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On theHilbert space derived from theWeil
distribution∗

Masatoshi Suzuki

Abstract. We study the Hilbert space obtained by completing the space of all smooth
and compactly supported functions on the real line with respect to the hermitian form
arising from the Weil distribution under the Riemann hypothesis. It turns out that
this Hilbert space is isomorphic to a de Branges space by a composition of the Fourier
transform and a simple map. This result is applied to state new equivalence conditions
for the Riemann hypothesis in a series of equalities.

1 Introduction

The Weil distribution is a distribution associated with the Riemann zeta-
function 𝜁 (𝑠). Let

𝜉 (𝑠) = 1

2
𝑠(𝑠 − 1)𝜋−𝑠/2Γ

( 𝑠
2

)
𝜁 (𝑠)

be the Riemann xi-function, where Γ(𝑠) is the gamma-function. Let Γ be
the set of all zeros of 𝜉 (1/2 − 𝑖𝑧) without multiplicity and let 𝑚𝛾 denote the
multiplicity of 𝛾 ∈ Γ. The Riemann hypothesis (RH, for short) claims that all
nontrivial zeros of 𝜁 (𝑠) lie on the critical line ℜ(𝑠) = 1/2. It is equivalent to
the assertion that all 𝛾 ∈ Γ are real.

The Weil distribution is the linear functional 𝑊 : 𝐶∞
𝑐 (R) → C de�ned by

𝐶∞
𝑐 (R) ∋ 𝜓 ↦→ 𝑊 (𝜓) :=

∑
𝛾∈Γ

𝑚𝛾𝜓(−𝛾),

where 𝐶∞
𝑐 (R) is the space of all smooth and compactly supported functions

on R and

𝜓(𝑧) := (F𝜓) (𝑧) :=
∫ ∞

−∞
𝜓(𝑥) 𝑒𝑖𝑧𝑥 𝑑𝑥 (1.1)

is the Fourier transform. We omit the description of the topology of 𝐶∞
𝑐 (R),

since we do not need it later. Weil [19] (see also the note in [16, Section
3.2]) discovered that the RH is true if and only if the Weil distribution 𝑊 is
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2 M. Suzuki

nonnegative de�nite, that is,

𝑊 (𝜓 ∗ 𝜓) ≥ 0 for every 𝜓 ∈ 𝐶∞
𝑐 (R),

where

(𝜙 ∗ 𝜓) (𝑥) :=
∫ ∞

−∞
𝜙(𝑦)𝜓(𝑥 − 𝑦) 𝑑𝑦 and 𝜓(𝑥) := 𝜓(−𝑥).

Further, if the RH is true, the Weil distribution is positive de�nite, that is,
𝑊 (𝜓 ∗ 𝜓) > 0 for every nonzero 𝜓 ∈ 𝐶∞

𝑐 (R).
Using the Weil distribution, we de�ne the hermitian form ⟨·, ·⟩𝑊 on 𝐶∞

𝑐 (R)
by

⟨𝜓1, 𝜓2⟩𝑊 = 𝑊 (𝜓1 ∗ 𝜓2) =
∑
𝛾∈Γ

𝑚𝛾𝜓1 (−𝛾)(𝜓2)♯ (−𝛾), 𝜓1, 𝜓2 ∈ 𝐶∞
𝑐 (R), (1.2)

where

𝐹♯ (𝑧) := 𝐹 ( 𝑧̄)
for complex-valued functions of a complex variable. We often use this ♯ nota-
tion. We call this hermitian form the Weil hermitian form. Yoshida [21] has
studied the Weil hermitian form in detail by restricting it to a function space
on a �nite interval [−𝑎, 𝑎] (𝑎 > 0). The subject of the present paper is the
behavior of the Weil hermitian form on the whole line R. Yoshida proposed a
method to complete a function space on a �nite interval with respect to the
Weil hermitian form without assuming the RH, but it does not extend to the
whole line.

Suppose that the RH is true. Then the Weil hermitian form ⟨·, ·⟩𝑊 is pos-
itive de�nite on 𝐶∞

𝑐 (R). Therefore, the completion H𝑊 of the pre-Hilbert
space 𝐶∞

𝑐 (R) with respect to ⟨·, ·⟩𝑊 is de�ned. The �rst main result is an
explicit description of the Hilbert space H𝑊 . The elements of H𝑊 are equiv-
alence classes of Cauchy sequences with respect to ⟨·, ·⟩𝑊 , where two Cauchy
sequences are equivalent if their di�erence converges to zero with respect to
⟨·, ·⟩𝑊 . The representative of each class can be chosen from 𝐿2 (R) (Theorem
5.5 below). Such a result is expected from Lemmas 2 and 3 in [21]. Therefore,
we denote the class represented by 𝜓 ∈ 𝐿2 (R) as [𝜓] and often identify 𝜓 with
[𝜓].

For the concrete description of H𝑊 , we use a de Branges space and a model
space. The entire function 𝐸 𝜉 de�ned by

𝐸 𝜉 (𝑧) := 𝜉 (1/2 − 𝑖𝑧) + 𝜉 ′(1/2 − 𝑖𝑧) (1.3)

belongs to the Hermite�Biehler class under the RH ([10, Theorem 1]) and
hence it de�nes the de Branges space H(𝐸 𝜉 ), where the dash on the right-
hand side of (1.3) means di�erentiation of 𝜉 (𝑠) with respect to 𝑠. Furthermore,
the meromorphic function

Θ𝜉 (𝑧) := 𝐸♯
𝜉 (𝑧)/𝐸 𝜉 (𝑧) (1.4)

in C is a meromorphic inner function in the upper-half plane C+ = {𝑧 | ℑ(𝑧) >
0} under the RH, and therefore it de�nes the model space K(Θ𝜉 ). These
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On the Hilbert space derived from the Weil distribution 3

two Hilbert spaces H(𝐸 𝜉 ) and K(Θ𝜉 ) are isomorphic with ∥𝐸 𝜉𝐹∥H(𝐸𝜉 ) =
∥𝐹∥K(Θ𝜉 ) for every 𝐹 ∈ K(Θ) (see Section 2 for details on the Hermite�Biehler
class, de Branges spaces, and model spaces). Then the �rst result is stated as
follows.

Theorem 1.1 Assume that the RH holds. Let H𝑊 , H(𝐸 𝜉 ), and K(Θ𝜉 ) be
Hilbert spaces as above. Then, the map K(Θ𝜉 ) → H𝑊 de�ned by

𝐹 ↦→ [𝜓𝐹 ], 𝜓𝐹 := F−1 (𝐹)
is an isomorphism between Hilbert spaces and satis�es

∥𝐸 𝜉𝐹∥2H(𝐸𝜉 ) = ∥𝐹∥2K(Θ𝜉 ) = 𝜋⟨𝜓𝐹 , 𝜓𝐹 ⟩𝑊 = 𝜋⟨[𝜓𝐹 ], [𝜓𝐹 ]⟩𝑊

for 𝐹 ∈ K(Θ), where F−1 is the Fourier inversion on 𝐿2 (R).

This result is proved in Section 5. Note that Theorem1.1 provides an iso-
morphism as a Hilbert space, not as a reproducing kernel Hilbert space.
The space H𝑊 is a space of equivalence classes of functions, not a space of
functions.

Lagarias suggested after Theorem 1 of [10] that the norm of the de Branges
space H(𝐸 𝜉 ) and the Weil hermitian form (the spectral side of the �explicit
formula� of prime number theory) are similar. Theorem 1.1 shows that they
are naturally coincident. Hence, H𝑊 and H(𝐸 𝜉 ) must have an �arithmetic
structure� through the Weil explicit formula (3.3) below, but we will not
discuss this further.

Connes, Consani, and Moscovici [7, Section 4.8] also describes the relation
between the theory of de Branges spaces and the Weil hermitian form, but
their de Branges spaces B𝑆

𝜆 and H(𝐸 𝜉 ) have completely di�erent properties.
Due to the di�erence in the generators of the de Branges spaces, they are not
isomorphic, and a more obvious di�erence is that they have di�erent spectral
properties (see the second half of Section 6).

One of the remarkable properties of de Branges spaces is the structure of
subspaces. The set of all de Branges subspaces of a given de Branges space is
totally ordered by set-theoretical inclusion (see [20, pp. 500�506] for details).
Such a structure also comes to H𝑊 through the isomorphism of Theorem 1.1
as stated in Theorem 5.7 below.

Another notable property of de Branges spaces is the explicit description
of the family of self-adjoint extensions of the multiplication operator by an
independent variable 𝐹 (𝑧) ↦→ 𝑧𝐹 (𝑧). It enables us to interpret the set of zeros
Γ as the set of eigenvalues of a self-adjoint operator on H𝑊 . This means that
one of the Hilbert�Pólya spaces is the Hilbert space H𝑊 naturally obtained
from the Weil distribution. See Sections 2.3 and 6 for details.

As stated in Theorem 1.1, the Hilbert space H𝑊 is isomorphic to a de
Branges space under the RH. Moreover, representatives of classes in H𝑊 can
be chosen from the concrete subspace 𝑉 (0) of 𝐿2 (R) de�ned in (5.2) below. It is
surprising that such an explicit description of H𝑊 is possible, and interesting
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4 M. Suzuki

in itself. However, it is a matter of concern that it is not even possible to
de�ne H𝑊 , H(𝐸 𝜉 ), and K(Θ𝜉 ) without assuming the RH. Fortunately, by
considering a screw line of the screw function attached to 𝜁 (𝑠), which will
be explained in Sections 2.1 and 4.2, we can unconditionally construct two
special Hilbert spaces H0 and K0 (in Section 3.3) to be isomorphic to H𝑊

and K(Θ𝜉 ), respectively, under the RH (Theorem 5.6). The construction of
such spaces leads to an equivalence condition for the RH stated below. That
is the second main result.

In Selberg's answer to the second question in [1, p. 632], he states that the
construction of a space assuming the RH will not be useful for attacking the
RH. However, H0 and K0 may be useful in future research on the RH, since
they are de�ned without the RH.

Let 𝐿2 (R) be the usual 𝐿2-space on the real line with respect to the
Lebesgue measure. We de�ne

𝔖𝑡 (𝑧) :=
𝑖(1 + Θ♯

𝜉 (𝑧))
2

𝔓𝑡 (𝑧) (1.5)

with

𝔓𝑡 (𝑧) :=
4(𝑒𝑡/2 − 1)
1 + 2𝑖𝑧

+ 4(𝑒−𝑡/2 − 1)
1 − 2𝑖𝑧

+ 𝑒−𝑖𝑧𝑡 − 1

𝑖𝑧

𝜁 ′

𝜁

(
1

2
− 𝑖𝑧

)
+
∑
𝑛≤𝑒𝑡

Λ(𝑛)
√
𝑛

𝑒−𝑖𝑧 (𝑡−log 𝑛) − 1

𝑖𝑧

− 1

2𝑖𝑧

[
Γ′

Γ

(
1

4
− 𝑖𝑧

2

)
− Γ′

Γ

(
1

4

)]
− 1

2𝑖𝑧
𝑒−𝑡/2

[
Φ(𝑒−2𝑡 , 1, 12 (

1
2 − 𝑖𝑧)) −Φ(𝑒−2𝑡 , 1, 14 )

]
(1.6)

for a nonnegative real number 𝑡 and a complex number 𝑧, where Λ(𝑛) is the
von Mangoldt function de�ned by Λ(𝑛) = log 𝑝 if 𝑛 = 𝑝𝑘 with 𝑘 ∈ Z>0 and
Λ(𝑛) = 0 otherwise, and

Φ(𝑧, 𝑠, 𝑎) =
∞∑
𝑛=0

𝑧𝑛

(𝑛 + 𝑎)𝑠

is the Hurwitz�Lerch zeta-function. For negative 𝑡, we set 𝔖𝑡 (𝑧) := 𝔖−𝑡 (𝑧).
The de�nition of 𝔓𝑡 (𝑧) is quite complicated. However, using the set Γ of zeros
of 𝜉 (1/2− 𝑖𝑧), it can be expressed in the simple form (3.2) (see Proposition 3.1
below). Nevertheless, as a tool for stating an equivalent condition for the RH,
it seems preferable to have a representation that does not involve Γ. Thus, here
we adopt a version of (3.2) rewritten without Γ using Weil's explicit formula
(3.3). In Weil's explicit formula, the �rst, second, and the third-fourth lines
on the right-hand side of (1.6) correspond to the poles of the completed zeta-
function 𝜋−𝑠/2Γ(𝑠/2)𝜁 (𝑠), the non-archimedean part (Euler product), and the
archimedean part (gamma factors), respectively.

