metres. We suggest that the weak intermediate kilometre
scale may be due to block instability from the aero-
triangulation; the individual stereo models are not correctly
orientated relatively. The scale of the aerial photographs from
1968 and 1985 is 1 : 35 000, which yields a stereo ground
coverage of a few kilometres for each stereo model, similar to
the 3100m scale of spatial correlation that is found for this
period. The third scale of correlation, of tens of kilometres, is
expected to be due to the absolute orientation of the stereo
models in the block. We emphasize that our interpretations
are tentative in nature and that further photogrammetrical
experiments must be conducted to verify these.

The intermediate kilometre variance scale is not well
pronounced and is only evident in the 1968–85 elevation
difference data. The evaluation of the required polynomial
order of the detrending function for the elevation differences
shows that third-order terms have little influence on the rms
error, indicating that the blocks are stable. According to this

result, the stereo models should be well oriented relatively,
which may explain the low pronunciation of the inter-
mediate kilometre scale. It is our impression that the 2002
block is stable, since tie points are extensively used during
the aero-triangulation, and for the period 1985–2002 there
is no kilometre correlation scale.

The largest, several kilometre, correlation scale is found
only for the last period; we assume that this is due to
poor geo-referencing of parts of the 2002 DEM. The
geo-referencing is less accurate for this DEM mainly
because visible GCP targets were not deployed in the
terrain at all corners of the model, so some areas have
many, well-defined GCPs and some areas have fewer or
poorly defined GCPs.

The spatially averaged variance of the semivariogram
(Equation (11)) shows that the scale of the correlation,
indicated by the semivariogram parameter of range, is
important in determining the rate of reduction in the
uncertainty with increased averaging area. The uncertainty
of the spatial average of the elevation differences decreases
quickly as a function of averaging area during 1968–85, but
more slowly for 1985–2002, as seen in Figure 7. This is due
to the considerably shorter correlation scale for the first
period (Table 4). The large correlation scale for the second
period is, as suggested, most likely caused by less accurate
geo-referencing, and this emphasizes how important it is for

Fig. 10. (a) The areas of the different surface types; and (b) the elevation gradients for the same areas.

Table 6. Standard error of the difference between the 2002 DEM
constructed from photogrammetry and the DEM constructed from
laser scanning for the different surface types. Also shown are the
average slopes of the different regions

Std error, ��z Number of points Average slope

m 8

Bedrock 4.2 5501 22.2
Steep blue ice 2.4 29375 14.5
Flat blue ice 1.2 28070 4.4
Snow 3.5 66616 3.7
All snow and ice 2.9 124061 6.4

Table 7. The deduced semivariogram parameters of range (a1),
nugget (c0), sill (c1) and the square root of sill plus nugget (c1/2), for
the different surface types. The last parameter reflects the standard
errors (��z) in Table 6

Range (a1) Nugget (c0) Sill (c1) c1/2 = (c0 + c1)
1/2

m m2 m2 m

Bedrock 140 9.3 7.6 4.1
Steep blue ice 260 3.3 2.2 2.4
Flat blue ice 790 0.55 0.6 1.2
Snow 740 1.15 10.4 3.5
All snow and ice 510 0.84 6.8 2.8
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accuracy that visible GCP targets are deployed in the terrain
and properly identified in the images.

The scales of correlation found for the various surface
types, using the comparison of laser and photogrammetrical
DEMs, may be due to uncertainties in both DEMs. These
errors may vary for the two methods depending on surface
types and slopes. There may, for instance, exist a correlation
scale similar to the width of the laser scan (�600m).
However, in this paper we do not focus on uncertainty
contributions from laser measurements and we assume,
based on the comparison of laser data with GPS measure-
ments, that the laser measurements are the more accurate of
the two. Standard errors of 0.08m were found, when
compared with GPS measurements, for the laser altimetry
data (Geist and others, 2005).

