Bull. Austral. Math. Soc. 78 (2008), 443–444 doi:10.1017/S0004972708000828

A NEW CHARACTERIZATION OF REFLEXIVITY

RUIDONG WANG

(Received 25 February 2008)

Abstract

In this paper, we give a new characterization of reflexive Banach spaces in terms of the sum of two closed bounded convex sets.

2000 *Mathematics subject classification*: primary 46B20. *Keywords and phrases*: reflexive, bounded convex closed set.

We know that the sum of a compact set and a closed set is closed; it is also known that the sum of two closed sets need not to be closed. In this paper we shall show that reflexivity of a Banach space can be characterized by the property that the sum of any two closed bounded convex sets in the Banach space remains closed.

Throughout this paper, E will be a Banach space, and we shall use S(E) and B(E) to denote the unit sphere of E and the unit ball of E, respectively. Now we present our main theorem.

MAIN THEOREM. The Banach space E is reflexive if and only if the sum of any two closed bounded convex sets in E is still closed.

PROOF. First, assume that *E* is reflexive. Let *A*, $B \subset E$ and suppose that both of these sets are closed bounded convex sets. Then *A* and *B* are compact in the weak topology of *E*, and hence A + B is closed in the weak topology of *E*. It is obvious that A + B is convex, so we deduce that A + B is closed in the norm topology.

To prove the converse, suppose that *E* is not reflexive. Then, by James's well-known characterization of reflexivity in terms of the supremum of linear functionals [1], there exists $x^* \in S(E^*)$ such that x^* does not attain its norm on B(E). Let $\{x_n\} \subset B(E)$ such that

$$x^*(x_n) > 1 - \frac{1}{2^n}$$
 for all $n \in \mathbb{N}$.

The author was supported by the NSFC (grant no. 10571090) and the Doctoral Programme Foundation of the Institution of Higher Education (grant no. 20060055010).

^{© 2009} Australian Mathematical Society 0004-9727/09 A2.00 + 0.00

R. Wang

Set $H = \{x \in E : x^*(x) = 1\}$. It is easy to see that $H \cap B(E) = \emptyset$. Now fix $x_0 \in H$. For $n \in \mathbb{N}$, let $y_n = x_n + (1 - x^*(x_n))x_0$; then $x^*(y_n) = 1$ and

$$||x_n - y_n|| = ||(1 - x^*(x_n))x_0|| < \frac{1}{2^n} ||x_0||.$$

Letting $B = \overline{co}\{-x_n\}$ and $A = \overline{co}\{y_n\}$, we have $A \subset H$ and $-B \subset B(E)$. Since

$$\lim_{n\to\infty}\|x_n-y_n\|=0,$$

we obtain $\theta \in \overline{A + B}$.

But $A \cap (-B) = \emptyset$, so it must be that $\theta \notin A + B$.

Therefore A + B is not closed, which contradicts our assumption. Thus we conclude that *E* is reflexive.

References

[1] R. C. James, 'Reflexivity and the sup of linear functionals', Israel J. Math. 13 (1972), 289–300.

RUIDONG WANG, School of Mathematics, Nankai University, Tianjing 300071, People's Republic of China e-mail: wangruidong@mail.nankai.edu.cn

444

[2]