For this 𝔖𝑡 , we �rst obtain the following.
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https://doi.org/10.4153/S0008414X25101739 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101739


On the Hilbert space derived from the Weil distribution 5

Proposition 1.2 For any �xed 𝑡 ∈ R, 𝔖𝑡 (𝑧) belongs to 𝐿2 (R) as a function of
𝑧.

Proof See Section 3.2. ■

From this result, the mapping 𝑡 ↦→𝔖𝑡 (𝑧) from R to 𝐿2 (R) is de�ned. By the
uniformity of the 𝐿2-norm of𝔖𝑡 (𝑧) on a compact set of 𝑡 obtained in the proof
of Proposition 1.2 and Minkowski's integral inequality, the following holds.

Proposition 1.3 For 𝜙 ∈ 𝐶∞
𝑐 (R), we de�ne

P̂𝜙 (𝑧) :=
∫ ∞

−∞
𝔖♯

𝑡 (𝑧)𝜙(𝑡) 𝑑𝑡
(
=
∫ ∞

−∞
𝔖𝑡 ( 𝑧̄) 𝜙(𝑡) 𝑑𝑡

)
(1.7)

using (1.5). Then P̂𝜙 (𝑧) belongs to 𝐿2 (R).

Using the image of the composition P̂𝐷 := P̂ ◦ 𝐷 of the integral operator
P̂ and the di�erential operator

(𝐷𝜓) (𝑡) := 𝑖𝜓 ′(𝑡), (1.8)

we obtain the following equivalence condition for the RH.

Theorem 1.4 The RH is true if and only if the equality

∥�P𝐷𝜓 ∥2𝐿2 (R) = 𝜋⟨𝜓, 𝜓⟩𝑊 (1.9)

holds for all 𝜓 ∈ 𝐶∞
𝑐 (R). Furthermore, by choosing the test functions appro-

priately, if (1.9) holds for countably many choices of 𝜓's, then the RH
follows.

Proof See Section 4.3. ■

Equation (1.9) is reformulated to the following simpler form.

Corollary 1.5 De�ne the subspace 𝑉◦ (0) of 𝐿2 (R) by

𝑉◦ (0) :=
{
F−1�P𝐷𝜓

���𝜓 ∈ 𝐶∞
𝑐 (R)

}
.

Then the RH is true if and only if the equality

2∥𝜓∥2𝐿2 (R) = ⟨𝜓, 𝜓⟩𝑊 (1.10)

holds for all 𝜓 ∈ 𝑉◦ (0).

Proof See Section 4.3 and Theorem 5.6. ■

The advantage of Theorem 1.4 and Corollary 1.5 is that it has turned
the criterion of the RH from a set of inequalities like Weil's criterion into a
set of equalities. It should also be noted that equations (1.9) and (1.10) can
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6 M. Suzuki

be expressed without zeros of 𝜉 (1/2 − 𝑖𝑧) by (1.5) and (1.6). Furthermore,
equations (1.9) and (1.10) claim that the nonnegativity of Weil's hermitian
form is explained by the nonnegativity of the 𝐿2-norm.

In the following sections, �rst, in Section 2, we brie�y review necessary
notions such as screw functions, screw lines, the Hermite�Biehler class, de
Branges spaces, and model spaces. Then, in Section 3, we state and prove
unconditional results that we need to prove the main results. Moreover, we
unconditionally de�ne two Hilbert spaces H0 and K0 that agree with the
Hilbert spaces H𝑊 and K(Θ), respectively, under the RH.

In Section 4, we show that 𝔖𝑡 (𝑧) in (1.5) gives a screw line of the screw
function corresponding to the Riemann zeta-function under the RH (Theorem
4.2). Furthermore, we prove Theorem 1.4 and Corollary 1.5. The strategy of
the proof of Theorem 4.2 is basically the same as that of [17, Theorem 1.1],
with Proposition 4.1 playing an essential role in both cases. To carry this out,
the rewriting of (1.5) into (3.6), prepared in Section 3 using Weil's explicit
formula, corresponds to the transformation from (1.7) to (3.6) in [17], although
the technical details of the calculations di�er considerably. On the other hand,
the analytic or geometric meaning of the functions giving the norms was
unclear in [17], whereas in the present paper these functions have a clear
interpretation as a screw line. Furthermore, as an advantage of employing the
screw line 𝔖𝑡 (𝑧), we obtain Theorem 1.4, for which no analogue was obtained
in [17].

In Section 5, we prove Theorem 1.1 in a more detailed form. In addition, we
prove that H0 = H𝑊 and K0 = K(Θ) under the RH. Afterwards, we explain
that the Hilbert space H𝑊 is one of the Hilbert�Pólya spaces in Section 6.
Finally, we mention two special values of 𝔖𝑡 (𝑧) in Section 7 as an appendix.

2 Review on necessary notions

2.1 Screw functions and screw lines

In this and the next part, we refer to [9, Sections 5 and 12]. See also its refer-
ences for details. Following Kre��n, we denote by G∞ the space of all continuous
functions 𝑔(𝑡) on R such that 𝑔(−𝑡) = 𝑔(𝑡) and the kernel

𝐺𝑔 (𝑡, 𝑢) := 𝑔(𝑡 − 𝑢) − 𝑔(𝑡) − 𝑔(−𝑢) + 𝑔(0) (2.1)

is nonnegative de�nite on R, that is,
∑𝑛

𝑖, 𝑗=1 𝐺𝑔 (𝑡𝑖 , 𝑡 𝑗 ) 𝜉𝑖𝜉 𝑗 ≥ 0 for all 𝑛 ∈ N,
𝑡𝑖 ∈ R, and 𝜉𝑖 ∈ C (𝑖 = 1, 2, ..., 𝑛). Functions belonging to G∞ are called screw
functions on R.

If an (even) real-valued function 𝑔(𝑡) is a screw function, then there exists a
Hilbert space H and a continuous mapping 𝑡 ↦→ 𝑥(𝑡) from R into H such that

⟨𝑥(𝑡 + 𝑣) − 𝑥(𝑣), 𝑥(𝑢 + 𝑣) − 𝑥(𝑣)⟩H
is independent of 𝑣 ∈ R for all 𝑡, 𝑢 ∈ R and the equality ⟨𝑥(𝑡) − 𝑥(0), 𝑥(𝑢) −
𝑥(0)⟩H = 𝐺𝑔 (𝑡, 𝑢) holds. Therefore, ∥𝑥(𝑡) − 𝑥(0)∥2H = −2𝑔(𝑡) if 𝑔(0) = 0. A
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On the Hilbert space derived from the Weil distribution 7

mapping 𝑥 : R→ H endowed with the translation-invariance described above
is called a screw line for 𝑔(𝑡).

2.2 Hilbert spaces associated with screw functions

Each 𝑔 ∈ G∞ de�nes a nonnegative de�nite hermitian form on R by

⟨𝜙1, 𝜙2⟩𝐺𝑔 :=
∫ ∞

−∞

∫ ∞

−∞
𝐺𝑔 (𝑡, 𝑢)𝜙1 (𝑢)𝜙2 (𝑡) 𝑑𝑢𝑑𝑡. (2.2)

According to [9, Section 5], we denote by L(𝐺𝑔) the space 𝐶0 (R) of all

continuous and compactly supported functions 𝜙 on R such that 𝜙(0) = 0
equipped with the hermitian inner product ⟨·, ·⟩𝐺𝑔 . We also denote by H(𝐺𝑔)
the completion of the factor space L(𝐺𝑔)/L◦ (𝐺𝑔), where L◦ (𝐺𝑔) = {𝜙 ∈
L(𝐺𝑔) | ⟨𝜙, 𝜙⟩𝐺𝑔 = 0}. Note that even if ⟨·, ·⟩𝐺𝑔 is positive de�nite on L(𝐺𝑔),
that is, L◦ (𝐺𝑔) = {0}, there possibly exists a sequence (𝜙𝑛)𝑛 of L(𝐺𝑔) such
that 𝜙𝑛 → 0 as 𝑛 → ∞ with respect to ⟨·, ·⟩𝐺𝑔 . The completion H(𝐺𝑔) is a
space of equivalence classes of Cauchy sequences with respect to ⟨·, ·⟩𝐺𝑔 . Two
Cauchy sequences are equivalent if their di�erence converges to zero with
respect to ⟨·, ·⟩𝐺𝑔 . We denote by [𝜙] ∈ H (𝐺𝑔) the equivalence class repre-
sented by 𝜙. In general, elements of H(𝐺𝑔) are not necessarily represented by
functions unlike H𝑊 (cf. [9, Section 4.3]).

Every 𝑔 ∈ G∞ admits a representation

𝑔(𝑡) = 𝑔(0) + 𝑖𝑏𝑡 +
∫ ∞

−∞

(
𝑒𝑖𝜆𝑡 − 1 − 𝑖𝜆𝑡

1 + 𝜆2

)
𝑑𝜏(𝜆)
𝜆2

(2.3)

with 𝑏 ∈ R and a measure 𝜏 on R such that
∫ ∞
−∞ 𝑑𝜏(𝜆)/(1 + 𝜆2) < ∞ and vice

versa. If 𝑔(𝑡) is real-valued, 𝑏 = 0. Without loss of generality, we suppose that
𝑔(0) = 0.

We de�ne

Φ1 (𝜙, 𝜆) :=
∫ ∞

−∞

𝑒𝑖𝜆𝑥 − 1

𝜆
𝜙(𝑥) 𝑑𝑥 =

𝜙(𝜆) − 𝜙(0)
𝜆

=
𝜙(𝜆)
𝜆

for 𝜙 ∈ L(𝐺𝑔). Then, ⟨𝜙1, 𝜙2⟩𝐺𝑔 = ⟨Φ1 (𝜙1),Φ1 (𝜙2)⟩𝐿2 (𝜏) for 𝜙1, 𝜙2 ∈ L(𝐺𝑔)
and Φ1 establishes an isomorphism between H(𝐺𝑔) and 𝐿2 (𝜏).

2.3 De Branges spaces

In this part, we refer to [14, 20]. See also those references for details. Let
𝐻2 := 𝐻2 (C+) = F(𝐿2 (0,∞)) be the Hardy space in the upper half-plane. As
usual, we identify 𝐻2 with a closed subspace of 𝐿2 (R) via boundary values.
Then, the inner product of 𝐻2 coincides with the standard inner product of
𝐿2 (R).

The Hermite�Biehler class consists of entire functions 𝐸 satisfying |𝐸♯ (𝑧) | <
|𝐸 (𝑧) | for all 𝑧 ∈ C+. For each entire function 𝐸 belonging to the Hermite�
Biehler class, the de Branges space H(𝐸) is de�ned as a Hilbert space
consisting of entire functions 𝐹 (𝑧) such that both 𝐹 (𝑧)/𝐸 (𝑧) and 𝐹♯ (𝑧)/𝐸 (𝑧)
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belong to 𝐻2 and have the norm

∥𝐹∥H(𝐸) := ∥𝐹/𝐸 ∥𝐿2 (R) . (2.4)

The multiplication operator M by an independent variable is de�ned by
𝔇(M) = {𝐹 (𝑧) ∈ H (𝐸) | 𝑧𝐹 (𝑧) ∈ H (𝐸)} and (M𝐹)(𝑧) = 𝑧𝐹 (𝑧) for 𝐹 ∈ 𝔇(M).
The domain 𝔇(M) is dense in H(𝐸) if and only if

𝑆𝜃 (𝑧) :=
𝑖

2
(𝑒𝑖 𝜃𝐸 (𝑧) − 𝑒−𝑖 𝜃𝐸♯ (𝑧))

does not belong to H(𝐸) for all 𝜃 ∈ [0, 𝜋) ([14, Theorem 11]). The particular
two 𝜃 cases are often written as 𝐴(𝑧) := −𝑆𝜋/2 (𝑧) and 𝐵(𝑧) := 𝑆0 (𝑧).