Different standard errors are found for the elevation
difference between the photogrammetrical and laser data for
the four surface types (Table 6). The estimated value is largest
for bedrock, which can be attributed to both its rougher
surface and its steeper slope. When the slope and roughness
increase, small orientation errors lead to larger elevation
differences, and increased geometric distortion leads to
less accurate matching results for the photogrammetrical

elevation measurements. On blue ice, higher standard
deviations of the elevation differences occur over steeper
than over flat areas, as a result of both the larger slope and
the advection of crevasses over the 3 day interim period.
The velocities in the crevassed steep blue-ice part of the
glacier are up to 0.8md–1 at the time of the year when
measurements were made (Jackson and others, 2005),
which will lead to a small shift in the crevasse pattern.
Laser beams may also penetrate deeper into the crevasses to
give different elevations from photogrammetrical-elevation
measurements. For the case of snow, the high standard
deviation of the elevation differences is due to the limited
availability of data in this region. The resulting variability,
and correlation scale, in this area depends on the spatial
distribution of the available data, as well as on the
interpolation method used to provide complete coverage
for the photogrammetrical DEM.

Correlation scales for the laser and photogrammetrical-
elevation differences are determined for the four surface
types (Table 7), and the results reflect the nature of the
different surfaces. Bedrock, for instance, has a very short
correlation range, with the fitted semivariogram model
range found to be just 140m. Snow and flat ice surfaces

Fig. 11. Semivariograms of the difference between the 2002 DEM constructed from photogrammetry and the DEM constructed from laser
scanning for four different surface types: (a) all snow and ice; (b) snow (interpolated); (c) bedrock; (d) steep blue ice. Empirical values of the
variance are determined by binning in 25m bins. A single spherical semivariogram model is fitted to the data and is shown as a solid curve.
See Table 7 for the fitted semivariogram parameters.
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indicate a larger range of 740–790m, with much smaller
nugget contributions. This is the expected result, that flatter
and more homogeneous regions are correlated over longer
distances. However, the bedrock and blue-ice semivario-
grams also contain a large nugget component relative to the
sill (Table 7), indicating that a significant amount of the
variance detected in these surfaces is not spatially correl-
ated. This is in contrast to the snow surface, which has a
very small nugget component relative to the sill, indicating
stronger spatial correlation. This last point is the clear result
of the spatial interpolation carried out in the snow-covered
areas, leading to strongly correlated local trends on spatial
scales less than the average distance between successful
photogrammetric matching points.

The comparison of photogrammetrical-elevation data
with laser scanning data for the various surface types shows
that the scale of the spatial correlation depends strongly on
the elevation gradient (Table 6). As glaciers are often flatter
and smoother than the surrounding bedrock, this has
implications for the estimation of uncertainties for the
glacier based on statistics of elevation errors based on
bedrock. The uncertainty will thus, in general, not reduce as
quickly, with increasing averaging area, for a flat glacier
surface as it would for steeper and rougher bedrock.
Similarly, the standard errors of the flat ice areas should be
lower than those for rock.

The geostatistical analysis of the different surface types
indicates that the small-scale statistical characteristics of
the different surfaces do vary to some degree, particularly
for the case of snow where the spatial photogrammetrical
sampling is poor. However, it is difficult to extrapolate
these differences, found from the comparison of laser and
photogrammetric DEMs, to the differences between two
photogrammetric DEMs. Firstly, the bedrock elevation-
difference semivariogram range is almost twice as large
for the 1985–2002 photogrammetric DEM difference as it is
for the 2002 laser/photogrammetric DEM difference and,
secondly, the contribution of the nugget variance to the

2002 laser/photogrammetric DEM is much larger than that
found for the 1986–2002 photogrammetric DEM difference.
As such it is difficult to compare the two datasets directly.
Despite this, there is a need to provide an alternative to just
using bedrock statistics for application to snow-covered
surfaces where photogrammetrical sampling is often poor.
We recommend that the small-scale spatial characteristics
of the bedrock difference be replaced over snow surfaces
such that the nugget variance, c0, be set to 0 and the small-
scale range, a1, be increased to 740m. The total sill
variance, c, should be kept the same.

