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On the Hilbert space derived from the Weil
distribution®

Masatoshi Suzuki

Abstract. We study the Hilbert space obtained by completing the space of all smooth
and compactly supported functions on the real line with respect to the hermitian form
arising from the Weil distribution under the Riemann hypothesis. It turns out that
this Hilbert space is isomorphic to a de Branges space by a composition of the Fourier
transform and a simple map. This result is applied to state new equivalence conditions
for the Riemann hypothesis in a series of equalities.

1 Introduction

The Weil distribution is a distribution associated with the Riemann zeta-
function £(s). Let

£ = 555 = a7 (2) (9

be the Riemann xi-function, where I'(s) is the gamma-function. Let T" be
the set of all zeros of ¢(1/2 —iz) without multiplicity and let m, denote the
multiplicity of y € I'. The Riemann hypothesis (RH, for short) claims that all
nontrivial zeros of £(s) lie on the critical line R(s) = 1/2. It is equivalent to
the assertion that all y € I' are real.

The Weil distribution is the linear functional W : CZ°(R) — C defined by

CER) 3y > W) = ) myf(-y),
yell

where C(R) is the space of all smooth and compactly supported functions
on R and

() = (Fy)(2) = / b (x) 6 d (L1)

is the Fourier transform. We omit the description of the topology of CZ°(R),
since we do not need it later. Weil [19] (see also the note in [16, Section
3.2]) discovered that the RH is true if and only if the Weil distribution W is
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2 M. Suzuki

nonnegative definite, that is,
W ) >0 for every ¥ € C2(R),
where N
@ = [ 0-ndy ad Tw =50,

Further, if the RH is tru;a, the Weil distribution is positive definite, that is,
W(y =) > 0 for every nonzero ¢ € C°(R).
Using the Weil distribution, we define the hermitian form (-, -)w on CZ°(R)

by
Wi wodw =W« §2) = Y mydn (=0 @) (=), 1, Y2 € CX(R), (1.2)
yell
where

Fi(2) = F(2)

for complex-valued functions of a complex variable. We often use this # nota-
tion. We call this hermitian form the Weil hermitian form. Yoshida [21] has
studied the Weil hermitian form in detail by restricting it to a function space
on a finite interval [-a,a] (a > 0). The subject of the present paper is the
behavior of the Weil hermitian form on the whole line R. Yoshida proposed a
method to complete a function space on a finite interval with respect to the
Weil hermitian form without assuming the RH, but it does not extend to the
whole line.

Suppose that the RH is true. Then the Weil hermitian form (-, -)w is pos-
itive definite on C2°(R). Therefore, the completion Hy of the pre-Hilbert
space C°(R) with respect to (-,-)w is defined. The first main result is an
explicit description of the Hilbert space Hy . The elements of Hy are equiv-
alence classes of Cauchy sequences with respect to (-, -)w, where two Cauchy
sequences are equivalent if their difference converges to zero with respect to
(-, )w. The representative of each class can be chosen from L2(R) (Theorem
5.5 below). Such a result is expected from Lemmas 2 and 3 in [21]. Therefore,
we denote the class represented by ¢ € L?(R) as [¢] and often identify ¢ with
[v].

For the concrete description of Hy , we use a de Branges space and a model
space. The entire function E; defined by

Es(z) =¢(1/2-iz)+ & (1/2 - iz) (1.3)

belongs to the Hermite-Biehler class under the RH ([10, Theorem 1]) and
hence it defines the de Branges space H(E), where the dash on the right-
hand side of (1.3) means differentiation of £(s) with respect to s. Furthermore,
the meromorphic function

O (2) = EL (2)/E£ () (1.4)

in C is a meromorphic inner function in the upper-half plane C, = {z| J(z) >
0} under the RH, and therefore it defines the model space K(®¢). These
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two Hilbert spaces H(E;) and K(®,) are isomorphic with ||EgFllk,) =
IFllxcco,) for every F € K(®) (see Section 2 for details on the Hermite-Biehler
class, de Branges spaces, and model spaces). Then the first result is stated as
follows.

Theorem 1.1 Assume that the RH holds. Let Hw, H(Es), and K(B¢) be
Hilbert spaces as above. Then, the map K(©:) — Hyw defined by

F v [yrl, yr=F"'(F)
is an isomorphism between Hilbert spaces and satisfies
IEeFI2y ) = 1Flio,) = 7Wr yrdw = n([ur]. [Wr])w

for F € K(®), where F~! is the Fourier inversion on L2(R).

This result is proved in Section 5. Note that Theorem1.1 provides an iso-
morphism as a Hilbert space, not as a reproducing kernel Hilbert space.
The space Hy is a space of equivalence classes of functions, not a space of
functions.

Lagarias suggested after Theorem 1 of [10] that the norm of the de Branges
space H(E¢) and the Weil hermitian form (the spectral side of the “explicit
formula” of prime number theory) are similar. Theorem 1.1 shows that they
are naturally coincident. Hence, Hw and H(Es) must have an “arithmetic
structure” through the Weil explicit formula (3.3) below, but we will not
discuss this further.

Connes, Consani, and Moscovici [7, Section 4.8] also describes the relation
between the theory of de Branges spaces and the Weil hermitian form, but
their de Branges spaces Bﬁ and H(Ez) have completely different properties.
Due to the difference in the generators of the de Branges spaces, they are not
isomorphic, and a more obvious difference is that they have different spectral
properties (see the second half of Section 6).

One of the remarkable properties of de Branges spaces is the structure of
subspaces. The set of all de Branges subspaces of a given de Branges space is
totally ordered by set-theoretical inclusion (see [20, pp. 500-506] for details).
Such a structure also comes to Hy through the isomorphism of Theorem 1.1
as stated in Theorem 5.7 below.

Another notable property of de Branges spaces is the explicit description
of the family of self-adjoint extensions of the multiplication operator by an
independent variable F(z) +— zF(z). It enables us to interpret the set of zeros
I as the set of eigenvalues of a self-adjoint operator on Hy, . This means that
one of the Hilbert—Polya spaces is the Hilbert space Hwy naturally obtained
from the Weil distribution. See Sections 2.3 and 6 for details.

As stated in Theorem 1.1, the Hilbert space Hyw is isomorphic to a de
Branges space under the RH. Moreover, representatives of classes in Hy can
be chosen from the concrete subspace V(0) of L%(R) defined in (5.2) below. It is
surprising that such an explicit description of Hy is possible, and interesting
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in itself. However, it is a matter of concern that it is not even possible to
define Hw, H(Eg), and K(Og) without assuming the RH. Fortunately, by
considering a screw line of the screw function attached to ¢(s), which will
be explained in Sections 2.1 and 4.2, we can unconditionally construct two
special Hilbert spaces Hy and Ko (in Section 3.3) to be isomorphic to Hy
and K(O,), respectively, under the RH (Theorem 5.6). The construction of
such spaces leads to an equivalence condition for the RH stated below. That
is the second main result.

In Selberg’s answer to the second question in [1, p. 632], he states that the
construction of a space assuming the RH will not be useful for attacking the
RH. However, Hy and Ky may be useful in future research on the RH, since
they are defined without the RH.