If 𝔇(M) is dense in H(𝐸), all self-adjoint extensions of M are parametrized
by 𝜃 ∈ [0, 𝜋) and are described as follows. The domain of M𝜃 is

𝔇(M𝜃 ) =
{
𝐺 (𝑧) = 𝑆𝜃 (𝑤0)𝐹 (𝑧) − 𝑆𝜃 (𝑧)𝐹 (𝑤0)

𝑧 − 𝑤0

���� 𝐹 (𝑧) ∈ H (𝐸)
}
, (2.5)

and the operation is de�ned by

M𝜃𝐺 (𝑧) = 𝑧 𝐺 (𝑧) + 𝐹 (𝑤0)𝑆𝜃 (𝑧), (2.6)

where 𝑤0 is a �xed complex number with 𝑆𝜃 (𝑤0) ≠ 0 ([8, Propositions 4.6
and 6.1]). The domain 𝔇(M𝜃 ) is independent of the choice of the number 𝑤0.
For a �xed 𝜃 ∈ [0, 𝜋), we con�rm that 𝐺 (𝑧) = 𝑆𝜃 (𝑧)/(𝑧 − 𝛾) belongs to 𝔇(M𝜃 )
by taking

𝐹 (𝑧) = 𝑆𝜃 (𝑧)
𝑆𝜃 (𝑤0)

𝛾 − 𝑤0

𝑧 − 𝛾
for every zero 𝛾 of 𝑆𝜃 (𝑧) and is an eigenfunction of M𝜃 with the eigenvalue
𝛾. Further, {𝑆𝜃 (𝑧)/(𝑧 − 𝛾) | 𝑆𝜃 (𝛾) = 0} forms an orthogonal basis of H(𝐸) ([3,
Theorem 22]).

2.4 Model subspaces

In this part, we refer to [11, Section 2], [15, Section 3.5] and [17, Section 3.1].
See also those references for details.

Let 𝐻∞ = 𝐻∞ (C+) be the space of all bounded analytic functions in C+. A
function Θ ∈ 𝐻∞ is called an inner function in C+ if lim𝑦→0+ |Θ(𝑥 + 𝑖𝑦) | = 1
for almost all 𝑥 ∈ R. For an inner function Θ, a model space K(Θ) is de�ned
as the orthogonal complement K(Θ) = 𝐻2 ⊖ Θ𝐻2 and has the alternative
representation

K(Θ) = 𝐻2 ∩ Θ𝐻2, (2.7)

where Θ𝐻2 = {Θ(𝑧)𝐹 (𝑧) | 𝐹 ∈ 𝐻2} and 𝐻2 = 𝐻2 (C−) is the Hardy space in the
lower half-plane. The model space K(Θ) is a subspace of 𝐿2 (R) as a Hilbert
space. In particular, the inner product of K(Θ) matches that of 𝐿2 (R) on the
real line.

If an inner function Θ in C+ extends to a meromorphic function in C, then
it is called a meromorphic inner function in C+. For any meromorphic inner
function Θ, there exists 𝐸 of the Hermite�Biehler class such that Θ = 𝐸♯/𝐸 .
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The de Branges space H(𝐸) is isometrically isomorphic to K(Θ) by 𝐹 (𝑧) ↦→
𝐸 (𝑧)𝐹 (𝑧). In particular, H(𝐸) = 𝐸 𝐻2 ∩ 𝐸♯ 𝐻2

For a meromorphic inner function Θ, let 𝜇Θ be the positive discrete measure
on R supported on 𝜎(Θ) = {𝑥 ∈ R |Θ(𝑥) = −1} and

𝜇Θ (𝑥) =
2𝜋

|Θ′(𝑥) | . (2.8)

Then the restriction map 𝐹 ↦→ 𝐹 |𝜎 (Θ) is an isometric operator from K(Θ) to
𝐿2 (𝜇Θ) ([11, Theorem 2.1]). The isometric property of the map implies that
the family of functions

𝑓𝛾 (𝑧) =
√

2

𝜋 |Θ′(𝛾) |
1 + Θ(𝑧)
2(𝑧 − 𝛾) =

√
2

𝜋 |Θ′(𝛾) |
𝐴(𝑧)

(𝑧 − 𝛾)𝐸 (𝑧) (2.9)

parametrized by all zeros 𝛾 of 𝐴(𝑧) = −𝑆𝜋/2 (𝑧) forms an orthonormal basis of
K(Θ) if 𝔇(M) is dense in H(𝐸).

3 Unconditional results

Throughout this and later sections, we denote 𝐸 = 𝐸 𝜉 and Θ = Θ𝜉 =

𝐸♯
𝜉 /𝐸 𝜉 for functions de�ned in (1.3) and (1.4), respectively. Otherwise, it is

mentioned.

3.1 Expansion of𝔓𝑡 (𝑧) over the zeros

For the basic properties of the Riemann zeta-function, we refer to [18]. By the
two functional equations 𝜉 (𝑠) = 𝜉 (1 − 𝑠) and 𝜉 (𝑠) = 𝜉♯ (𝑠), if 𝛾 belongs to the
set of zeros Γ, then both −𝛾 and 𝛾 also belong to Γ with the same multiplicity.
On the other hand, |ℑ(𝛾) | < 1/2 for every 𝛾 ∈ Γ, since all zeros of 𝜉 (𝑠) lie in
the strip 0 < ℜ(𝑠) < 1. For 𝐸 (𝑧) of (1.3), we de�ne

𝐴(𝑧) := (𝐸 (𝑧) + 𝐸♯ (𝑧))/2 (3.1)

as in Section 2.3. Then 𝐴(𝑧) = 𝜉 (1/2 − 𝑖𝑧), because 𝐸♯ (𝑧) = 𝐸 ( 𝑧̄) = 𝜉 (1/2 −
𝑖𝑧) − 𝜉 ′(1/2− 𝑖𝑧) by functional equations of 𝜉 (𝑠). Therefore, the set Γ coincides
with the set of all zeros of both 𝐴(𝑧) and 1 + Θ(𝑧). We de�ne

𝑃𝑡 (𝑧) :=
∑
𝛾∈Γ

𝑚𝛾
𝑒−𝑖𝛾𝑡 − 1

𝛾
· 1

𝑧 − 𝛾
(3.2)

for nonnegative 𝑡. For negative 𝑡, we set 𝑃𝑡 (𝑧) := 𝑃−𝑡 (𝑧). The series on the
right-hand side of (3.2) converges absolutely and uniformly on every compact
subset of C \ Γ, since ∑

𝛾∈Γ 𝑚𝛾 |𝛾 |−1−𝛿 < ∞ for any 𝛿 > 0, because 𝐴(𝑧) is an
entire function of order one. Therefore, 𝑃𝑡 (𝑧) is a meromorphic function on C
with Γ as the set of all poles.

Proposition 3.1 Let 𝔓𝑡 (𝑧) and 𝑃𝑡 (𝑧) be meromorphic functions de�ned by
(1.6) and (3.2), respectively. Then, both coincide.
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Proof For 𝑡 ≥ 0 and 𝑧 ∈ C+, we de�ne

𝜙𝑧,𝑡 (𝑥) =

(𝑖𝑧)−1 𝑒𝑖𝑧𝑥 (𝑒−𝑖𝑧𝑡 − 1), 𝑡 < 𝑥,

(𝑖𝑧)−1 𝑒𝑖𝑧𝑥 (𝑒−𝑖𝑧𝑥 − 1), 0 ≤ 𝑥 ≤ 𝑡,

0, 𝑥 < 0.

The main tool for the proof is the Weil explicit formula

lim
𝑋→∞

∑
𝛾∈Γ
|𝛾 |≤𝑋

𝑚𝛾

∫ ∞

−∞
𝜙(𝑥) 𝑒−𝑖𝛾𝑥 𝑑𝑥

=
∫ ∞

−∞
𝜙(𝑥) (𝑒𝑥/2 + 𝑒−𝑥/2)𝑑𝑥 −

∞∑
𝑛=1

Λ(𝑛)
√
𝑛

𝜙(log 𝑛) −
∞∑
𝑛=1

Λ(𝑛)
√
𝑛

𝜙(− log 𝑛)

− (log 4𝜋 + 𝛾0)𝜙(0) −
∫ ∞

0

{
𝜙(𝑥) + 𝜙(−𝑥) − 2𝑒−𝑥/2𝜙(0)

} 𝑒𝑥/2𝑑𝑥

𝑒𝑥 − 𝑒−𝑥

(3.3)
which is obtained from the explicit formula in [4, p. 186] by taking 𝜙(𝑥) =
𝑒𝑥/2 𝑓 (𝑒𝑥) for test functions 𝑓 (𝑡) in that formula with the conditions for 𝑓 (𝑡)
in [5, Section 3], where 𝛾0 is the Euler�Mascheroni constant. (Note that the
formula in [5] has two typographical errors in the second line of the right-hand
side.)

As is easily seen, Weil's explicit formula can be applied to 𝜙(𝑥) = 𝜙𝑧,𝑡 (𝑥).
We have ∫ ∞

−∞
𝜙𝑧,𝑡 (𝑥) 𝑒−𝑖𝛾𝑥 𝑑𝑥 =

𝑒−𝑖𝛾𝑡 − 1

𝛾
· 1

𝑧 − 𝛾
when ℑ(𝑧) > ℑ(𝛾).

Therefore, the left-hand side of Weil's explicit formula for 𝜙𝑧,𝑡 (𝑥) gives 𝑃𝑡 (𝑧)
of (3.2) when ℑ(𝑧) > 1/2. Hence, if it is shown that the right-hand side is
equal to 𝔓𝑡 (𝑧) for ℑ(𝑧) > 1/2, then the conclusion of the proposition follows
by analytic continuation.

It is easy to verify∫ ∞

−∞
𝜙𝑧,𝑡 (𝑥)(𝑒𝑥/2 + 𝑒−𝑥/2)𝑑𝑥 =

4(𝑒𝑡/2 − 1)
1 + 2𝑖𝑧

+ 4(𝑒−𝑡/2 − 1)
1 − 2𝑖𝑧

and

∞∑
𝑛=1

Λ(𝑛)
√
𝑛

𝜙𝑧,𝑡 (log 𝑛) =
1

𝑖𝑧

∑
𝑛≤𝑒𝑡

Λ(𝑛)
√
𝑛

(1 − 𝑛𝑖𝑧) + 𝑒−𝑖𝑧𝑡 − 1

𝑖𝑧

∑
𝑡<log 𝑛

Λ(𝑛)
𝑛1/2−𝑖𝑧

= −
∑
𝑛≤𝑒𝑡

Λ(𝑛)
√
𝑛

𝑒−𝑖𝑧 (𝑡−log 𝑛) − 1

𝑖𝑧
− 𝑒−𝑖𝑧𝑡 − 1

𝑖𝑧

𝜁 ′

𝜁

(
1

2
− 𝑖𝑧

)
,

∞∑
𝑛=1

Λ(𝑛)
√
𝑛

𝜙𝑧,𝑡 (− log 𝑛) = 0, 𝜙𝑧,𝑡 (0) = 0

for ℑ(𝑧) > 1/2 by direct calculation.
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Therefore, the remaining task is to calculate the �fth term on the right-hand
side. We split it into

∫ ∞
𝑡

and
∫ 𝑡

0
. For the �rst integral,∫ ∞

𝑡

{
𝜙𝑧,𝑡 (𝑥) + 𝜙𝑧,𝑡 (−𝑥) − 2𝑒−𝑥/2𝜙𝑧,𝑡 (0)

} 𝑒𝑥/2𝑑𝑥

𝑒𝑥 − 𝑒−𝑥

=
𝑒−𝑖𝑧𝑡 − 1

𝑖𝑧

∫ ∞

𝑡
𝑒𝑖𝑧𝑥

𝑒𝑥/2𝑑𝑥

𝑒𝑥 − 𝑒−𝑥
=

𝑒−𝑖𝑧𝑡 − 1

𝑖𝑧

∫ ∞

𝑡
𝑒𝑖𝑧𝑥 𝑒−𝑥/2

∞∑
𝑛=0

𝑒−2𝑛𝑥 𝑑𝑥

=
𝑒−𝑖𝑧𝑡 − 1

2𝑖𝑧
𝑒−𝑡 (

1
2
−𝑖𝑧)

∞∑
𝑛=0

𝑒−2𝑛𝑡

𝑛 + 1
2 (

1
2 − 𝑖𝑧)

=
𝑒−𝑖𝑧𝑡 − 1

2𝑖𝑧
𝑒−𝑡 (

1
2
−𝑖𝑧)Φ(𝑒−2𝑡 , 1, 12 (

1
2 − 𝑖𝑧)).

