
J. Functional Programming 10 (6): 607–623, November 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

607

T H E O R E T I C A L P E A R L S

An adequate and efficient
left-associated binary numeral system

in the λ-calculus

MAYER GOLDBERGã
Department of Computer Science, Ben Gurion University,

Beer Sheva 84105, Israel

(e-mail: gmayer@cs.bgu.ac.il)

Abstract

This paper introduces a sequence of λ-expressions modeling the binary expansion of integers.

We derive expressions computing the test for zero, the successor function, and the predecessor

function, thereby showing the sequence to be an adequate numeral system, i.e. one in which

all recursive functions are lambda-definable. These functions can be computed efficiently; To

this end, we introduce a notion of complexity that is independent of the order of evaluation.

1 Introduction

1.1 Numeral systems in the λ-calculus

Numbers are traditionally represented on computers with a size proportional to

their logarithm. Traditional numeral systems in the λ-calculus, such as Church

numerals (Barendregt, 1984; Church, 1941) and Barendregt numerals (Barendregt,

1984), however, typically involve linear representations of numbers. In such systems,

the size of the representation of a number n is proportional to this number.

In this paper, we present an adequate binary numeral system for the λ-calculus, and

define λ-terms that compute the zero predicate and the successor and predecessor

functions efficiently. The notion of efficient computation in the λ-calculus is subtle

because different reduction strategies result in different complexities. We avoid this

problem by requiring the complexity of our computation to be independent of any

order of evaluation. This requirement implies that we could not, for example, make

use of fixed-point combinators to define our λ-expressions.

The particular representation used in this paper is due to den Hoed (1980). The

problem of showing that efficient number-theoretic functions are definable for this

ã This work was carried out while visiting BRICS (Basic Research in Computer Science, Centre of the
Danish National Research Foundation, URL: http://www.brics.dk/.

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

608 M. Goldberg

system was given as a challenge to the author by Barendregt during a visit to

Indiana University in 1990 (Barendregt, 1990).

1.2 Prerequisites and notation

We assume some familiarity with the λ-calculus (Barendregt, 1984; Church, 1941).

The identity combinator is given by I = λx.x. The boolean values true and false

are denoted by T = λxy.x and F = λxy.y respectively. Conjunction is denoted

by and = (λxy.x(yTF)F). Selectors are given by Un
k = λx0 · · · xn.xk where k 6 n.

The ordered n-tuple 〈x1, . . . , xn〉 is denoted by [x1, · · · , xn] = λs.(sx1 · · · xn). The k-th

projection of an ordered n-tuple is denoted by πnk = λx.(xUn−1
k−1). The length of a

λ-term M is the number of symbols it occupies, and is noted as ||M||. Finally, the

reflexive, transitive closure of the one-step reduction −→ is given by −→→. A numeral

system is adequate if all recursive functions are λ-definable for it.

2 Binary numerals

2.1 Representation

Since various data structures can be implemented in the λ-calculus, we could select

any one of several different binary representations for our numerals. We choose to

use, however, a representation that is unique to the λ-calculus:

Definition 1 (den Hoed)

The sequence bin = {binn}n∈ω . We define binn as follows: let the variable z (pro-

nounced: ‘zero’) represent a 0-bit, and let the variable w (pronounced: ‘wan’) repre-

sent a 1-bit. Let b1b2 · · · bk , bj ∈ {z, w}, be a sequence of bits corresponding to the

binary expansion of n, such that b1 and bk are the low and the high bits, respectively.

Then

binn = λzw.b1 · · · bk
The sequence of bits is thus represented by a left-associated application of z’s

and w’s.

Examples

bin0 = λzw.z

bin1 = λzw.w

bin2 = λzw.zw

bin3 = λzw.ww

bin4 = λzw.zzw

bin5 = λzw.wzw

bin6 = λzw.zww

bin7 = λzw.www

Our goal in this paper is to show that the sequence bin is an adequate numeral

system, and that the successor function, the predecessor function, and the test for

zero can all be computed on the bits directly, without expanding their argument

into some linear representation. In our PhD thesis (Goldberg, 1996), we show

similarly that addition, subtraction, multiplication, quotient, remainder, and the test

for equality can also be computed on the bits directly.

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

Theoretical pearls 609

2.2 Uniqueness of representation

One problem that affects all n-ary numeral systems is uniqueness: For example, in

our system, λzw.w, λzw.wzz, and λzw.wzzzzz all represent the number 1. In the λ-

calculus, however, it is more elegant for two numerals representing the same number

to have the same normal form.

We thus propose the following two-fold compromise:

• We define a test for zero (and ultimately, the test for equality) that ignores

trailing zero bits.

• We define the predecessor function (and ultimately, addition, subtraction,

multiplication, quotient, remainder, etc.) not to leave trailing zero bits.

Thus, the functions we provide do not introduce trailing zeros in their results, and

ignore them in their arguments. Another solution, which is simpler to derive and

to verify, would be to define a ‘normalization’ combinator, taking a binary numeral

and removing its trailing zero bits. This solution, however, is less efficient.

2.3 Size of our representation

The size of binn, our representation of n, is proportional to the number of bits in

the binary expansion of n, i.e. to log n. It is also clear that bin numerals are as

concise (in the sense of having the least number of symbols) as possible for a binary

numeral system in the λ-calculus.

What is not as obvious, but just as important if bin is to be practical for

implementation on a computer, is whether the various arithmetic operations that

we might want to carry out on this representation can be computed directly on the

bits, without expanding our binary representation to a less compact one. We do not

have the convenience, for example, of switching to and from one of the well-known,

linear numeral systems to define arithmetic functions in one system in terms of the

other system, as Barendregt does in Lemma 6.4.5 and Corollary 6.4.6 (p. 140) of

his textbook on the λ-calculus (Barendregt, 1984). We want to avoid both explicit

expansion, as well as expansion, that is implicit in a particular reduction sequence.