Let L2(R) be the usual L2-space on the real line with respect to the
Lebesgue measure. We define

i(1+6%(2)
81(2) = B (2) (15)
with
_ 4(e? =1) 4(e7?-1)
Prla) = [+2iz T2z
Rt 4 ( ) ZA(n)elZ(’ 1@ 1

14

nze (1.6)

v (i-5)-F (3)

1
— P[0, 1,11 —ig)) - (e, 1, 1)]

21Z
for a nonnegative real number ¢ and a complex number z, where A(n) is the
von Mangoldt function defined by A(n) = log p if n = p* with k € Z.¢ and
A(n) = 0 otherwise, and

(o] Zn
O(z,8,a) = Z it a)y
n=0

is the Hurwitz—Lerch zeta-function. For negative ¢, we set &,(z) = G_;(z).
The definition of B, (z) is quite complicated. However, using the set I of zeros
of £(1/2—iz), it can be expressed in the simple form (3.2) (see Proposition 3.1
below). Nevertheless, as a tool for stating an equivalent condition for the RH,
it seems preferable to have a representation that does not involve I'. Thus, here
we adopt a version of (3.2) rewritten without I' using Weil’s explicit formula
(3.3). In Weil’s explicit formula, the first, second, and the third-fourth lines
on the right-hand side of (1.6) correspond to the poles of the completed zeta-
function 77%/2I'(s/2)Z (s), the non-archimedean part (Euler product), and the
archimedean part (gamma factors), respectively.
For this &;, we first obtain the following.
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Proposition 1.2 For any fixed t € R, &;(z) belongs to L?(R) as a function of
Z.

Proof See Section 3.2. ]

From this result, the mapping ¢ — &;(z) from R to L2(R) is defined. By the
uniformity of the L2-norm of &, (z) on a compact set of ¢ obtained in the proof
of Proposition 1.2 and Minkowski’s integral inequality, the following holds.

Proposition 1.3 For ¢ € CZ°(R), we define
Poto) = [ et@otmar - [ E@o0 al (17)
using (1.5). Then P4(z) belongs to L2(R).

_ Using the image of the composition Pp = P oD of the integral operator
? and the differential operator

(DY) (1) =iy’ (1), (1.8)
we obtain the following equivalence condition for the RH.
Theorem 1.4 The RH is true if and only if the equality

1PDy 172z = 70w (1.9)

holds for all ¢ € CZ(R). Furthermore, by choosing the test functions appro-
priately, if (1.9) holds for countably many choices of ¢’s, then the RH
follows.

Proof See Section 4.3. ]

Equation (1.9) is reformulated to the following simpler form.

Corollary 1.5 Define the subspace V°(0) of L2(R) by
Ve(0) = {P—lsvw |¢, c c;?(R)}.
Then the RH is true if and only if the equality

201725 = W ¥dw (1.10)
holds for all ¥ € V°(0).

Proof See Section 4.3 and Theorem 5.6. [ ]
The advantage of Theorem 1.4 and Corollary 1.5 is that it has turned

the criterion of the RH from a set of inequalities like Weil’s criterion into a
set of equalities. It should also be noted that equations (1.9) and (1.10) can
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be expressed without zeros of £(1/2 —iz) by (1.5) and (1.6). Furthermore,
equations (1.9) and (1.10) claim that the nonnegativity of Weil’s hermitian
form is explained by the nonnegativity of the L?-norm.

In the following sections, first, in Section 2, we briefly review necessary
notions such as screw functions, screw lines, the Hermite—Biehler class, de
Branges spaces, and model spaces. Then, in Section 3, we state and prove
unconditional results that we need to prove the main results. Moreover, we
unconditionally define two Hilbert spaces Hy and Ky that agree with the
Hilbert spaces Hw and K(®), respectively, under the RH.

In Section 4, we show that &;(z) in (1.5) gives a screw line of the screw
function corresponding to the Riemann zeta-function under the RH (Theorem
4.2). Furthermore, we prove Theorem 1.4 and Corollary 1.5. The strategy of
the proof of Theorem 4.2 is basically the same as that of [17, Theorem 1.1],
with Proposition 4.1 playing an essential role in both cases. To carry this out,
the rewriting of (1.5) into (3.6), prepared in Section 3 using Weil’s explicit
formula, corresponds to the transformation from (1.7) to (3.6) in [17], although
the technical details of the calculations differ considerably. On the other hand,
the analytic or geometric meaning of the functions giving the norms was
unclear in [17], whereas in the present paper these functions have a clear
interpretation as a screw line. Furthermore, as an advantage of employing the
screw line &;(z), we obtain Theorem 1.4, for which no analogue was obtained
in [17].

In Section 5, we prove Theorem 1.1 in a more detailed form. In addition, we
prove that Hy = Hw and Ky = K(©) under the RH. Afterwards, we explain
that the Hilbert space Hw is one of the Hilbert—Pélya spaces in Section 6.
Finally, we mention two special values of &;(z) in Section 7 as an appendix.

2 Review on necessary notions

2.1 Screw functions and screw lines

In this and the next part, we refer to [9, Sections 5 and 12]. See also its refer-
ences for details. Following Krein, we denote by G the space of all continuous
functions g(¢) on R such that g(—t) = g(¢) and the kernel

Gg(t,u) :=g(t —u)—g(t) — g(—u) + g(0) (2.1)

is nonnegative definite on R, that is, X' ;_; G¢(#:.1)) &€ > OforallneN,
t; eR,and & € C (i =1,2,...,n). Functions belonging to G are called screw
functions on R.

If an (even) real-valued function g(f) is a screw function, then there exists a

Hilbert space H and a continuous mapping ¢ + x(¢) from R into H such that

x(t+v) —x(v), x(u+v) —x(v))gy

is independent of v € R for all #,u € R and the equality (x(#) — x(0),x(u) —
x(0))¢ = Gg(t,u) holds. Therefore, ||x(¢) —x(0)||3{ = —2g(t) if g(0) = 0. A
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mapping x : R —» H endowed with the translation-invariance described above
is called a screw line for g(7).

2.2 Hilbert spaces associated with screw functions

Each g € G defines a nonnegative definite hermitian form on R by

G121, = [ [ Golt6100210) dud. (2.2)

According to [9, Section 5], we denote by L(Gg,) the space Co(R) of all
continuous and compactly supported functions ¢ on R such that ¢(0) = 0
equipped with the hermitian inner product (-, -)g,. We also denote by H(G,)
the completion of the factor space L(Gg)/L°(G4), where L°(Gg) = {¢ €
L(Gy) [ (¢, ¢)G, = 0}. Note that even if (-,-)g, is positive definite on L(Gy),
that is, £L°(Gg) = {0}, there possibly exists a sequence (¢,), of L(Gg) such
that ¢, — 0 as n — oo with respect to (-,")G,. The completion H(Gy) is a
space of equivalence classes of Cauchy sequences with respect to (-, )G, . Two
Cauchy sequences are equivalent if their difference converges to zero with
respect to (-,-)G,. We denote by [¢] € H(G,) the equivalence class repre-
sented by ¢. In general, elements of H(G,) are not necessarily represented by
functions unlike Hw (cf. [9, Section 4.3]).

Every g € G admits a representation
® (e”" 1 iAt ) dr(Q)

L s 2.
1+22] 22 (2.3)

g(t) = g(0) +ibt +/
with b € R and a measure 7 on R such that f_o; dt(A)/(1+ %) < oo and vice
versa. If g(t) is real-valued, b = 0. Without loss of generality, we suppose that
g(0) =0.