For the second integral,∫ 𝑡

0

{
𝜙𝑧,𝑡 (𝑥) + 𝜙𝑧,𝑡 (−𝑥) − 2𝑒−𝑥/2𝜙𝑧,𝑡 (0)

} 𝑒𝑥/2𝑑𝑥

𝑒𝑥 − 𝑒−𝑥

= − 1

𝑖𝑧

∫ 𝑡

0

(𝑒𝑖𝑧𝑥 − 1) 𝑒𝑥/2𝑑𝑥

𝑒𝑥 − 𝑒−𝑥
= − 1

𝑖𝑧

∫ 𝑡

0

(𝑒𝑖𝑧𝑥 − 1) 𝑒−𝑥/2
∞∑
𝑛=0

𝑒−2𝑛𝑥 𝑑𝑥.

To handle the right-hand side, we calculate as

∫ 𝑡

0

(𝑒𝑖𝑧𝑥 − 1) 𝑒−𝑥/2
𝑁∑
𝑛=0

𝑒−2𝑛𝑥 𝑑𝑥

=
1

2

𝑁∑
𝑛=0

[
1 − 𝑒−2𝑡 (𝑛+

1
2
( 1
2
−𝑖𝑧))

𝑛 + 1
2 (

1
2 − 𝑖𝑧)

− 1 − 𝑒−2𝑡 (𝑛+
1
4
)

𝑛 + 1
4

]
= −1

2
𝑒−𝑡 (

1
2
−𝑖𝑧)

𝑁∑
𝑛=0

𝑒−2𝑡𝑛

𝑛 + 1
2 (

1
2 − 𝑖𝑧)

+ 1

2
𝑒−𝑡/2

𝑁∑
𝑛=0

𝑒−2𝑡𝑛

𝑛 + 1
4

+ 1

2

𝑁∑
𝑛=0

[
1

𝑛 + 1
2 (

1
2 − 𝑖𝑧)

− 1

𝑛 + 1
4

]
= −1

2
𝑒−𝑡 (

1
2
−𝑖𝑧)Φ(𝑒−2𝑡 , 1, 12 (

1
2 − 𝑖𝑧)) + 1

2
𝑒−𝑡/2Φ(𝑒−2𝑡 , 1, 14 )

− 1

2

[
Γ′

Γ

(
1

4
− 𝑖𝑧

2

)
− Γ′

Γ

(
1

4

)]
+𝑂 (𝑒−2𝑁𝑡 ) +𝑂 (𝑁−1)

using the well-known series expansion

Γ′

Γ
(𝑤) = −𝛾0 −

∞∑
𝑛=0

(
1

𝑤 + 𝑛
− 1

𝑛 + 1

)
, (3.4)
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where the implied constant depends on 𝑡 and 𝑧. Therefore, we obtain∫ 𝑡

0

{
𝜙𝑧,𝑡 (𝑥) + 𝜙𝑧,𝑡 (−𝑥) − 2𝑒−𝑥/2𝜙𝑧,𝑡 (0)

} 𝑒𝑥/2𝑑𝑥

𝑒𝑥 − 𝑒−𝑥

=
1

2𝑖𝑧
𝑒−𝑡 (

1
2
−𝑖𝑧)Φ(𝑒−2𝑡 , 1, 12 (

1
2 − 𝑖𝑧)) − 1

2𝑖𝑧
𝑒−𝑡/2Φ(𝑒−2𝑡 , 1, 14 )

+ 1

2𝑖𝑧

[
Γ′

Γ

(
1

4
− 𝑖𝑧

2

)
− Γ′

Γ

(
1

4

)]
.

Combining the results for
∫ ∞
𝑡

and
∫ 𝑡

0
,∫ ∞

0

{
𝜙𝑧,𝑡 (𝑥) + 𝜙𝑧,𝑡 (−𝑥) − 2𝑒−𝑥/2𝜙𝑧,𝑡 (0)

} 𝑒𝑥/2𝑑𝑥

𝑒𝑥 − 𝑒−𝑥

=
1

2𝑖𝑧
𝑒−𝑡/2

[
Φ(𝑒−2𝑡 , 1, 12 (

1
2 − 𝑖𝑧)) −Φ(𝑒−2𝑡 , 1, 14 )

]
+ 1

2𝑖𝑧

[
Γ′

Γ

(
1

4
− 𝑖𝑧

2

)
− Γ′

Γ

(
1

4

)]
.

From the calculation of the �ve terms on the right-hand side above, we con-
clude that the right-hand side of the Weil explicit formula for 𝜙𝑧,𝑡 (𝑥) equals
(1.6). ■

3.2 Proof of Proposition 1.2

We have |Θ(𝑧) | = 1 for every 𝑧 ∈ R by de�nition. In fact, zeros of 𝐸 (𝑧) in the
denominator cancel out in the numerator 𝐸♯ (𝑧), even if they exist. Further,
𝔓𝑡 (𝑧) has poles of order one at 𝛾 ∈ Γ, but 𝔖𝑡 (𝑧) is holomorphic there, since
(1+Θ(𝑧))/2 = 𝐴(𝑧)/𝐸 (𝑧) = 𝐴(𝑧)/(𝐴(𝑧)+𝑖𝐴′(𝑧)) = (𝑧−𝛾) (−𝑖/𝑚𝛾+𝑜(1)) near 𝑧 =
𝛾 by direct calculation. Hence, 𝔖𝑡 (𝑧) is bounded and holomorphic on the real
line by (1.5), (3.2), and Proposition 3.1. On the other hand, in the horizontal
strip |ℑ(𝑧) | ≤ 1/2, we have the well-known estimate (Γ′/Γ) (1/4+𝑖𝑧/2) ≪ log |𝑧 |
and

𝜁 ′

𝜁

(
1

2
− 𝑖𝑧

)
=

∑
|ℜ(𝑧)−𝛾 | ≤1

𝑖

𝑧 − 𝛾
+𝑂 (log |𝑧 |)

by [18, Theorem 9.6 (A)]. In both estimates, implied constants are uniform
in |ℑ(𝑧) | ≤ 1/2. The number of zeros 𝛾 ∈ Γ satisfying |ℜ(𝑧) − 𝛾 | ≤ 1 is
𝑂 (log |𝑧 |) counting with multiplicity by [18, Theorem 9.2]. Therefore,𝔖𝑡 (𝑧) ≪
|𝑧 |−1 log |𝑧 | as |𝑧 | → ∞ with an implied constant depending on a compact set of
𝑡 by (1.6). Hence 𝔖𝑡 (𝑧) belongs to 𝐿2 (R) and the norm is uniformly bounded
on a compact set of 𝑡. □

3.3 Two special Hilbert spaces

We �rst introduce the set of meromorphic functions

𝐹𝛾 (𝑧) :=
√

𝑚𝛾

𝜋

𝑖(1 + Θ(𝑧))
2(𝑧 − 𝛾) , 𝛾 ∈ Γ. (3.5)
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Then, we have

𝔖𝑡 (𝑧) =
∑
𝛾∈Γ

√
𝜋𝑚𝛾

𝑒−𝑖𝛾𝑡 − 1

𝛾
𝐹♯
𝛾 (𝑧) (3.6)

by Proposition 3.1. Therefore,

P̂𝜙 (𝑧) =
∑
𝛾∈Γ

√
𝜋𝑚𝛾

𝜙(𝛾) − 𝜙(0)
𝛾

𝐹𝛾 (𝑧) (3.7)

for any 𝜙 ∈ 𝐶∞
𝑐 (R) by de�nition (1.7) and the symmetry 𝛾 ↦→ 𝛾 of Γ with

𝑚𝛾 = 𝑚𝛾. This implies �P𝐷𝜓 (𝑧) =
∑
𝛾∈Γ

√
𝜋𝑚𝛾 𝜓(𝛾) 𝐹𝛾 (𝑧) (3.8)

for any 𝜓 ∈ 𝐶∞
𝑐 (R), since (𝐷̂𝜓(𝑧) − 𝐷̂𝜓(0))/𝑧 = 𝐷̂𝜓(𝑧)/𝑧 = 𝜓(𝑧) for 𝐷 in (1.8).

On the other hand, we de�ne the norm ∥ ∥0 on 𝐶∞
𝑐 (R) by

∥𝜓∥0 :=
1
√
𝜋
∥�P𝐷𝜓 ∥𝐿2 (R) , 𝜓 ∈ 𝐶∞

𝑐 (R) (3.9)

based on Proposition 1.3. Then, we have:

Lemma 3.2 Equation (3.9) de�nes a norm on 𝐶∞
𝑐 (R).

Proof We obtain ∥𝜓1 + 𝜓2∥0 ≤ ∥𝜓1∥0 + ∥𝜓2∥0 and ∥𝑘𝜓∥0 = |𝑘 |∥𝜓∥0 for
𝜓1, 𝜓2, 𝜓 ∈ 𝐶∞

𝑐 (R) and 𝑘 ∈ C by the obvious linearity of P̂𝐷. Therefore, the
proof is completed if it is shown that ∥𝜓∥0 = 0 implies 𝜓 = 0. If ∥𝜓∥0 = 0, the
image �P𝐷𝜓 (𝑧) is identically zero. The latter means that 𝜓(𝛾) = 0 for all 𝛾 ∈ Γ,
because, if not, there must exist a sequence (𝑐𝛾)𝛾∈Γ such that

∑
𝛾∈Γ 𝑐𝛾 (𝑧−𝛾)−1

is identically zero on C by (3.5) and (3.8), but it is impossible. If 𝜓(𝛾) = 0 for
all 𝛾 ∈ Γ, it implies that 𝜓 is identically zero by [16, Lemma 2.1]. ■

By Lemma 3.2, we can complete the space 𝐶∞
𝑐 (R) with respect to ∥ ∥0. We

denote the completion by H0. On the other hand, we denote the 𝐿2-closure
of the image P̂𝐷 (𝐶∞

𝑐 (R)) in 𝐿2 (R) by K0. Then, two Hilbert spaces H0 and

K0 are isometrically isomorphic up to a constant multiple. The map P̂𝐷 from
𝐶∞
𝑐 (R) to P̂𝐷 (𝐶∞

𝑐 (R)) ⊂ 𝐿2 (R) extends to the map from H0 to K0 by (3.9).
As proved in Theorem 5.6 below, H0 = H𝑊 and K0 = K(Θ) under the RH.

4 A screw line of the Riemann zeta-function

4.1 A special orthonormal basis

Assuming the RH is true, 𝐸 = 𝐸 𝜉 belongs to the Hermite�Biehler class ([10,
Theorem 1]), and thus Θ = Θ𝜉 is a meromorphic inner function. There-
fore, they de�ne the de Branges space H(𝐸) and the model space K(Θ),
respectively. We need the following result for the later discussion.
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Proposition 4.1 Assume that the RH is true. Then, the family (3.5) forms
an orthonormal basis of the Hilbert space K(Θ). Furthermore,

Θ′(𝛾)
2

= − 𝑖

𝑚𝛾
(4.1)

and

𝐹𝛾 (𝛾) =
1

√
𝑚𝛾𝜋

, 𝐹𝛾 (𝛾′) = 0 for every 𝛾 ∈ Γ, 𝛾′ ∈ Γ \ {𝛾}. (4.2)

Proof See [17, Proposition 3.2] and its proof. ■

4.2 Screw line of the Riemann zeta-function

We de�ne the even real-valued function 𝑔𝜉 (𝑡) on the real line by

𝑔𝜉 (𝑡) := −4(𝑒𝑡/2 + 𝑒−𝑡/2 − 2) +
∑
𝑛≤𝑒𝑡

Λ(𝑛)
√
𝑛

(𝑡 − log 𝑛)

− 𝑡

2

[
Γ′

Γ

(
1

4

)
− log 𝜋

]
− 1

4

(
Φ(1, 2, 1/4) − 𝑒−𝑡/2Φ(𝑒−2𝑡 , 2, 1/4)

) (4.3)

for nonnegative 𝑡. We easily obtain 𝑔𝜉 (0) = 0. Then, 𝑔𝜉 (𝑡) is a screw function
on R under the RH as stated in [16, Theorem 1.2]. One of the screw lines
corresponding to 𝑔𝜉 (𝑡) can be constructed as follows.