To test the effect of this on the datasets available, the
drainage basin mass-balance uncertainties (Table 5) are
recalculated assuming the entire surface to be snow-
covered, i.e. the worst case, using the snow-nugget and
range parameters given above. The effect of this change is
negligible for the 1985–2002 dataset, because the uncer-
tainty is dominated by the large-scale correlations, which
are assumed to be independent of surface type. For the
1968–85 dataset the effect over large scales is also minimal,
an increase in �A of <0.1m for both Engabreen and western
Svartisen. There is a noticeable increase in the uncertainty
for the smaller drainage basin Fonndalsbreen, where �A
increases from 1.6 to 2.0m as the result of the change in
semivariogram parameters.

8. CONCLUSIONS
We have described and demonstrated a geostatistical
method to estimate the uncertainty in the geodetic mass
balance when using two DEMs that are spatially correlated.
We found that there is a significant degree of spatial
correlation in the elevation differences between two DEMs
and that the uncertainty in the spatially averaged elevation
change is dependent on both the scale of the spatial
correlation and the standard deviation of the individual
point errors. We applied the method to the western
Svartisen ice cap and presented results for its geodetic
mass balance and uncertainties, estimated from photo-
grammetric DEMs from 1968, 1985 and 2002. Further, we
investigated the different geostatistical characteristics of
bedrock and a range of glacier surfaces, using concurrent
photogrammetric and laser altimetry measurements, to
ascertain whether bedrock geostatistics were representative
of glacier surface geostatistics.

We calculated the geodetic mass balance of western
Svartisen using photogrammetry for the periods 1968–1985
and 1985–2002, and found it to be –2.6�0.9 and
–2.0� 2.2mw.e., respectively. In the period 1985–2002
the two largest drainage basins, Engabreen and Storglom-
breen, showed a less negative mass balance than the
other basins. The bulk of the accumulation area was situated
within these two basins. For Engabreen drainage basin the
geodetic mass balance was –2.1� 1.2mw.e. for the first
period, and –0.3� 2.5mw.e. for the second period. This
deviates considerably from the cumulative traditional mass
balance, which was 22mw.e. from 1970 to 2002.

The geostatistical nature of the elevation differences of the
surrounding bedrock of western Svartisen has been assessed
and their associated uncertainties have been estimated. The
uncertainty in the elevation difference contributes signifi-
cantly to the total uncertainty in geodetic mass balance, and
we found large differences in the uncertainties for the two
periods. The contribution of the elevation difference to the

Fig. 12. The estimated uncertainty in the spatially averaged
elevation difference between the laser and photogrammetric DEMs
presented as a function of averaging area (logarithmic scale). These
are based on the semivariogram parameters listed in Table 7 and the
application of Equation (11).
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geodetic mass-balance uncertainty for 1968–85 is
�0.4mw.e., and for 1985–2002 it is �2.1mw.e. We suggest
that the errors are largely due to inaccurate GCPs in some of
the corners of the 2002 DEM.

Three correlation scales were found for the photogram-
metrical data at a few hundred metres, at a few kilometres
and at tens of kilometres. The short scale is hypothesized to
be due to the automatic digital photogrammetrical-matching
procedure for elevation measurement in various terrain
types, the intermediate scale may be due to poor relative
orientation of the stereo models in the block, while the
largest scale is likely to be the result of absolute orientation
errors. The intermediate scale is found, in these datasets, to
be very weak.

Photogrammetrical data were compared to laser scan-
ning data to evaluate how representative the statistics of
elevation errors determined over bedrock are for the glacier
surface statistics, and thus the estimated uncertainty. We
found that the scale of the correlation, represented by the
semivariogram parameter of range, depends on the eleva-
tion gradient and that the form of the semivariogram may
differ between surfaces. The largest difference between
bedrock and other surface types occurs over snow, where
there are few photogrammetrical matching points due to
poor contrast. This leads to a stronger small-scale spatial
correlation, which is a result of the poor sampling density
and the application of interpolation. To mitigate this, we
recommend applying an alternative range and nugget
value to snow-covered areas. However, tests on the
current datasets show that these alternative parameters,
applied to the small correlation scale, have a very limited
effect on the overall uncertainty, since this is dominated
by the larger-scale correlation when averaging over
extended areas.
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Automatic glacier surface analysis from airborne laser
scanning. Int. Arch. Photogramm. Remote Sens., 36(3/W52),
221–226.