We define

_[Tet - (D) -9(0) _ $(1)
Dy(¢, 1) = ‘[m 5 é(x) dx = 1 ==

for ¢ € L(Gg). Then, (¢1,¢2)G, = (P1(41), P1($2))12() for ¢1,¢2 € L(Gy)
and @ establishes an isomorphism between H(Gg) and L?(7).

2.3 De Branges spaces

In this part, we refer to [14, 20]. See also those references for details. Let
H? := H*(C,) = F(L?(0, ®)) be the Hardy space in the upper half-plane. As
usual, we identify H? with a closed subspace of L?(R) via boundary values.
Then, the inner product of H? coincides with the standard inner product of
L%(R).

The Hermite-Biehler class consists of entire functions E satisfying |E*(z)| <
|E(z)| for all z € C,. For each entire function E belonging to the Hermite—
Biehler class, the de Branges space H(E) is defined as a Hilbert space
consisting of entire functions F(z) such that both F(z)/E(z) and FY(2)/E(2)
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belong to H? and have the norm

IFll#e) = IIF/EllL2(®)- (2.4)

The multiplication operator M by an independent variable is defined by

DM) ={F(z) e H(E)|zF(z) € H(E)} and (MF)(z) = zF(z) for F € D(M).
The domain D(M) is dense in H(E) if and only if

S0(0) = 5 (E(2) - e EH2)

does not belong to H(E) for all 6 € [0,7) ([14, Theorem 11]). The particular
two 60 cases are often written as A(z) := =S/2(2) and B(z) := So(z).

If D(M) is dense in H(E), all self-adjoint extensions of M are parametrized
by 6 € [0,7) and are described as follows. The domain of My is

So(wo)F(z) = S¢(2)F(wo)
Z—Wo

D(Mpy) = {G(z) =

F(z) e ‘H(E)} . (2.5)

and the operation is defined by
MyG(z) =z2G(z) + F(wo)Se(2), (2.6)

where wyq is a fixed complex number with Sg(wg) # 0 ([8, Propositions 4.6
and 6.1]). The domain D(My) is independent of the choice of the number wy.
For a fixed 6 € [0, ), we confirm that G(z) = S¢(z)/(z—7) belongs to D(My)
by taking

Se(z) ¥—wo
F) Se(wo) z-7vy
for every zero y of S¢(z) and is an eigenfunction of My with the eigenvalue
v. Further, {S¢(2)/(z—7) | Se(y) = 0} forms an orthogonal basis of H(E) ([3,
Theorem 22]).

2.4 Model subspaces

In this part, we refer to [11, Section 2], [15, Section 3.5] and [17, Section 3.1].
See also those references for details.

Let H*® = H®(C,) be the space of all bounded analytic functions in C;. A
function ® € H* is called an inner function in C, if limy_,04 [@(x +iy)| = 1
for almost all x € R. For an inner function ®, a model space K(®) is defined
as the orthogonal complement K(®) = H? © ®H? and has the alternative
representation

K(®) = H*NO H?, (2.7)
where ®H? = {®(z)F(z) | F € H?} and H? = H?(C.) is the Hardy space in the
lower half-plane. The model space K(®) is a subspace of L2(R) as a Hilbert
space. In particular, the inner product of K(®) matches that of L2(R) on the
real line.

If an inner function ® in C, extends to a meromorphic function in C, then
it is called a meromorphic inner function in C,. For any meromorphic inner
function ©, there exists E of the Hermite-Biehler class such that ® = E¥#/E.
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The de Branges space H(E) is isometrically isomorphic to K(®) by F(z) —
E(2)F(z). In particular, H(E) = E H?> n E* H?

For a meromorphic inner function ®, let ug be the positive discrete measure
on R supported on 0(®) = {x e R|O(x) = -1} and

2n
1©(x)|”
Then the restriction map F +— F|, (@) is an isometric operator from K(®) to
L%(ue) ([11, Theorem 2.1]). The isometric property of the map implies that
the family of functions

[ 2 1+er [ 2 A2)
K=\ e 2G-» =~ 700l c-EQD 29)

parametrized by all zeros y of A(z) = —=Sz/2(z) forms an orthonormal basis of
K () if D(M) is dense in H(E).

He(x) = (2.8)

3 Unconditional results

Throughout this and later sections, we denote E = Eg and ©® = O =

Eg /E ¢ for functions defined in (1.3) and (1.4), respectively. Otherwise, it is
mentioned.

3.1 Expansion of P, (z) over the zeros

For the basic properties of the Riemann zeta-function, we refer to [18]. By the
two functional equations &(s) = £(1 — s) and &(s) = &¥(s), if y belongs to the
set of zeros I', then both —y and ¥ also belong to I' with the same multiplicity.
On the other hand, |J(y)| < 1/2 for every y € T, since all zeros of £(s) lie in
the strip 0 < R(s) < 1. For E(z) of (1.3), we define

A(2) := (E(2) + E*(2))/2 (3.1)

as in Section 2.3. Then A(z) = £(1/2 — iz), because E¥(z) = E(2) = £(1/2 -
iz) —&’(1/2—-iz) by functional equations of £(s). Therefore, the set I' coincides
with the set of all zeros of both A(z) and 1+ 0(z). We define

et — ] 1
Pi(z) = ) my ———— - — (3.2)
= Yy -y

for nonnegative t. For negative ¢, we set P;(z) := P_;(z). The series on the
right-hand side of (3.2) converges absolutely and uniformly on every compact
subset of C\ T, since Y., crmyly|™ 7% < oo for any 6 > 0, because A(z) is an
entire function of order one. Therefore, P;(z) is a meromorphic function on C
with T" as the set of all poles.

Proposition 3.1 Let B,(z) and P,(z) be meromorphic functions defined by
(1.6) and (3.2), respectively. Then, both coincide.
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Proof For ¢t > 0 and z € C,, we define

(iz) ' el™*(e7? — 1), t<ux,
$oi(x) =4 (i) te (e -1), 0<x<1,
0, x < 0.

The main tool for the proof is the Weil explicit formula

hm Z my/ P (x) e " dx

M<X
_ /w¢(x)(ex/2+e—x/2)d Z (_ Z A(n)¢( 10 n)
oo -1 ‘/_ =1
- /2
— (log4m +y9)¢(0) — / { (x) + ¢(—x) — 2e” X/2¢(0)} e* dxx
A —e

which is obtained from the explicit formula in [4, p. 186] by taking ¢(x) =
e*/2 f(e¥) for test functions f(¢) in that formula with the conditions for f(r)
in [5, Section 3|, where yq is the Euler-Mascheroni constant. (Note that the
formula in [5] has two typographical errors in the second line of the right-hand
side.)

As is easily seen, Weil’s explicit formula can be applied to ¢(x) = ¢, ,(x).
We have

e -1 1
Y =y

/ b (x) e dx = when J(z) > J(y).
Therefore, the left-hand side of Weil’s explicit formula for ¢, ,(x) gives P;(z)
of (3.2) when J(z) > 1/2. Hence, if it is shown that the right-hand side is
equal to P, (z) for J(z) > 1/2, then the conclusion of the proposition follows
by analytic continuation.