Let 𝜏𝜉 be the nonnegative measure representing 𝑔𝜉 (𝑡) as in (2.3) under
the RH. Then the Hilbert space H = 𝐿2 (𝜏𝜉 ) and the mapping 𝑡 ↦→ 𝑥(𝑡) :=
(𝑒𝑖𝑡𝛾−1)/𝛾 provide a screw line satisfying ∥𝑥(𝑡)−𝑥(0)∥2H = −2𝑔𝜉 (𝑡) ([9, Section
12]). This spectral construction of the screw line is important and useful in
analysis, but it is of limited use for studying the nontrivial zeros of 𝜁 (𝑠)
without assuming the RH. In the following, we show that 𝔖𝑡 gives a screw
line of 𝑔𝜉 (𝑡). In contrast to the spectral screw line above, this screw line can
be used to study H𝑊 , as will be done later.

Theorem 4.2 Assume the RH is true and let 𝑔(𝑡) = 𝑔𝜉 (𝑡). Then, the mapping
𝑡 ↦→ 𝜋−1/2𝔖𝔱 (𝑧) from R to 𝐿2 (R) is a screw line of 𝑔(𝑡). That is,

1

𝜋
⟨𝔖𝑡 ,𝔖𝑢⟩𝐿2 (R) = 𝐺𝑔 (𝑡, 𝑢) (4.4)

holds for 𝑡, 𝑢 ∈ R.

Proof The sum of coe�cients on the right-hand side of (3.6) is convergent
in 𝐿2-sense: ∑

𝛾∈Γ

����√𝜋𝑚𝛾
𝑒−𝑖𝛾𝑡 − 1

𝛾

����2 ≤ 𝜋
∑
𝛾∈Γ

𝑚𝛾

|𝛾 |2 < ∞.
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Therefore, applying Proposition 4.1 to 𝔖𝑡 (𝑧) via formula (3.6), we �nd that
it belongs to the subspace K(Θ) of 𝐿2 (R) and

1

𝜋
⟨𝔖𝑡+𝑣 −𝔖𝑣 ,𝔖𝑢+𝑣 −𝔖𝑣⟩𝐿2 (R) =

∑
𝛾∈Γ

𝑚𝛾
𝑒−𝑖𝛾𝑡 − 1

𝛾
· 𝑒

𝑖𝛾𝑢 − 1

𝛾
(4.5)

holds. The right-hand side is equal to 𝐺𝑔 (𝑡, 𝑢) by

𝐺𝑔 (𝑡, 𝑢) =
∑
𝛾∈Γ

𝑚𝛾
(𝑒𝑖𝛾𝑡 − 1)(𝑒−𝑖𝛾𝑢 − 1)

𝛾2
(4.6)

in [16, (1.9)] and the symmetry 𝛾 ↦→ −𝛾 of Γ with 𝑚𝛾 = 𝑚−𝛾. Hence, 𝜋−1/2𝔖𝑡 :
R→ 𝐿2 (R) is a screw line of 𝑔(𝑡) under the RH.

We �nd that 𝔖0 (𝑧) is identically zero by (1.5) and (1.6), since

lim
𝑡→0

(
Φ(𝑒−2𝑡 , 1, 14 ) −Φ(𝑒−2𝑡 , 1, 12 (

1
2 − 𝑖𝑧))

)
= −Γ′

Γ

(
1

4

)
+ Γ′

Γ

(
1

2

(
1

2
− 𝑖𝑧

))
by (2.8). Therefore, by taking 𝑣 = 0 in (4.5), we obtain (4.4). ■

The following immediately follows from Theorem 4.2.

Corollary 4.3 The RH is true if and only if the equality

1

2𝜋
∥𝔖𝑡 ∥2𝐿2 (R) = −𝑔(𝑡) (4.7)

holds for all 𝑡 ≥ 𝑡0 for some 𝑡0 ≥ 0.

Proof Assuming the RH, we obtain (4.7) by taking 𝑢 = 𝑡 in (4.4), since
𝐺𝑔 (𝑡, 𝑡) = −2𝑔(𝑡) by (2.1) and 𝑔(0) = 0. Conversely, we suppose that equality
(4.7) holds for all 𝑡 ≥ 𝑡0. Then −𝑔(𝑡) is nonnegative on [𝑡0,∞), which implies
that the RH is true by [16, Theorems 1.7 and 11.1]. ■

4.3 Proof of Theorem 1.4

Theorem 1.4 is a corollary of the following result.

Theorem 4.4 Let 𝑔(𝑡) = 𝑔𝜉 (𝑡). The RH is true if and only if the equality

∥P̂𝜙 ∥2𝐿2 (R) = 𝜋⟨𝜙, 𝜙⟩𝐺𝑔 (4.8)

holds for all 𝜙 ∈ 𝐶∞
𝑐 (R) satisfying 𝜙(0) = 0. If the RH is true, equality (4.8)

holds for all 𝜙 ∈ 𝐶∞
𝑐 (R).

Proof First, we prove (4.8) assuming the RH holds. We have

∥P̂𝜙 ∥2𝐿2 (R) = 𝜋
∑
𝛾∈Γ

𝑚𝛾

�����𝜙(𝛾) − 𝜙(0)
𝛾

�����2 (4.9)
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by (3.7) and Proposition 4.1. Applying (4.6) to (2.2) and noting the symmetry
𝛾 ↦→ −𝛾 of Γ with 𝑚𝛾 = 𝑚−𝛾, we �nd that the right-hand side of (4.9) equals
𝜋⟨𝜙, 𝜙⟩𝐺𝑔 .

Conversely, we prove that the RH is true assuming equality (4.8). We show
that a contradiction arises if the RH is false. We take a nonreal 𝛾0 ∈ Γ. For
any 𝜖 > 0, there exists 𝜓1, 𝜓2 ∈ 𝐶∞

𝑐 (R) such that 𝜓1 (−𝛾0) = 𝑖, 𝜓2 (−𝛾0) = −𝑖,
|𝜓1 (−𝛾) | ≤ 𝜖 |𝛾0 − 𝛾 |−1−𝛿 for every 𝛾 ∈ Γ \ {𝛾0}, and |𝜓2 (−𝛾) | ≤ 𝜖 |𝛾0 − 𝛾 |−1−𝛿
for every 𝛾 ∈ Γ \ {𝛾0} by [21, Lemma 1]. We de�ne 𝜓 := 𝜓1 + 𝜓2 (≠ 0) and set
𝜙 := 𝐷𝜓. Then, 𝜙(0) = 0 by de�nition, and ⟨𝜙, 𝜙⟩𝐺𝑔 = ⟨𝜓, 𝜓⟩𝑊 holds by the
relation

⟨𝐷𝜓1, 𝐷𝜓2⟩𝐺𝑔 = ⟨𝜓1, 𝜓2⟩𝑊 (4.10)

in [16, Proposition 3.1]. The right-hand side equals
∑

𝛾∈Γ 𝑚𝛾𝜓(−𝛾) (𝜓)♯ (−𝛾) =
−𝑚𝛾0 + 𝑂 (𝜖), since ∑

𝛾∈Γ 𝑚𝛾 |𝛾 |−1−𝛿 < ∞. Therefore, ⟨𝜙, 𝜙⟩𝐺𝑔 is negative for a
su�ciently small 𝜖 > 0, but it contradicts the nonnegativity that follows from
(4.8). ■

Proof of Theorem 1.4 The conclusion follows from Theorem 4.4 and the
relation (4.10) of hermitian forms, since the di�erential operator 𝐷 in (1.8)
gives a bijection from 𝐶∞

𝑐 (R) to the subspace 𝐶∞
0 (R) ⊂ 𝐶∞

𝑐 (R) consisting of

functions 𝜙 with 𝜙(0) = 0. ■

Proof of Corollary 1.5 The RH is true if (1.10) holds by the same argument
as the second half of the proof of Theorem 4.4. Therefore, we prove (1.10)
assuming the RH.

Let 𝜓 ∈ 𝑉◦ (0). Then 𝜓(𝑧) = �P𝐷𝜓0
(𝑧) for some 𝜓0 ∈ 𝐶∞

𝑐 (R) by de�nition.

Therefore, 𝜓(𝑧) =
∑

𝛾∈Γ
√
𝜋𝑚𝛾 𝜓0 (𝛾)𝐹𝛾 (𝑧) by (3.8). The equality shows that

𝜓(𝑧) is a continuous function of 𝑧 ∈ R by the uniform convergence of the
right-hand side on a compact set of 𝑧. Taking 𝑧 = 𝛾 in this equality, we have
𝜓(𝛾) = 𝜓0 (𝛾) by (4.2). Therefore, ⟨𝜓, 𝜓⟩𝑊 is de�ned and satis�es ⟨𝜓, 𝜓⟩𝑊 =
⟨𝜓0, 𝜓0⟩𝑊 . The right-hand side is equal to ∥𝜓0∥2𝐿2 (R) = 2𝜋∥𝜓0∥2𝐿2 (R) by (1.9)

and Plancherel's identity. The same argument works if we start with 𝜓0 ∈
𝐶∞
𝑐 (R). Hence, we obtain (1.10). ■

Using (3.9), Theorem 1.4 is stated as follows.

Theorem 4.5 The RH is true if and only if the equality

∥𝜓∥20 = ⟨𝜓, 𝜓⟩𝑊 (4.11)

holds for all 𝜓 ∈ 𝐶∞
𝑐 (R).

Equality (4.11) leads to Theorem 5.6 below.

For 𝑛 ∈ Z>0, we de�ne

𝑔𝑛 (𝑥) := 𝑒−𝑥/2
𝑛∑
𝑗=1

(
𝑛

𝑗

)
(−𝑥) 𝑗−1
( 𝑗 − 1)! (𝑥 > 0), 𝑔𝑛 (0) :=

𝑛

2
, 𝑔𝑛 (𝑥) := 0 (𝑥 < 0).
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Then, the RH holds if ⟨𝑔𝑛, 𝑔𝑛⟩𝑊 ≥ 0 for all 𝑛 ∈ Z>0 by Bombieri and Lagarias
[5, Section 4]. Therefore, we obtain the following.

Corollary 4.6 The RH holds if (4.11) holds for all 𝑔𝑛 (𝑛 ∈ Z>0).

5 Proof of Theorem 1.1 and its refinement

Throughout this section, we assume that the RH is true and denote 𝐸 = 𝐸 𝜉 ,

Θ = Θ𝜉 = 𝐸♯
𝜉 /𝐸 𝜉 as before, and denote 𝑔 = 𝑔𝜉 . Therefore, 𝐸 belongs to the

Hermite�Biehler class, Θ is a meromorphic inner function in C+, and 𝑔 belongs
to the class of screw functions G∞.

For use in the proof of Theorem 1.1 and its re�nement, we introduce the
operator K acting on 𝐿2 (R) by

K := F−1MΘJF (5.1)

with

(MΘ𝐹) (𝑧) := Θ(𝑧)𝐹 (𝑧) and (J𝐹) (𝑧) := 𝐹♯ (𝑧).