Krimmel, R.M. 1999. Analysis of difference between direct and
geodetic mass balance measurements at South Cascade Glacier,
Washington. Geogr. Ann., 81A(4), 653–658.

Nuth, C., J. Kohler, H.F. Aas, O. Brandt and J.O. Hagen.
2007. Glacier geometry and elevation changes on
Svalbard (1936–90): a baseline dataset. Ann. Glaciol., 46,
106–116.

Østrem, G. and N. Haakensen. 1999. Map comparison or
traditional mass-balance measurements: which method is
better? Geogr. Ann., 81A(4), 703–711.

Rotschky, G. and 6 others. 2007. A new surface accumulation map
for western Dronning Maud Land, Antarctica, from interpolation
of point measurements. J. Glaciol., 53(182), 385–398.

Schenk, T. 1999. Digital photogrammetry. Laurelville, OH,
TerraScience.

Schuler, T.V. and 6 others. 2005. Distributed mass-balance and
climate sensitivity modelling of Engabreen, Norway. Ann.
Glaciol., 42, 395–401.

Stosius, R.O. and U.C. Herzfeld. 2004. Geostatistical estimation
from radar altimeter data with respect to morphological units
outlined by SAR data: application to Lambert Glacier/Amery Ice
Shelf, East Antarctica. Ann. Glaciol., 39, 251–255.

Thibert, E., R. Blanc, C. Vincent and N. Eckert. 2008. Glaciological
and volumetric mass-balance measurements: error analysis over
51 years for Glacier de Sarennes, French Alps. J. Glaciol.,
54(186), 522–532.

Webster, R. and M.A. Oliver 2001. Geostatistics for environmental
scientists. Chichester, John Wiley and Sons.

APPENDIX: SEMIVARIOGRAM AND CORRELATION
INTEGRAL FOR A DOUBLE-NESTED SPHERICAL
MODEL
In this paper, and in other applications, it is possible that
multiple scales of variance are found when assessing the
spatial variance. The following equations provide the
description and the integral, as in Equations (10) and (11),
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for a combination of two spherical semivariograms.

�ðhÞ ¼ 0 h < �h

¼ c0 þ c1
3
2
h
a1

� 1
2

h
a1

� �3
" #

þ c2
3
2
h
a2

� 1
2

h
a2

� �3
" #

�h < h < a1

¼ c0 þ c1 þ c2
3
2
h
a2

� 1
2

h
a2

� �3
" #

a1 < h < a2

¼ c ¼ c0 þ c1 þ c2 h > a2

, ðA1Þ

�2
A ¼ c L � �h

¼ c0
�h2

L2
þ c1 1� L

a1
þ 1
5

L
a1

� �3
" #

þ c2 1� L
a2

þ 1
5

L
a2

� �3
" #

�h < L < a1

¼ c0
�h2

L2
þ 1
5
a12

L2
c1

þ c2 1� L
a2

þ 1
5

L
a2

� �3
" #

a1 < L < a2

¼ c0
�h2

L2
þ 1
5
a12

L2
c1 þ 1

5
a22

L2
c2 L > a2

: ðA2Þ
Definitions of the parameters are provided in the main text
of this paper together with Equations (10) and (11). In
addition to the parameters listed there, the sill and range of
the second semivariogram model are given here as c2 and
a2, respectively. The double semivariogram model, and the
relevant parameters in Equations (10), (11), (A1) and (A2),
are illustrated in Figure 13.
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Fig. 13. Illustration of the spherical semivariogram model and
parameters used in Equations (10), (11), (A1) and (A2).
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