It is easy to verify

4(e'? = 1) . 4(e7/? = 1)
1+2iz 1-2iz

/ 620 (X) (¥ + ) dx =

and
= A(n) _1 Am) o e 7 1 A(n)
Z i ferlogn) = - Z e e —— K;gn—nm_iz
Z A(n) e—tZ(t logn) _ 1 —lzt 14’ ( )
- - ==z -iz|,
! iz iz 7 \2
A
AW Clogm=0, g (0)=0

nl\/ﬁ

for J(z) > 1/2 by direct calculation.
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Therefore, the remalmng task is to calculate the fifth term on the right-hand
side. We split it into f and /0 For the first integral,

x/2dx

e—x

[ oes 0+ 0uuon -2 20,0) £

—izt 00 x/2 —izt o0

e -1 . e dx e -1 P _ —

— : eizx — : 'Y o x/2 § e 2nx dx
1z ¢ er —e™* 174 ¢

n=0

—1zt —2nt
—1(5 —-iz) E
2z dn+ 4

—lzt_l )
= e e 1,; 1-i2)).

lZ)

For the second integral,

t x/2dx
[ st 0uston -2 0,0} S5
1 t . x/2d 1 0
— _E i (&% — 1)% = _E (etzx - 1) o= X/2 Z e~ 2nX gy

n=0

To handle the right-hand side, we calculate as

t N
/ (eizx - 1) e X2 Z 2% gy
0

n=0

1 N —21(n+ ( —-iz)) 1-— e—21(n+i)
T2 Z:: —iz)  n+ 3
N

1 —t( —iz) 1 —-1/2 € 2
=——e +-e

2 Z:n+1(1—1z) 2 nZ=0”+411

1
T3 Z n+3(3- i) n+ 1

1

t(RmiD) gy e N -
=—5e g% ’Z>q>( * 1 5(5 - i) + 5o PO, 1, D)

1 F’l_iz _F'l
2T \4 2 r\4

using the well-known series expansion

+0(e™ Ny +o(NTY)

r’ = 1 1
F(W):_yo_z(w+n_n+1)’ (3.4)

n=0
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where the implied constant depends on ¢t and z. Therefore, we obtain

e*/2dx

/ {¢z,,(x) + ¢z (=x) - 2e‘x/2¢z,,(0)} —
0 e*—e

1 —t(-iz) —9¢ 1,1 . 1 —-1/2 -2t 1
:gze 2o, 1, 5 E_ZZ))_;'Ze D™, 1, 3

+1F'1iZ (1
2iz| T \4 2 r\4/|"

Combining the results for ftoo and fot,

e*/2dx
eX — e*x

[ {oes0+ 0o = 22,0

1
= e [cp(ﬂ’, L1k -iz)—o(e™,1, %)]
174

N 1 (I (1 iz (1
2iz | T \4 2 r\4/|
From the calculation of the five terms on the right-hand side above, we con-

clude that the right-hand side of the Weil explicit formula for ¢, ,(x) equals
(1.6). ]

3.2 Proof of Proposition 1.2

We have |©(z)| = 1 for every z € R by definition. In fact, zeros of E(z) in the
denominator cancel out in the numerator E¥(z), even if they exist. Further,
B, (z) has poles of order one at y € I', but &,(z) is holomorphic there, since
(1+0(z2))/2 = A(2)/E(z) = A(2)/ (A(2)+iA’(2)) = (z—y)(=i/my+0(1)) near z =
v by direct calculation. Hence, &;(z) is bounded and holomorphic on the real
line by (1.5), (3.2), and Proposition 3.1. On the other hand, in the horizontal
strip |3 (z)| < 1/2, we have the well-known estimate (I'"/T")(1/4+iz/2) < log |z|
and

¢ (1 - iz) = > - +0(oglz)
7 \2 z-
[R(z)-yl<1

by [18, Theorem 9.6 (A)]. In both estimates, implied constants are uniform
in |3(z)] < 1/2. The number of zeros y € T satisfying |R(z) —y| < 1 is
O(log |z|) counting with multiplicity by [18, Theorem 9.2]. Therefore, &, (z) <
|z| 7t log |z| as |z| — oo with an implied constant depending on a compact set of
t by (1.6). Hence &, (z) belongs to L?(R) and the norm is uniformly bounded
on a compact set of 7. O

3.3 Two special Hilbert spaces

We first introduce the set of meromorphic functions

Fy(2) = /%%, yer. (3.5)
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Then, we have

&/(x) = » Vi, ”y—_l Fi(2) (3.6)

yell
by Proposition 3.1. Therefore,
50) =90
Y

Py(2) = D yamy (2) (3.7)

yell

for any ¢ € CZ(R) by definition (1.7) and the symmetry y + y of I' with
m,, = my. This implies

Ppy(2) = ) Ny U(y) Fy (2) (3.8)

yell
for any ¢ € C°(R), since (DY (z) — Dy (0))/z = Dy(2)/z = ¥ (z) for D in (1.8).
On the other hand, we define the norm || ||y on CZ(R) by

1 = o
I llo == 7 1Poyllzr), ¥ € C(R) (3.9)

based on Proposition 1.3. Then, we have:
Lemma 3.2 Equation (3.9) defines a norm on C2°(R).

Proof We obtain [[¢1 + ¢2llo < |[¥1llo + [W2llo and k¢l = [klll¥llo for
Ui, 92, € CZ(R) and k € C by the obvious linearity of p. Therefore, the
proof is completed if it is shown that ||¢|lo = 0 implies ¢ = 0. If [|l/|lo = 0, the
image Ppy(z) is identically zero. The latter means that {ﬁ\(y) =0forally eT,
because, if not, there must exist a sequence (cy),er such that 3, e cy(z=y)t
is identically zero on C by (3.5) and (3.8), but it is impossible. If ¥ (y) =0 for
all y € T, it implies that ¢ is identically zero by [16, Lemma 2.1]. [

By Lemma 3.2, we can complete the space C2°(R) with respect to || [lo. We
denote the completion by Hy. On the other hand, we denote the L2-closure
of the image Pp(CX(R)) in L2(R) by Kp. Then, two Hilbert spaces Hy and
Ko are isometrically isomorphic up to a constant multiple. The map Pp from
C2(R) to Pp(CX(R)) c L%(R) extends to the map from Hy to Ky by (3.9).
As proved in Theorem 5.6 below, Hy = Hy and Ky = K(O) under the RH.

4 A screw line of the Riemann zeta-function

4.1 A special orthonormal basis

Assuming the RH is true, E = E belongs to the Hermite—Biehler class ([10,
Theorem 1]), and thus ® = O, is a meromorphic inner function. There-
fore, they define the de Branges space H(E) and the model space K(O),
respectively. We need the following result for the later discussion.
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Proposition 4.1 Assume that the RH is true. Then, the family (3.5) forms
an orthonormal basis of the Hilbert space K (). Furthermore,

@) i
T m, (41)

and

1 ’ ’
Fy(y) = \/Fyn’ Fy(y)=0 forevery yel, y eI\ {y} (4.2)

Proof See [17, Proposition 3.2] and its proof. ]
4.2 Screw line of the Riemann zeta-function

We define the even real-valued function g¢(f) on the real line by

ge(t) = —4(e'?+ 72— 2) + Z \5_)
<e! n

(1 1 P
-3 [r (Z)—logﬂ] —Z((D(l,2,1/4)—e 2(e2 ,2,1/4))

(t — logn)
(4.3)

for nonnegative t. We easily obtain g#(0) = 0. Then, g« (f) is a screw function
on R under the RH as stated in [16, Theorem 1.2]. One of the screw lines
corresponding to g« (f) can be constructed as follows.