The Fourier transform F, the multiplication operator MΘ, and the involu-
tion J are de�ned for functions of a complex variable, and the latter two are
isometries on 𝐿2 (R). The Fourier transform F is an isometry up to a constant
factor. Therefore, K is isometric on 𝐿2 (R). Further, K is invertible by K2 = id.
By de�nition, K is not C-linear but R-linear and conjugate linear. Using the
isometric involution K, we de�ne

𝑉 (𝑡) := 𝐿2 (𝑡,∞) ∩ K𝐿2 (𝑡,∞) (5.2)

and

H𝑊 (𝑡) := { [𝜓] | 𝜓 ∈ 𝑉 (𝑡) }

for 𝑡 ≥ 0. The set of subspaces 𝑉 (𝑡) of 𝐿2 (R) are clearly totally ordered by the
set-theoretical inclusion.

First, Theorem 1.1 is shown using 𝑉 (𝑡) for 𝑡 = 0, and it is re�ned using
general 𝑡 ≥ 0.

Lemma 5.1 Let 𝑉 (0) = 𝐿2 (0,∞)∩K𝐿2 (0,∞). Then, we have K(Θ) = F(𝑉 (0)),
and hence H(𝐸) = 𝐸F(𝑉 (0)) = {𝐸 (𝑧)𝜓(𝑧) | 𝜓 ∈ 𝑉 (0)}.

Proof It is su�cient to prove that K(Θ) = F(𝑉 (0)), since H(𝐸) = 𝐸K(Θ).
The proof below is essentially the same as the proof in [15, Lemma 4.1].

If 𝜓 ∈ 𝑉 (0), both F𝜓 and FK𝜓 belong to the Hardy space 𝐻2 by de�ni-
tion (5.1) and 𝐻2 = F(𝐿2 (0,∞)). On the other hand, we have (FK𝜓)(𝑧) =
Θ(𝑧)(F𝜓)♯ (𝑧) by de�nition (5.1) again. This implies (F𝜓)(𝑧) = Θ(𝑧) (FK𝜓)♯ (𝑧),
since Θ(𝑧)Θ♯ (𝑧) = 1 by de�nition (1.4). Therefore, F𝜓 belongs to K(Θ) by
(2.7).
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Conversely, if 𝐹 ∈ K(Θ), there exists 𝑓 ∈ 𝐿2 (0,∞) and 𝑔 ∈ 𝐿2 (−∞, 0) such
that

𝐹 (𝑧) = (F 𝑓 ) (𝑧) = Θ(𝑧) (F𝑔) (𝑧).
We have (F𝑔)♯ (𝑧) = Θ(𝑧)(F 𝑓 )♯ (𝑧) by using Θ(𝑧)Θ♯ (𝑧) = 1 again. Here
(F𝑔)♯ (𝑧) = (F𝑔)(𝑧) for 𝑔(𝑥) = 𝑔(−𝑥) ∈ 𝐿2 (0,∞), and Θ(𝑧) (F 𝑓 )♯ (𝑧) = (FK 𝑓 ) (𝑧)
as above. Hence K 𝑓 belongs to 𝐿2 (0,∞), and thus 𝑓 ∈ 𝑉 (0). ■

Remark 5.2 By Lemma 5.1, it follows that the RH would be false if 𝑉 (0) = 0,
since 𝐴(𝑧)/(𝑧 − 𝛾) = 𝜉 (1/2 − 𝑖𝑧)/(𝑧 − 𝛾) belongs to H(𝐸) for all 𝛾 ∈ Γ under
the assumption of the RH. Therefore, it is an interesting problem to prove
or disprove 𝑉 (0) ≠ 0 unconditionally. Since 𝑉 (0) is K-invariant, if 𝑉 (0) ≠ 0,
then for any nonzero 𝑓 ∈ 𝑉 (0), the functions (1±K) 𝑓 are eigenfunctions of K
with eigenvalues ±1. Hence, the problem reduces to determining whether the
isometric involution K admits an eigenfunction in 𝐿2 (0,∞), which appears to
be extremely di�cult. We therefore do not pursue this issue further in the
present paper.

Let 𝜏 = 𝜏𝜉 be the measure on R determined from the screw function 𝑔 = 𝑔𝜉

by (2.3). Then, we have 𝑔(0) = 0, 𝑏 = 0, and

𝑑𝜏(𝜆) =
∑
𝛾∈Γ

𝑚𝛾𝛿(𝜆 − 𝛾) 𝑑𝜆, 𝜆 ∈ R, (5.3)

since

𝑔(𝑡) =
∑
𝛾∈Γ

𝑚𝛾
𝑒𝑖𝛾𝑡 − 1

𝛾2

by [16, Theorem 1.1 (2)], where 𝛿 is the Dirac mass at 𝜆 = 0, We understand
that the Hilbert space 𝐿2 (𝜏) is the space of sequences 𝑆 = (𝑆(𝛾))𝛾∈Γ with

∥𝑆∥2𝐿2 (𝜏) =
∑
𝛾∈Γ

𝑚𝛾 |𝑆(𝛾) |2. (5.4)

Then, we prove two isomorphisms for 𝐿2 (𝜏) necessary for the proof of Theorem
1.1.

Lemma 5.3 Hilbert spaces 𝑉 (0) and 𝐿2 (𝜏) are isomorphic by the linear map

𝑉 (0) ∋ 𝜓 ↦→ 𝑆𝜓 :=
(
𝜓(𝛾)

)
𝛾∈Γ

∈ 𝐿2 (𝜏)

with

2∥𝜓∥2𝐿2 (R) = ∥𝑆𝜓 ∥2𝐿2 (𝜏) . (5.5)

Proof Let 𝜇Θ be the measure on R determined from Θ = Θ𝜉 by (2.8). Then,

the linear map K(Θ) → 𝐿2 (𝜇Θ) given by 𝜓 ↦→ 𝑆𝜓 is an isometric isomor-
phism as reviewed in Section 2.4. On the other hand, 𝐿2 (𝜇Θ) = 𝐿2 (𝜏) with
∥𝑆∥2

𝐿2 (𝜇Θ) = 𝜋∥𝑆∥2
𝐿2 (𝜏) by (2.8), (4.1), and (5.3). Therefore, by composing the
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maps 𝑉 (0) → K(Θ) = F (𝑉 (0)) and K(Θ) → 𝐿2 (𝜇Θ), we obtain the conclusion
of the lemma, since 2𝜋∥𝜓∥2

𝐿2 (R) = ∥𝜓∥2
𝐿2 (R) . ■

Lemma 5.4 For 𝜓 = lim
𝑛→∞

𝜓𝑛 ∈ H𝑊 with {𝜓𝑛}𝑛≥1 ⊂ 𝐶∞
𝑐 (R), we de�ne 𝑆𝜓 ∈

𝐿2 (𝜏) by

𝑆𝜓 := lim
𝑛→∞

(
𝜓𝑛 (𝛾)

)
𝛾∈Γ

in 𝐿2 (𝜏).

Then, it is well-de�ned and provides an isomorphism between H𝑊 and 𝐿2 (𝜏)
through the mapping

H𝑊 ∋ 𝜓 ↦→ 𝑆𝜓 ∈ 𝐿2 (𝜏)
with

⟨𝜓, 𝜓⟩𝑊 = ∥𝑆𝜓 ∥2𝐿2 (𝜏) . (5.6)

Proof We consider 𝐶∞
0 (R) = {𝜙 ∈ 𝐶∞

𝑐 (R) | 𝜙(0) = 0}, since we obtain the
same completion H(𝐺𝑔) even if we start from this space instead of 𝐶0 (R).
Then di�erentiation 𝜓 ↦→ 𝜓 ′ gives a bijection from 𝐶∞

𝑐 (R) to 𝐶∞
0 (R). The

inverse map is 𝜙 ↦→
∫ 𝑥

−∞ 𝜙(𝑦) 𝑑𝑦. The Weil hermitian form and the hermitian
form ⟨·, ·⟩𝐺𝑔 de�ned by (2.2) for the screw function 𝑔 are related as in (4.10),
which is written as

⟨𝜙, 𝜙⟩𝐺𝑔 = ⟨𝜓, 𝜓⟩𝑊 , 𝜓(𝑥) =
∫ 𝑥

−∞
𝜙(𝑦) 𝑑𝑦, 𝜓 ∈ 𝐶∞

𝑐 (R). (5.7)

(Although not necessary for the proof, ⟨𝜙, 𝜙⟩𝐺𝑔 and ⟨𝜓, 𝜓⟩𝑊 are positive def-
inite on 𝐶∞

0 (R) and 𝐶∞
𝑐 (R), respectively, by [16, Lemma 2.1].) Relation (5.7)

extends to the completed Hilbert spaces. Therefore, H𝑊 is isometrically iso-
morphic to the Hilbert space H(𝐺𝑔) by H(𝐺𝑔) → H𝑊 : [𝜙] ↦→ [𝜓] with

𝜓 = lim𝑛→∞ 𝜓𝑛 and 𝜓𝑛 (𝑥) =
∫ 𝑥

−∞ 𝜙𝑛 (𝑦) 𝑑𝑦 for 𝜙 = lim𝑛→∞ 𝜙𝑛 (𝜙𝑛 ∈ 𝐶∞
𝑐 (R)).

We de�ne H(𝐺𝑔) → 𝐿2 (𝜏) as follows. For [𝜙] ∈ H (𝐺𝑔), we de�ne 𝑆𝜙 =
(𝑆𝜙 (𝛾))𝛾∈Γ ∈ 𝐿2 (𝜏) by

lim
𝑛→∞

(
𝜙𝑛 (𝛾)/𝛾

)
𝛾∈Γ

in 𝐿2 (𝜏)

using a sequence (𝜙𝑛)𝑛 in 𝐶∞
0 (R) satisfying 𝜙 = lim𝑛→∞ 𝜙𝑛. Then, the map

is well-de�ned and ⟨[𝜙], [𝜙]⟩𝐺𝑔 = ⟨𝜙, 𝜙⟩𝐺𝑔 = ∥𝑆𝜙 ∥𝐿2 (𝜏) by (2.2), (4.6), and
(5.4). Therefore, it establishes the isomorphic isomorphism H(𝐺𝑔) → 𝐿2 (𝜏) :
[𝜙] ↦→ 𝑆𝜙 ([9, Sections 5.3 and 12.5]). Using H(𝐺𝑔) → H𝑊 and noting

𝜙(𝜆)/𝜆 = 𝑖𝜓(𝜆) for 𝜙 ∈ 𝐶∞
0 (R), we de�ne H𝑊 → 𝐿2 (𝜏) by [𝜓] ↦→ 𝑆𝜓 with

𝑆𝜓 = (𝑆𝜓 (𝛾))𝛾∈Γ = lim
𝑛→∞

(
𝜓𝑛 (𝛾)

)
𝛾∈Γ

= lim
𝑛→∞

(
−𝑖𝜙𝑛 (𝛾)/𝛾

)
𝛾∈Γ

in 𝐿2 (𝜏),

where (𝜙𝑛)𝑛 is a sequence in 𝐶∞
0 (R) such that 𝜓 = lim𝑛→∞ 𝜓𝑛 with 𝜙𝑛 = 𝜓 ′

𝑛.
Then, the map is well-de�ned and

⟨[𝜓], [𝜓]⟩𝑊 = ⟨𝜓, 𝜓⟩𝑊 = ∥𝑆𝜓 ∥𝐿2 (𝜏) = ∥𝑆𝜙 ∥𝐿2 (𝜏) = ⟨𝜙, 𝜙⟩𝐺𝑔 = ⟨[𝜙], [𝜙]⟩𝐺𝑔
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holds, where 𝜙 = lim𝑛→∞ 𝜙𝑛 and the second equality follows from (1.2)
and (5.4). Hence, it establishes an isometric isomorphism H𝑊 → 𝐿2 (𝜏) by
[𝜓] ↦→ 𝑆𝜓. As a result, the mapping H𝑊 → 𝐿2 (𝜏) is directly de�ned by

𝑆𝜓 = lim𝑛→∞
(
𝜓𝑛 (𝛾)

)
𝛾∈Γ

and [𝜓] ↦→ 𝑆𝜓 for 𝜓 = lim𝑛→∞ 𝜓𝑛 with the desired

equality for norms. ■

Theorem 5.5 Assume that the RH is true. Let H𝑊 , H(𝐸), and K(Θ) be as
above. Let 𝑉 (𝑡) be the spaces de�ned in (5.2). Then the following hold:

(1) ∥𝐸𝜓∥2H(𝐸) = ∥𝜓∥2
𝐿2 (R) = 2𝜋∥𝜓∥2

𝐿2 (R) = 𝜋⟨𝜓, 𝜓⟩𝑊 for 𝜓 ∈ 𝑉 (0).
(2) The map from K(Θ) to H𝑊 obtained by the composition of the inverse of

𝑉 (0) → K(Θ) : 𝜓 ↦→ 𝜓(𝑧), 2𝜋∥𝜓∥2𝐿2 (R) = ∥𝜓∥2𝐿2 (R) (5.8)

and

𝑉 (0) → H𝑊 : 𝜓 ↦→ [𝜓], 2∥𝜓∥2𝐿2 (R) = ⟨[𝜓], [𝜓]⟩𝑊 = ⟨𝜓, 𝜓⟩𝑊 (5.9)

agrees with the isomorphism 𝐹 ↦→ 𝜓𝐹 in Theorem 1.1. In particular, (5.9)
is an isometric isomorphism up to a constant multiple.