Let 74 be the nonnegative measure representing g:(¢) as in (2.3) under
the RH. Then the Hilbert space H = L?(1¢) and the mapping ¢ +— x(r) :=
(e —1)/y provide a screw line satisfying ||x(¢)— x(0)||7_, =—2g¢(1) (]9, Section
12]). This spectral construction of the screw line is important and useful in
analysis, but it is of limited use for studying the nontrivial zeros of {(s)
without assuming the RH. In the following, we show that &; gives a screw
line of g#(¢). In contrast to the spectral screw line above, this screw line can
be used to study Hw, as will be done later.

Theorem 4.2 Assume the RH is true and let g(#) = g¢(#). Then, the mapping
t — 1 /23(z) from R to L2(R) is a screw line of g(¢). That is,

1
;(61, Surrzr) = Gg(t,u) (4.4)
holds for ¢t,u € R.

Proof The sum of coefficients on the right-hand side of (3.6) is convergent
in L%-sense:

‘/_e s
Tm,

2,

yell

TN AL

yell
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Therefore, applying Proposition 4.1 to &,(z) via formula (3.6), we find that
it belongs to the subspace K(®) of L?(R) and

1 et 1 v
_<6t+v -6,,8u4y — 6V>L2 R) = Z my, ' (45)
T yer Y Y
holds. The right-hand side is equal to Gg(t,u) by
(eiyt _ 1)(e—iyu _ 1)
Gg(t,u) = Z my 3 (4.6)
yell Y

in [16, (1.9)] and the symmetry y +— —y of I with m, = m_,. Hence, n12g,
R — L%(R) is a screw line of g(¢) under the RH.
We find that Sy(z) is identically zero by (1.5) and (1.6), since

I’ (1 I (11
; -2 1 -2 1,01 _ .
fng (@7, 1.1 - (e 13- 0) = - 1)+ 1 5 (2))

by (2.8). Therefore, by taking v =0 in (4.5), we obtain (4.4). ]
The following immediately follows from Theorem 4.2.

Corollary 4.3 The RH is true if and only if the equality

1
582 ) = —2(0) (4.7)

holds for all ¢ > ¢y for some g > 0.

Proof Assuming the RH, we obtain (4.7) by taking u = ¢ in (4.4), since
Gg(t,1) = —2g(1) by (2.1) and g(0) = 0. Conversely, we suppose that equality
(4.7) holds for all t > #5. Then —g(#) is nonnegative on [ty, ), which implies
that the RH is true by [16, Theorems 1.7 and 11.1]. ]

4.3 Proof of Theorem 1.4

Theorem 1.4 is a corollary of the following result.
Theorem 4.4 Let g(#) = g¢(¢). The RH is true if and only if the equality
1Pg1I72 ) = 7(2. b)G, (4.8)

holds for all ¢ € CZ(R) satisfying #(0) = 0. If the RH is true, equality (4.8)
holds for all ¢ € CZ(R).

Proof First, we prove (4.8) assuming the RH holds. We have
~ —~ 2
$(y) —¢(0)

. (4.9)

D112
1Poleey =7 ), my
yell
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by (3.7) and Proposition 4.1. Applying (4.6) to (2.2) and noting the symmetry
v —y of I' with m, = m_,, we find that the right-hand side of (4.9) equals
7T<¢’ ¢>Gg -

Conversely, we prove that the RH is true assuming equality (4.8). We show
that a contradiction arises if the RH is false. We take a nonreal yo € I'. For
any € > 0, there exists Y1, Y2 € CZ(R) such that wl( yo) =i, Y2 (=¥0) = —i,
U1 (=¥)] < €lyo —yI717 for every y € I'\ {yo}, and [¥2(-)| < elyg - yI™} s
for every y € I' \ {¥0} by |21, Lemma 1]. We define ¢ := 1 + 2 (# 0) and set
¢ = Dy. Then, ¢(0) = 0 by definition, and (¢, ¢), = (¥,¥)w holds by the
relation

(Dyr1, D¥2)G, = (Y1, ¢¥2)w (4.10)
in [16, Proposition 3.1]. The right-hand side equals %, cr mytz(—y) WE(=y) =
—my, +O(€), since ¥y er my|y|717% < 0. Therefore, (¢, ¢)g, is negative for a

sufficiently small € > 0, but it contradicts the nonnegativity that follows from
(4.8). ]

Proof of Theorem 1.4 The conclusion follows from Theorem 4.4 and the
relation (4.10) of hermitian forms, since the differential operator D in (1.8)
gives a bijection from Cg’(R) to the subspace Ci°(R) ¢ C°(R) consisting of
functions ¢ with ¢(0) = 0. ]

Proof of Corollary 1.5 The RH is true if (1.10) holds by the same argument
as the second half of the proof of Theorem 4.4. Therefore, we prove (1.10)
assuming the RH. o

Let ¢ € V°(0). Then ¢(z) = Ppy, (2) for some ¥y € CZ(R) by definition.
Therefore, §(z) = 2yer \/ﬂWyzZB(y)Fy(z) by (3.8). The equality shows that
¥ (2) is a continuous function of z € R by the uniform convergence of the
right-hand side on a compact set of z. Taking z = y in this equality, we have
¥ (y) = Uo(y) by (4.2). Therefore, (y,¢)w is defined and satisfies (¢, y¥)w =
(Yo, ¥o)w . The right-hand side is equal to ||tﬁ0||zz(R) 27r||1ﬁ0||L2(R) y (1.9)
and Plancherel’s identity. The same argument works if we start with o €
CZ(R). Hence, we obtain (1.10). [

Using (3.9), Theorem 1.4 is stated as follows.

Theorem 4.5 The RH is true if and only if the equality

lwlig = (. ¥)w (4.11)
holds for all ¢ € CZ(R).

Equality (4.11) leads to Theorem 5.6 below.

For n € Z.(, we define

n _yj-1
=2 Y (D (>0, BO0)=F 60=0 (<0,
Jj=1 '
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Then, the RH holds if (g, gx)w = 0 for all n € Z.¢ by Bombieri and Lagarias
[5, Section 4]. Therefore, we obtain the following.

Corollary 4.6 The RH holds if (4.11) holds for all g, (n € Zs¢).

5 Proof of Theorem 1.1 and its refinement

Throughout this section, we assume that the RH is true and denote E = E,
0=0;= Eg/Eg as before, and denote g = g¢. Therefore, E belongs to the
Hermite—Biehler class, ® is a meromorphic inner function in C;, and g belongs
to the class of screw functions Ge.

For use in the proof of Theorem 1.1 and its refinement, we introduce the
operator K acting on L?(R) by

K := F'Mg]F (5.1)
with
(MoF)(z) :=0(2)F(z) and (JF)(z) = F¥(z).

The Fourier transform F, the multiplication operator Mg, and the involu-
tion J are defined for functions of a complex variable, and the latter two are
isometries on L?(R). The Fourier transform F is an isometry up to a constant
factor. Therefore, K is isometric on L2(R). Further, K is invertible by K? = id.
By definition, K is not C-linear but R-linear and conjugate linear. Using the
isometric involution K, we define

V(t) == L?(t, 00) N KL%(t, ) (5.2)
and

Hw (1) :={[y] |y €V()}

for t > 0. The set of subspaces V() of L?(R) are clearly totally ordered by the
set-theoretical inclusion.

First, Theorem 1.1 is shown using V(t) for t = 0, and it is refined using
general ¢ > 0.

Lemma 5.1 Let V(0) = L?(0, w)ﬂKLf(O, 00). Then, we have K(©) = F(V(0)),
and hence H(E) = EF(V(0)) = {E(2)¥/(2) | ¥ € V(0)}.

Proof It is sufficient to prove that K(®) = F(V(0)), since H(E) = EK(O®).
The proof below is essentially the same as the proof in [15, Lemma 4.1].

If ¢ € V(0), both Fy and FKy belong to the Hardy space H? by defini-
tion (5.1) and H? = F(L?(0,0)). On the other hand, we have (FKy)(z) =
0(z) (Fy)#(2) by definition (5.1) again. This implies (Fy)(z) = ©(z) (FKy)¥(2),
since ©(z)®%(z) = 1 by definition (1.4). Therefore, Fy belongs to K(®) by
(2.7).

2025/10/23 01:19

https://doi.org/10.4153/S0008414X25101739 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101739

18 M. Suzuki

Conversely, if F € K(®), there exists f € L%(0, ) and g € L?(~00,0) such
that

F(z) = (Ff)(z) = ©(2)(Fg)(2).
We have (Fg)¥(z) = O(z2)(Ff)¥(z) by using O(z)®%(z) = 1 again. Here
(Fg)*(2) = (F2)(2) for g(x) = g(-x) € L*(0, ), and O(z)(Ff)*(z) = (FK[)(z2)
as above. Hence Kf belongs to L2(0, o), and thus f € V(0). [ ]

Remark 5.2 By Lemma 5.1, it follows that the RH would be false if V(0) = 0,
since A(z)/(z—vy) = £(1/2 —iz)/(z — ) belongs to H(E) for all y € T under
the assumption of the RH. Therefore, it is an interesting problem to prove
or disprove V(0) # 0 unconditionally. Since V(0) is K-invariant, if V(0) # 0,
then for any nonzero f € V(0), the functions (1 +K) f are eigenfunctions of K
with eigenvalues +1. Hence, the problem reduces to determining whether the
isometric involution K admits an eigenfunction in L2(0, o), which appears to
be extremely difficult. We therefore do not pursue this issue further in the
present paper.

Let 7 = ¢ be the measure on R determined from the screw function g = g¢
by (2.3). Then, we have g(0) =0, b =0, and

dr(d) = Z my6(1—y)dl, A€R, (5.3)
yell

since

et — 1
g(t) = > my

2
yell

by [16, Theorem 1.1 (2)], where ¢ is the Dirac mass at 2 = 0, We understand

that the Hilbert space L?(7) is the space of sequences S = (S(y))yer with

ISU72 () = > my ISI. (5.4)
yell

Then, we prove two isomorphisms for L?(7) necessary for the proof of Theorem
1.1.

Lemma 5.3 Hilbert spaces V(0) and L?(7) are isomorphic by the linear map
— (7 2
VO 3w o Sy = (00) L)
with
2”1“'%2(]1{) = ||S¢”i2(-r)‘ (55)

Proof Let pg be the measure on R determined from ® = @, by (2.8). Then,
the linear map K(®) — L2(ug) given by 12; — Sy is an isometric isomor-
phism as reviewed in Section 2.4. On the other hand, L?(ue) = L%(1) with

||S||i2('u@) = 7r||S||i2(T) by (2.8), (4.1), and (5.3). Therefore, by composing the
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maps V(0) = K(0) = F(V(0)) and K(0) — L?(ue), we obtain the conclusion
of the lemma, since 27r||w||i2(R) = ||lﬁ||zQ(R). |

Lemma 5.4 For ¢ = 11_{210 Yn € Hw with {Yn}ns>1 C€ C(R), we define Sy €
L?(1) by ’
$o:= fim (), in L)
Then, it is well-defined and provides an isomorphism between Hy and L2(7)
through the mapping
Hw 5¢ +— Sy € L*(1)
with

W.¥)w = ”Sw||22(7)~ (56)

Proof We consider C3°(R) = {¢ € C?(R)la(O) = 0}, since we obtain the
same completion H(Gg) even if we start from this space instead of Co(R).
Then differentiation ¥ + ¢’ gives a bijection from CZ°(R) to C;°(R). The
inverse map is ¢ — f_ ); ¢(y) dy. The Weil hermitian form and the hermitian
form (-, )G, defined by (2.2) for the screw function g are related as in (4.10),
which is written as

6. B, = W dhw. Y(x) = / sO)dy. weCT®).  (5.7)

(Although not necessary for the proof, (¢, ¢)G, and (¥, ¥ )w are positive def-
inite on C;°(R) and CZ°(R), respectively, by [16, Lemma 2.1].) Relation (5.7)
extends to the completed Hilbert spaces. Therefore, Hy, is isometrically iso-
morphic to the Hilbert space H(Gg) by H(G,) — Hw : [¢] — [¢] with
Y = lim, 0 Yy and ¥y (x) = /_); ¢n(y) dy for ¢ =lim, e n (¢n € C°(R)).

We define H(Gg) — L?(7) as follows. For [¢] € H(G,), we define Sy =
(S¢(¥))yer € L*(7) by

lim (6.0)/7) i L7(2)

using a sequence (¢,), in Cgy’(R) satisfying ¢ = lim, e ¢,,. Then, the map
is well-defined and ([¢], [¢])G, = ($.d)G, = ISsll2(r) by (2.2), (4.6), and
(5.4). Therefore, it establishes the isomorphic isomorphism H(G,) — L?(7) :
[¢] — S ([9, Sections 5.3 and 12.5]). Using H(G;) — Hw and noting

¢/ =iy (2) for ¢ € CP(R), we define Hy — L2(7) by [¢] — Sy with

Su = (Sy@yer = m (0a() = lim (~ida(n)fy) = in L),

where (¢,), is a sequence in C;’(R) such that ¢ = lim, e ¥, With ¢, = ¥,
Then, the map is well-defined and

(Wl Whw = W.vw = ISyllLz(x) = ISgll2(r) = (b: d)a, = ([4]. [¢])c,
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holds, where ¢ = lim, ,» ¢, and the second equality follows from (1.2)
and (5.4). Hence, it establishes an isometric isomorphism Hy — L2(r) by
[¢] — Sy. As a result, the mapping Hw — L*(7) is directly defined by

Sy = lim,e (l///;(y)) - and [y] — Sy for ¢ = lim,_ ¥, with the desired
ye
equality for norms. [ ]

Theorem 5.5 Assume that the RH is true. Let Hy, H(E), and K(0O) be as
above. Let V() be the spaces defined in (5.2). Then the following hold:

(1) ”E'Z“;((E) = ”'Z“?}(R) = 271-“‘!/”?‘2(]1{) =n{y, Y)w for ¥ € V(0).
(2) The map from K(®) to Hw obtained by the composition of the inverse of

V() = K(@©): ¢ = §(2), 2lWliee = WlF2e (58
and
VI0) = Hw: ¢ = W] 2007 = (W] Whw = W ¥)w  (5.9)

agrees with the isomorphism F +— ¢ in Theorem 1.1. In particular, (5.9)
is an isometric isomorphism up to a constant multiple.