Proof (1) It su�ces to show that the equality

∥𝜓∥2𝐿2 (R) =
1

2
⟨𝜓, 𝜓⟩𝑊 (5.10)

holds, since ∥𝐸𝜓∥H(𝐸) = ∥𝜓∥𝐿2 (R) by (2.4) and ∥𝜓∥2
𝐿2 (R) = 2𝜋∥𝜓∥2

𝐿2 (R) by (1.1).

For each 𝛾 ∈ Γ, we de�ne 𝜓𝛾 ∈ 𝐿2 (R) by

𝐹𝛾 = 𝜓𝛾 . (5.11)

Then each 𝜓𝛾 belongs to 𝑉 (0), and {𝜓𝛾}𝛾∈Γ forms an orthogonal basis satis-

fying 2𝜋∥𝜓𝛾 ∥2𝐿2 (R) = ∥𝜓𝛾 ∥2K(Θ) = ∥𝐹𝛾 ∥2K(Θ) = 1 by Proposition 4.1 and Lemma

5.1, since the orthogonality of 𝐹𝛾's is preserved under the Fourier transform.
For 𝜓 =

∑
𝛾 𝑐𝛾𝜓𝛾 ∈ 𝑉 (0), we have

∥𝜓∥2𝐿2 (R) =
1

2𝜋

∑
𝛾∈Γ

|𝑐𝛾 |2

by the orthogonality and

𝜓(𝛾) = 1
√
𝑚𝛾𝜋

𝑐𝛾

by applying (4.2) to 𝜓 =
∑

𝛾 𝑐𝛾𝐹𝛾. From these two and (1.2), we get (5.10).

(2) It is clear that the composition of the inverse of (5.8) and (5.9) agrees
with the map 𝐹 ↦→ 𝜓𝐹 of Theorem 1.1 including the equality for norms, and
we observed in the proof of Lemma 5.3 that the map (5.8) is an isometric
isomorphism up to the multiple

√
2𝜋. Therefore, it su�ces to show that the

map (5.9) gives an isometric isomorphism up to the multiple
√
2.
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For 𝜓 ∈ 𝑉 (0), the function 𝑆𝜓 ∈ 𝐿2 (𝜏) is de�ned and satis�es 2∥𝜓∥2
𝐿2 (R) =

∥𝑆𝜓 ∥2𝐿2 (𝜏) by Lemma 5.3. Then there exists a sequence (𝜓∗
𝑛)𝑛 ⊂ 𝐶∞

𝑐 (R) that
converges to 𝜓∗ with respect to ⟨·, ·⟩𝑊 and 𝑆𝜓 = 𝑆𝜓∗ by Lemma 5.4. The later
implies ⟨𝜓−𝜓∗

𝑛, 𝜓−𝜓∗
𝑛⟩𝑊 = ⟨𝜓∗−𝜓∗

𝑛, 𝜓
∗−𝜓∗

𝑛⟩𝑊 → 0 (𝑛 → ∞). Therefore, 𝜓 = 𝜓∗,
and hence 𝑉 (0) → H𝑊 is directly de�ned by 𝜓 ↦→ [𝜓]. Furthermore, we obtain
2∥𝜓∥2

𝐿2 (R) = ⟨𝜓, 𝜓⟩𝑊 from (5.5) and (5.6). Hence, this map is precisely the one

given in (5.9). ■

The equality ∥𝜓∥2
𝐿2 (R) = 2−1⟨𝜓, 𝜓⟩𝑊 in Theorem 5.5 (1) shows that the 𝐿2-

structure induced from 𝐿2 (R) and �arithmetic structure� (or �local structure�)
arising from the geometric side of the Weil explicit formula (3.3) coincide on
a dense subspace of 𝑉 (0) consisting of functions for which the Weil explicit
formula holds.

Theorem 5.6 Let H0 and K0 are Hilbert spaces de�ned unconditionally in
Section 3.3. Assume that the RH is true. Then, H0 = H𝑊 and K0 = K(Θ),
and the extended map P̂𝐷 : H𝑊 → K(Θ) provides the inverse of the map in
Theorem 5.5 (2). In particular, 𝑉 (0) is the 𝐿2-closure of 𝑉◦ (0) in Corollary 1.5.

Proof For 𝜓 ∈ 𝐶∞
𝑐 (R), we have

∥�P𝐷𝜓 ∥2𝐿2 (R) = 𝜋
∑
𝛾∈Γ

𝑚𝛾 |𝜓(𝛾) |2 = 𝜋⟨𝜓, 𝜓⟩𝑊

by (1.2), (3.8), and Proposition 4.1. Hence,H0 coincides withH𝑊 by de�nition

(3.9). Formula (3.8) shows that the image �P𝐷𝜓 is de�ned independent of the
representatives of [𝜓] in H𝑊 . On the other hand, K0 is a subspace of K(Θ)
by Proposition 4.1 again.

We denote 𝐹 = �P𝐷𝜓 for [𝜓] ∈ H𝑊 and set 𝜓𝐹 = F−1 (𝐹) as in Theorem 1.1.

Then, 𝐹 (𝛾) = 𝜓(𝛾) by (3.8) and (4.2). Therefore, 𝜓𝐹 (𝛾) = 𝜓(𝛾) for all 𝛾 ∈ Γ,
and hence [𝜓] = [𝜓𝐹 ] in H𝑊 . On the other hand, �P𝐷𝜓𝐹 (𝑧) = 𝐹 by (3.8),

since 𝜓𝐹 = 𝐹 by de�nition and 𝐹 (𝛾) = 𝜓(𝛾). Hence, we obtain the desired
conclusion. ■

The totally ordered structure of the subspaces of the de Branges space
H(𝐸) is described by 𝑉 (𝑡) as follows.

Theorem 5.7 Assume that the RH is true. Then, 𝐸 F(𝑉 (𝑡)) is a de Branges
subspaces of H(𝐸) for every 𝑡 ≥ 0 and is isometrically isomorphic to H𝑊 (𝑡)
up to a constant multiple by the map of Theorem 1.1.

Proof It is su�cient to prove the �rst half of the theorem, since the second
half follows from Theorem 5.5 (2). We prove the claim for positive 𝑡 such that
𝑉 (𝑡) ≠ {0}, since the case of 𝑡 = 0 was proved in Lemma 5.1 and the claim is
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trivial if 𝑉 (𝑡) = {0}. The following is essentially the same as the proof of [15,
Lemma 4.3].

We show that H := 𝐸 (𝑧)F(𝑉 (𝑡)) is a Hilbert space consisting of entire
functions and satis�es the axiom of the de Branges spaces:

(dB1) For each 𝑧 ∈ C \ R the point evaluation Φ ↦→ Φ(𝑧) is a continuous linear
functional on H ;

(dB2) If Φ ∈ H , Φ♯ belongs to H and ∥Φ∥H = ∥Φ♯∥H ;
(dB3) If 𝑤 ∈ C \ R, Φ ∈ H and Φ(𝑤) = 0,

𝑧 − 𝑤̄

𝑧 − 𝑤
Φ(𝑧) ∈ H and





 𝑧 − 𝑤̄

𝑧 − 𝑤
Φ(𝑧)






H

= ∥Φ∥H ,

where the Hilbert space structure is the one induced from 𝑉 (𝑡) that is
equivalent to ⟨𝐹, 𝐺⟩H =

∫
R
𝐹 (𝑧)𝐺 (𝑧) |𝐸 (𝑧) |−2𝑑𝑧 for 𝐹, 𝐺 ∈ H .

Let Φ(𝑧) = 𝐸 (𝑧)(F 𝑓 ) (𝑧) ∈ H with 𝑓 ∈ 𝑉 (𝑡). First, we prove that H consists
of entire functions. We see that Φ(𝑧) is holomorphic in C+ by 𝑓 ∈ 𝐿2 (𝑡,∞). If
we write (J♯ 𝑓 )(𝑥) := 𝑓 (−𝑥), the commutative relation JF = FJ♯ holds. There-

fore, using (5.1) and K2 = 1, we have Φ(𝑧) = 𝐸 (𝑧) (F 𝑓 ) (𝑧) = 𝐸♯ (𝑧) (FJ♯K 𝑓 ) (𝑧).
This shows that Φ(𝑧) is also holomorphic in C−. Furthermore, J♯K 𝑓 ∈
𝐿2 (−∞,−𝑡), because the tempered distribution kernel 𝑘 := F−1Θ of K has sup-
port in [0,∞) by [12, Theorems 1.1 and 1.2]. On the real line, lim𝑧→𝑥 (F 𝑓 )(𝑧) =
(F 𝑓 )(𝑥) and lim𝑧→𝑥 (FJ♯K 𝑓 ) (𝑧) = lim𝑧→𝑥 (FK 𝑓 )♯ (𝑧) = Θ♯ (𝑥)(F 𝑓 ) (𝑥) for almost
all 𝑥 ∈ R, where 𝑧 is allowed to tend to 𝑥 nontangentially from C+ and C−,
respectively. Hence, Φ(𝑧) is also holomorphic in a neighborhood of each point
of R. By the above, Φ(𝑧) is an entire function.

We con�rm (dB1). For 𝑧 ∈ C+, Φ ↦→ Φ(𝑧) = 𝐸 (𝑧)
∫ ∞
𝑡

𝑓 (𝑥)𝑒𝑖𝑧𝑥𝑑𝑥 is a
continuous linear form. On the other hand, for 𝑧 ∈ C−, Φ ↦→ Φ(𝑧) =
𝐸♯ (𝑧)

∫ −𝑡
−∞ (K 𝑓 )(−𝑥)𝑒𝑖𝑧𝑥 𝑑𝑥 is a continuous linear functional.

We con�rm (dB2). We have Φ♯ (𝑧) = 𝐸 (𝑧)(FK 𝑓 ) (𝑧). Since K 𝑓 ∈ 𝑉 (𝑡), the
function Φ♯ belongs to H . Since K is isometric, the equality of norms in (dB2)
holds.