Proof (1) It suffices to show that the equality
1
I I1Z2 gy = 540 ¥dw (5.10)

holds, since |E|l# (&) = |1¥lz2(z) by (2.4) and ||'Z||22(R) = 2ﬂ||¢||iz(R) by (1.1).
For each y € ', we define ¢, € L?(R) by
F, =y, (5.11)

Then each ¢, belongs to V(0), and {¢,},er forms an orthogonal basis satis-
fying 27r||1//),||i2(R) = ||1//7||3((®) = ||F7||3((®) =1 by Proposition 4.1 and Lemma
5.1, since the orthogonality of F,’s is preserved under the Fourier transform.
For ¢ = %, ¢y ¥, € V(0), we have

1
G2 = 5z D el
yell

by the orthogonality and

i) = ——c

7= N

by applying (4.2) to ¢ = 2y ¢yFy. From these two and (1.2), we get (5.10).
(2) Tt is clear that the composition of the inverse of (5.8) and (5.9) agrees
with the map F +— ¢ of Theorem 1.1 including the equality for norms, and
we observed in the proof of Lemma 5.3 that the map (5.8) is an isometric

isomorphism up to the multiple V27. Therefore, it suffices to show that the
map (5.9) gives an isometric isomorphism up to the multiple V2.
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For ¢ € V(0), the function S, € L?(1) is defined and satisfies 2||¢||22(R) =
||S¢||1%2(T) by Lemma 5.3. Then there exists a sequence (¥}), € CZ(R) that
converges to §* with respect to (-,-)w and Sy = Sy~ by Lemma 5.4. The later
implies (Y =y, ¥ —y)w = W=, " Y )w — 0 (n — o). Therefore, y = ¢,
and hence V(0) — Hy is directly defined by ¢ — [¢]. Furthermore, we obtain
2”‘/’”%“(1&) = (Y, ¥)w from (5.5) and (5.6). Hence, this map is precisely the one
given in (5.9). ]

The equality ||w||iz(R) =271y, ¥)w in Theorem 5.5 (1) shows that the L2-

structure induced from L2(R) and “arithmetic structure” (or “local structure”)
arising from the geometric side of the Weil explicit formula (3.3) coincide on
a dense subspace of V(0) consisting of functions for which the Weil explicit
formula holds.

Theorem 5.6 Let Hy and Ky are Hilbert spaces defined unconditionally in
Section 3.3. Assume that the RH is true. Then, Hy = Hw and Ky = K(0),
and the extended map Pp : Hw — K(O) provides the inverse of the map in
Theorem 5.5 (2). In particular, V(0) is the L2-closure of V°(0) in Corollary 1.5.

Proof For ¢ € CZ(R), we have

PDylam =7 D mylb () =y, wdw

yell

by (1.2), (3.8), and Proposition 4.1. Hence, Hj coincides with Hy by definition
(3.9). Formula (3.8) shows that the image 5;” is defined independent of the
representatives of [¢] in Hy . On the other hand, Kj is a subspace of K(®)
by Proposition 4.1 again.

We denote F = Ppy, for [¢] € Hw and set ¢ = F1(F) as in Theorem 1.1.
Then, F(y) = ¢(y) by (3.8) and (4.2). Therefore, Ur(y) =y (y) for all y €T,
and hence [¢] = [¢F] in Hw. On the other hand, m(Z) = F by (3.8),
since ¢r = F by definition and F(y) = ¢(y). Hence, we obtain the desired
conclusion. |

The totally ordered structure of the subspaces of the de Branges space
H(E) is described by V(t) as follows.

Theorem 5.7 Assume that the RH is true. Then, EF(V(¢)) is a de Branges
subspaces of H(E) for every ¢t > 0 and is isometrically isomorphic to Hyw (t)
up to a constant multiple by the map of Theorem 1.1.

Proof It is sufficient to prove the first half of the theorem, since the second
half follows from Theorem 5.5 (2). We prove the claim for positive ¢ such that
V(1) # {0}, since the case of t = 0 was proved in Lemma 5.1 and the claim is
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trivial if V(r) = {0}. The following is essentially the same as the proof of [15,
Lemma 4.3].

We show that H := E(z)F(V(t)) is a Hilbert space consisting of entire
functions and satisfies the axiom of the de Branges spaces:

(dB1) For each z € C\ R the point evaluation ® +— ®(z) is a continuous linear
functional on H;

(dB2) If ® € H, ®* belongs to H and ||®l¢ = ||D¥|l4;

(dB3) If w e C\R, ® € H and ®(w) =0,

‘- WCD(z) € H and HQQ(Z)
Z-w Z—w

= [[Dll4,
H
where the Hilbert space structure is the one induced from V() that is
equivalent to (F,G)y = fR F(z)G(2)|E(z)|™%dz for F,G € H.

Let ®(z) = E(z)(Ff)(z) € H with f € V(¢). First, we prove that H consists
of entire functions. We see that ®(z) is holomorphic in C, by f € L2(t, o). If
we write (Jyf)(x) := f(-x), the commutative relation JF = FJ4 holds. There-
fore, using (5.1) and K? = 1, we have ®(z) = E(2)(Ff)(z) = Eﬁ(z)(F]ﬁKf)(z).
This shows that ®(z) is also holomorphic in C_. Furthermore, JyKf €
L?(—o0,—t), because the tempered distribution kernel k := F1® of K has sup-
port in [0, c0) by [12, Theorems 1.1 and 1.2]. On the real line, lim,, (Ff)(z) =
(Ff)(x) and lim,_, (FJ4Kf)(2) = lim,_, (FK£)#*(z) = ©%(x)(Ff)(x) for almost
all x € R, where z is allowed to tend to x nontangentially from C, and C_,
respectively. Hence, ®@(z) is also holomorphic in a neighborhood of each point
of R. By the above, ®(z) is an entire function.

We confirm (dB1). For z € C,, @ > ®(z) = E(2) [ f(x)e'*dx is a
continuous linear form. On the other hand, for z € C_, ® — ®(z) =
E*(2) L: (Kf)(=x)e'** dx is a continuous linear functional.

We confirm (dB2). We have ¥ (z) = E(2)(FKf)(z). Since Kf € V(r), the
function ®* belongs to H. Since K is isometric, the equality of norms in (dB2)
holds.

We confirm (dB3). The equality of norms in (dB3) is trivial by the definition
of the norm of H. From (dB2), it is sufficient to show only the case of w € C,.
Suppose that ®(w) = 0 for some w € C,. Then (Ff)(w) = 0, since E(z) has
no zeros on C,. We put fy, (x) := f(x) —i(w —w) fox_t f(x —y)e"™Ydy. Then
we easily find that f,, € L%(t, ) and (Ff,,)(z) = ((z = w)/(z — w))(Ff)(z) for
z € C,. Hence we complete the proof if it is shown that Kf,, has support in
[t, ), since Kf,, € L2(R) by f,» € L2(t, 00). We put g, (x) := (Kf)(x) —i(w —
w) fox_t(Kf)(x —y)e"™Ydy. Then g,, has support in [, ) by Kf € L2(t, o)
and (Fgw)(z) = ((z = w)/(z = w))(FKf)(z) = (FKf\,)(2) for z € C,. Hence
gw =K/, and the proof is completed. [ ]

We expect that V(z) # 0 for some ¢t > 0, or rather that V(¢) # 0 holds for
all £ > 0, but we do not discuss this in the present paper, since it seems to
be a nontrivial problem related to the eigenfunctions of K, as mentioned in
Remark 5.2.
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5.1 A weaker variant of Corollary 1.5

Since the space V(0) can be constructed unconditionally as well as V°(0) in
Corollary 1.5, it can be used to state an equivalence condition for the RH.
However, since the construction of V(0) is simpler than that of V°(0), more
conditions are required for the equivalence condition.

Proposition 5.8 Let V(0) = L?(0,0) N KL?(0,) be as in (5.2). Then the
RH is true if and only if the following two conditions hold:

(1) W22 ) = 270 9w for every u € V(0).
(2) For a given y € I' and any € > 0, there exists ¢ € V(0) such that

—~ —~ , € ’
Y(-y) =1, Y (=)l < Iy =y for every y" e I'\ {y}
for some ¢ > 0 independent of y, €, and .

Proof Assuming the RH, (1) follows from Theorem 5.5 (1). Also, (2) holds,
since ¥, = F71(F,) in V(0) satisfies 17/;()/) # 0 and 17/;(3/’) =0fory" e T\ {y}.

Conversely, we assume that (1) and (2) are satisfied. Then, we show that
a contradiction arises if the RH is false. We take a nonreal yo € I'. For any
€ > 0, there exists 1, Y2 € V(0) such that J/I(—ZO\) =1, @(—y_o) = —,
[W1(=¥)| < elyo —y|7'7° for every y € '\ {y0}, and [¢2(=¥)| < efyo —¥|7'7°
for every y € I'\ {¥o} by (2). Then, for  := ¢ +y2 (# 0), we have (y, y)w =
Syer Myl (—) @) (=y) = —my, + O(€), since ¥, e myly| 1% < co. Therefore,
(Y, ¥)w is negative for a sufficiently small € > 0, but it contradicts (1). Hence
the RH holds. [ ]

6 Hilbert-Pélya space

One of attractive strategies for proving the RH is the construction of a Hilbert—
Pélya space, which is a pair of a Hilbert space and a self-adjoint operator
acting on it such that all nontrivial zeros of the Riemann zeta-function are
eigenvalues of the self-adjoint operator. In this section, we state that Hy is
one of Hilbert—Polya spaces under the RH. Note that Hy is unconditionally
defined as Hy by Theorem 5.6.

We assume the RH and denote E = E¢ as in Section 5. In this case, the
domain D(M) of the multiplication operator M on H(E) is dense in H(E),
because S¢(z) does not belongs to H(E) for all § € [0,7) by the estimate
[Se(iy)/E(iy)| > (logy)™ (y — +0) obtained by the Stirling formula for the
gamma-function and [13, Proposition 2.1]. Using M, we define the operator
A := F''MF on V(0) with the domain D(A) = FL(D(M)). If ¥ € V(0) is
differentiable and ¢’ also belongs to V(0), then Ay =iy’. Further, we define
the operator Ay on Hy as follows.

By Theorem 5.6, the inverse of (5.9) from Hy to V(0) is given by [¢] —
F1Pp,. Further, if we choose the representative of ¢ from V(0), it is possible
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and uniquely determined by Theorem 5.5 (2), and therefore ¢ = F’la’;,. By
choosing representatives in this way, we define Aw on Hy by Aw [¢] = [Ay].
By the same procedure as above, the family of self-adjoint extensions My
of M determines the corresponding families of self-adjoint extensions of A
and Aw (see (2.5) and (2.6)). By this correspondence, the orthogonal basis
{[¥y]}yer of Hw consists of eigenvectors [,] of Aw /o with eigenvalues
v €T, since {EF,},er with (3.5) is an orthogonal basis of H(E) consists of
eigenfunctions of My, with eigenvalues I' (see Seciton 2.3). Therefore, the
pair (Hw, Aw, z/2) is a Hilbert-Polya space.

It is important to note that the multiplicity of y € I" as an eigenvalue of
Aw /2 (and M) is one. In other words, the multiplicity of y € T as a
zero of £(1/2 —iz) is not reflected in the multiplicity of Aw r/2 (and Mg/2).
In particular, it shows the explicit difference between the de Branges space
H(E¢) and the de Branges space Bf in [7, Section 4.8].

In the above discussion, we assumed the RH, but (2.5) and (2.6) allow
us to define the operator My without the RH. However, its properties as an
operator become unclear.

7 Special values of the screw line G;(z)

The screw line &,(z) has the following unconditional relations with the screw
function g(¢). It is interesting that they are not a special case of equations
obtained from the general theory of screw functions.

Theorem 7.1 Let g¢(7) and P, (z) be functions of (4.3) and (1.6), respectively.
Then the following equations hold independently of the truth of the RH:

P, (0) = —g£ (1), (7.1)
_ Il y) 1 o
ygIPm y B, (—iy) - 3T (Z + 5) +3 logm| = —g, (1), (7.2)

where we assume ¢ # logn for any n € N in (7.2).

Proof Equality (7.1) follows from (3.2), Proposition 3.1, and [16, Theorem
1.1 (2)], but it follows directly from (4.3) and (1.6) as follows. By ®(z,s,a) =
Yo ZM(n+a)™* and (2.8),

1 1
lim — [<1>(e-2’, L1 —iz) - @1, 1/4)] = -30(e™,2,1/4),
z—01Z

(1 iz\ IV(1\]_1 (1

rla-z) i1 72" \3)

where ¢1(z) is the polygamma function of order one. The expansion ¥ (w) =
Yo o(w+n)"2 gives y1(1/4) = ®(1,2,1/4). Taking s = 1/2 in the logarithmic

1

1m —
z—01Z
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derivative of £(s) = £(1 — s) and using
l"/

r

1 b/g
] =-y9-3log2 - —
(4) Yo — 3log 5"

we have

7\2] 72
Hence, by taking the limit z — 0 in (1.6), we obtain the minus of (4.3).
To show (7.2), we multiply (1.6) by y and substitute —iy for z:

dy(e'? - 1) N dy(e7/?2 - 1)

(1 1
i (—) = - (y0+310g2+10g7r+g).

y B (=iy) = 172y =2
- ¢ (1 A(n) -y
+(e =D |-y + ) —=(eTE 1)
AERUAPI
N 1|17 (1 (1 vy
2(T \4 r\4 2
1
+ §e_t/2 [@(e7,1,1/4) - @(e ™, 1, 3(3 - )]
Therefore, for positive ¢ > 0,
. . 117 (1 1
yl—l}/-{loo [y %t(—ly) — 5? (Z + g) + 5 logﬂ']

- A(n)
=2(et/2_e t/2)_ + =
DI
by using the logarithmic derivative of £(s) = £(1—s) at s = 1/2—y. The right-
hand side equals —g’(¢) if ¢ # logn by (4.3), and (d/dt)(e™'/?®(e™*,2,1/4)) =
—2¢72®(e7%,2,1/4) follows from ®(z,s,a) = Y00, " (n+a)™>. [

+ %e—’/z’@(e—?‘, 1,1/4)

(1 1
|1 ogm
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