We con�rm (dB3). The equality of norms in (dB3) is trivial by the de�nition
of the norm of H . From (dB2), it is su�cient to show only the case of 𝑤 ∈ C+.
Suppose that Φ(𝑤) = 0 for some 𝑤 ∈ C+. Then (F 𝑓 ) (𝑤) = 0, since 𝐸 (𝑧) has
no zeros on C+. We put 𝑓𝑤 (𝑥) := 𝑓 (𝑥) − 𝑖(𝑤 − 𝑤̄)

∫ 𝑥−𝑡
0

𝑓 (𝑥 − 𝑦)𝑒−𝑖𝑤𝑦𝑑𝑦. Then

we easily �nd that 𝑓𝑤 ∈ 𝐿2 (𝑡,∞) and (F 𝑓𝑤 ) (𝑧) = ((𝑧 − 𝑤̄)/(𝑧 − 𝑤)) (F 𝑓 )(𝑧) for
𝑧 ∈ C+. Hence we complete the proof if it is shown that K 𝑓𝑤 has support in
[𝑡,∞), since K 𝑓𝑤 ∈ 𝐿2 (R) by 𝑓𝑤 ∈ 𝐿2 (𝑡,∞). We put 𝑔𝑤 (𝑥) := (K 𝑓 )(𝑥) − 𝑖(𝑤̄ −
𝑤)

∫ 𝑥−𝑡
0

(K 𝑓 ) (𝑥 − 𝑦)𝑒−𝑖𝑤̄ 𝑦𝑑𝑦. Then 𝑔𝑤 has support in [𝑡,∞) by K 𝑓 ∈ 𝐿2 (𝑡,∞)
and (F𝑔𝑤 )(𝑧) = ((𝑧 − 𝑤)/(𝑧 − 𝑤̄)) (FK 𝑓 ) (𝑧) = (FK 𝑓𝑤 )(𝑧) for 𝑧 ∈ C+. Hence
𝑔𝑤 = K 𝑓𝑤 and the proof is completed. ■

We expect that 𝑉 (𝑡) ≠ 0 for some 𝑡 > 0, or rather that 𝑉 (𝑡) ≠ 0 holds for
all 𝑡 ≥ 0, but we do not discuss this in the present paper, since it seems to
be a nontrivial problem related to the eigenfunctions of K, as mentioned in
Remark 5.2.
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5.1 A weaker variant of Corollary 1.5

Since the space 𝑉 (0) can be constructed unconditionally as well as 𝑉◦ (0) in
Corollary 1.5, it can be used to state an equivalence condition for the RH.
However, since the construction of 𝑉 (0) is simpler than that of 𝑉◦ (0), more
conditions are required for the equivalence condition.

Proposition 5.8 Let 𝑉 (0) = 𝐿2 (0,∞) ∩ K𝐿2 (0,∞) be as in (5.2). Then the
RH is true if and only if the following two conditions hold:

(1) ∥𝜓∥2
𝐿2 (R) = 2−1⟨𝜓, 𝜓⟩𝑊 for every 𝜓 ∈ 𝑉 (0).

(2) For a given 𝛾 ∈ Γ and any 𝜖 > 0, there exists 𝜓 ∈ 𝑉 (0) such that

𝜓(−𝛾) = 1, |𝜓(−𝛾′) | ≤ 𝜖

|𝛾 − 𝛾′ |1+𝛿 for every 𝛾′ ∈ Γ \ {𝛾}

for some 𝛿 > 0 independent of 𝛾, 𝜖 , and 𝜓.

Proof Assuming the RH, (1) follows from Theorem 5.5 (1). Also, (2) holds,
since 𝜓𝛾 = F−1 (𝐹𝛾) in 𝑉 (0) satis�es 𝜓𝛾 (𝛾) ≠ 0 and 𝜓𝛾 (𝛾′) = 0 for 𝛾′ ∈ Γ \ {𝛾}.

Conversely, we assume that (1) and (2) are satis�ed. Then, we show that
a contradiction arises if the RH is false. We take a nonreal 𝛾0 ∈ Γ. For any
𝜖 > 0, there exists 𝜓1, 𝜓2 ∈ 𝑉 (0) such that 𝜓1 (−𝛾0) = 𝑖, 𝜓2 (−𝛾0) = −𝑖,
|𝜓1 (−𝛾) | ≤ 𝜖 |𝛾0 − 𝛾 |−1−𝛿 for every 𝛾 ∈ Γ \ {𝛾0}, and |𝜓2 (−𝛾) | ≤ 𝜖 |𝛾0 − 𝛾 |−1−𝛿
for every 𝛾 ∈ Γ \ {𝛾0} by (2). Then, for 𝜓 := 𝜓1 + 𝜓2 (≠ 0), we have ⟨𝜓, 𝜓⟩𝑊 =∑

𝛾∈Γ 𝑚𝛾𝜓(−𝛾) (𝜓)♯ (−𝛾) = −𝑚𝛾0 +𝑂 (𝜖), since ∑
𝛾∈Γ 𝑚𝛾 |𝛾 |−1−𝛿 < ∞. Therefore,

⟨𝜓, 𝜓⟩𝑊 is negative for a su�ciently small 𝜖 > 0, but it contradicts (1). Hence
the RH holds. ■

6 Hilbert–Pólya space

One of attractive strategies for proving the RH is the construction of a Hilbert�
Pólya space, which is a pair of a Hilbert space and a self-adjoint operator
acting on it such that all nontrivial zeros of the Riemann zeta-function are
eigenvalues of the self-adjoint operator. In this section, we state that H𝑊 is
one of Hilbert�Pólya spaces under the RH. Note that H𝑊 is unconditionally
de�ned as H0 by Theorem 5.6.

We assume the RH and denote 𝐸 = 𝐸 𝜉 as in Section 5. In this case, the
domain 𝔇(M) of the multiplication operator M on H(𝐸) is dense in H(𝐸),
because 𝑆𝜃 (𝑧) does not belongs to H(𝐸) for all 𝜃 ∈ [0, 𝜋) by the estimate
|𝑆𝜃 (𝑖𝑦)/𝐸 (𝑖𝑦) | ≫ (log 𝑦)−1 (𝑦 → +∞) obtained by the Stirling formula for the
gamma-function and [13, Proposition 2.1]. Using M, we de�ne the operator
A := F−1MF on 𝑉 (0) with the domain 𝔇(A) = F−1 (𝔇(M)). If 𝜓 ∈ 𝑉 (0) is
di�erentiable and 𝜓 ′ also belongs to 𝑉 (0), then A𝜓 = 𝑖𝜓 ′. Further, we de�ne
the operator A𝑊 on H𝑊 as follows.

By Theorem 5.6, the inverse of (5.9) from H𝑊 to 𝑉 (0) is given by [𝜓] ↦→
F−1�P𝐷𝜓. Further, if we choose the representative of 𝜓 from 𝑉 (0), it is possible
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and uniquely determined by Theorem 5.5 (2), and therefore 𝜓 = F−1�P𝐷𝜓. By
choosing representatives in this way, we de�ne A𝑊 on H𝑊 by A𝑊 [𝜓] = [A𝜓].
By the same procedure as above, the family of self-adjoint extensions M𝜃

of M determines the corresponding families of self-adjoint extensions of A
and A𝑊 (see (2.5) and (2.6)). By this correspondence, the orthogonal basis
{[𝜓𝛾]}𝛾∈Γ of H𝑊 consists of eigenvectors [𝜓𝛾] of A𝑊 ,𝜋/2 with eigenvalues
𝛾 ∈ Γ, since {𝐸𝐹𝛾}𝛾∈Γ with (3.5) is an orthogonal basis of H(𝐸) consists of
eigenfunctions of M𝜋/2 with eigenvalues Γ (see Seciton 2.3). Therefore, the
pair (H𝑊 , A𝑊 ,𝜋/2) is a Hilbert�Pólya space.

It is important to note that the multiplicity of 𝛾 ∈ Γ as an eigenvalue of
A𝑊 ,𝜋/2 (and M𝜋/2) is one. In other words, the multiplicity of 𝛾 ∈ Γ as a
zero of 𝜉 (1/2 − 𝑖𝑧) is not re�ected in the multiplicity of A𝑊 ,𝜋/2 (and M𝜋/2).
In particular, it shows the explicit di�erence between the de Branges space
H(𝐸 𝜉 ) and the de Branges space B𝑆

𝜆 in [7, Section 4.8].

In the above discussion, we assumed the RH, but (2.5) and (2.6) allow
us to de�ne the operator M𝜃 without the RH. However, its properties as an
operator become unclear.

7 Special values of the screw line𝔖𝑡 (𝑧)
The screw line 𝔖𝑡 (𝑧) has the following unconditional relations with the screw
function 𝑔(𝑡). It is interesting that they are not a special case of equations
obtained from the general theory of screw functions.

Theorem 7.1 Let 𝑔𝜉 (𝑡) and𝔓𝑡 (𝑧) be functions of (4.3) and (1.6), respectively.
Then the following equations hold independently of the truth of the RH:

𝔓𝑡 (0) = −𝑔𝜉 (𝑡), (7.1)

lim
𝑦→+∞

[
𝑦𝔅𝑡 (−𝑖𝑦) −

1

2

Γ′

Γ

(
1

4
+ 𝑦

2

)
+ 1

2
log 𝜋

]
= −𝑔′𝜉 (𝑡), (7.2)

where we assume 𝑡 ≠ log 𝑛 for any 𝑛 ∈ N in (7.2).

Proof Equality (7.1) follows from (3.2), Proposition 3.1, and [16, Theorem
1.1 (2)], but it follows directly from (4.3) and (1.6) as follows. By Φ(𝑧, 𝑠, 𝑎) =∑∞

𝑛=0 𝑧
𝑛 (𝑛 + 𝑎)−𝑠 and (2.8),

lim
𝑧→0

1

𝑖𝑧

[
Φ(𝑒−2𝑡 , 1, 12 (

1
2 − 𝑖𝑧)) −Φ(𝑒−2𝑡 , 1, 1/4)

]
= −1

2
Φ(𝑒−2𝑡 , 2, 1/4),

lim
𝑧→0

1

𝑖𝑧

[
Γ′

Γ

(
1

4
− 𝑖𝑧

2

)
− Γ′

Γ

(
1

4

)]
=
1

2
𝜓1

(
1

4

)
,

where 𝜓1 (𝑧) is the polygamma function of order one. The expansion 𝜓1 (𝑤) =∑∞
𝑛=0 (𝑤 + 𝑛)−2 gives 𝜓1 (1/4) = Φ(1, 2, 1/4). Taking 𝑠 = 1/2 in the logarithmic
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derivative of 𝜉 (𝑠) = 𝜉 (1 − 𝑠) and using

Γ′

Γ

(
1

4

)
= −𝛾0 − 3 log 2 − 𝜋

2
,

we have
𝜁 ′

𝜁

(
1

2

)
=
1

2

(
𝛾0 + 3 log 2 + log 𝜋 + 𝜋

2

)
.

Hence, by taking the limit 𝑧 → 0 in (1.6), we obtain the minus of (4.3).
To show (7.2), we multiply (1.6) by 𝑦 and substitute −𝑖𝑦 for 𝑧:

𝑦𝔓𝑡 (−𝑖𝑦) :=
4𝑦(𝑒𝑡/2 − 1)

1 + 2𝑦
+ 4𝑦(𝑒−𝑡/2 − 1)

1 − 2𝑦

+ (𝑒−𝑦𝑡 − 1) 𝜁
′

𝜁

(
1

2
− 𝑦

)
+
∑
𝑛≤𝑒𝑡

Λ(𝑛)
√
𝑛

(𝑒−𝑦 (𝑡−log 𝑛) − 1)

+ 1

2

[
Γ′

Γ

(
1

4

)
− Γ′

Γ

(
1

4
− 𝑦

2

)]
+ 1

2
𝑒−𝑡/2

[
Φ(𝑒−2𝑡 , 1, 1/4) −Φ(𝑒−2𝑡 , 1, 12 (

1
2 − 𝑦))

]
Therefore, for positive 𝑡 > 0,

lim
𝑦→+∞

[
𝑦𝔅𝑡 (−𝑖𝑦) −

1

2

Γ′

Γ

(
1

4
+ 𝑦

2

)
+ 1

2
log 𝜋

]
= 2(𝑒𝑡/2 − 𝑒−𝑡/2) −

∑
𝑛≤𝑒𝑡

Λ(𝑛)
√
𝑛

+ 1

2

[
Γ′

Γ

(
1

4

)
− log 𝜋

]
+ 1

2
𝑒−𝑡/2Φ(𝑒−2𝑡 , 1, 1/4)

by using the logarithmic derivative of 𝜉 (𝑠) = 𝜉 (1− 𝑠) at 𝑠 = 1/2− 𝑦. The right-
hand side equals −𝑔′(𝑡) if 𝑡 ≠ log 𝑛 by (4.3), and (𝑑/𝑑𝑡)(𝑒−𝑡/2Φ(𝑒−2𝑡 , 2, 1/4)) =
−2𝑒−𝑡/2Φ(𝑒−2𝑡 , 2, 1/4) follows from Φ(𝑧, 𝑠, 𝑎) = ∑∞

𝑛=0 𝑧
𝑛 (𝑛 + 𝑎)−𝑠. ■
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