The following definitions let us express formally just how much can a given

expression ‘expand’:

Definition 2

(i) Finitely wide terms. A λ-term M is finitely wide if there exists a number N > 0,

such that if for all λ-terms x, if M �
R
x then ||x|| 6 N.

(ii) The width of a term, Width. The width of a finitely wide term M, denoted by

Width(M) is given by

Width(M) = sup{||x|| : M−→→x}

The following points should be noted:

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

610 M. Goldberg

• Some λ-terms do not have a finite width, but have a normal form. For example,

let M be defined as follows:

M = ((λf.((λx.f(xx))

(λx.f(xx))))

(λxy.y)

I)

It is simple to verify that M−→→I. The underlined sub-expression, however,

does not have a normal form, and expands arbitrarily. We can thus have

reduction sequences that result in expressions of arbitrary width. Therefore,

M does not have a finite width.

• Some λ-terms do not have a normal form, but have a finite width. For example,

let M be defined as follows:

M = ((λx.xx) (λx.xx))

It is simple to verify that the only possible reduction from M is to itself, and

so M has a finite width, but no normal form.

The width of a λ-term is used in proving that a test for zero, the successor

function, and the predecessor function can all be computed without expanding the

representation of their arguments beyond log n.

2.4 Complexity

We use the notion of finite width developed in section 2.3. to show that the expression

we construct for computing the successor and predecessor functions on binary

numerals do so (i.e. reduce to normal form) with space complexity proportional to

the number of bits. A notion similar to that of finite width could be introduced

in order to show that the time complexity for computing these functions is also

proportional to the number of bits.

3 Mealy machines

The constructions for the expressions that compute the successor and predecessor

functions on binary numerals are quite involved. To simplify their presentation, we

precede each construction with a corresponding Mealy machine that provides an

abstract description of the algorithm we use. A Mealy machine is a finite state

automaton that both reads in an input symbol and writes out an output symbol at

each non-ε transition. A Mealy machine, mapping an input stream of binary digits

to an output stream of binary digits can be used to depict the algorithm by which

an input stream of binary digits which denotes a binary number, gets mapped to an

output stream of binary digits that denotes a binary number, and the algorithms for

computing the successor and predecessor on binary strings are just simple enough

to be depicted by such a state machine. The terms Succ
bin

and Pred
bin

, which

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

Theoretical pearls 611

respectively compute the successor and predecessor functions on binary numerals,

are implementations of the corresponding Mealy machines.

The following depiction of a Mealy machine denotes that there is a transition

from state A to state B in which the symbol a is consumed and the symbol b is

the output:

4 Decision logic tables

In this paper we use Decision Logic Tables (DLT) in deriving expressions for the

successor and predecessor functions on bin.

A DLT (Kavanagh, 1960; McDaniel, 1968) is a tabular form for describing

a program segment driven by an n-variable boolean function. The format of a

decision logic table is as follows:

list of variable names [or

boolean conditions]

list of all possible combinations

of values of variables [or values

of boolean conditions]

list of actions to be taken at a

given combination of values

selections of combinations of ac-

tions as a function of combina-

tions of variables

In some situations, not all relevant boolean conditions can be considered in

parallel. For example, given two variables a and b, the test of whether b is equal to

zero should precede the division of a by b, and therefore any test on the quotient of

a and b. Such situations have traditionally been handled by nesting or dispatching to

other decision logic tables as one of the actions.

The following example is used to illustrate the use of a decision logic table. Con-

sider the following highly simplified process of evaluating a paper for publication.

A paper can be either accepted or rejected, and the author can be requested to

make revisions to the paper before it can appear in print. Deciding what to do

with the paper depends upon the answers to the following three questions: (a) Is

the material in the paper correct? (b) Is the main result of the paper of inter-

est? (c) Is the paper written clearly? The following decision logic table associates

combinations of answers to these questions with combinations of actions to be

taken:

Note that when the results in the paper are both correct and interesting, but not

clearly written, a combination of two actions takes place: The paper is accepted for

publication, and the author is asked to revise the paper.

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

612 M. Goldberg

The Highly Simplified Process of

Evaluating a Paper for Publication

Is the paper correct? Yes Yes Yes Yes No No No No

Is the result interesting? Yes Yes No No Yes Yes No No

Is the paper clear? Yes No Yes No Yes No Yes No

Reject the paper
√ √ √ √ √ √

Accept the paper
√ √

Ask the author to revise
√

Decision logic tables can be formally manipulated and simplified, as well as

automatically compiled into computer programs. Since they are not in common use

today, we shall avoid the traditional decision logic table abbreviations, in order to

preserve clarity.

5 Arithmetic functions

5.1 Testing for zero

Proposition 1

There exists a combinator Zero?
bin

such that for all n ∈ N we have

(i) (Zero?
bin

bin0) −→→ T

(Zero?
bin

binn+1) −→→ F
(ii) Width(Zero?

bin
binn) = O(log n).

Proof

(i) Binary numerals are of the form λzw.b1 · · · bn, where bk ∈ {z, w}. Computing

the zero predicate amounts to deciding whether w 6∈ {b1, . . . , bn}. To this end, we

apply the binary numerals to two λ-terms D
T
, D

F
(indexed by the boolean values

true and false), thus substituting them for z, w in the application (b1 · · · bn).
We embed the computable applicative structure (Mitchell, 1996) 〈Bool,∧〉 in

the term model of {b1, b2, . . . , bn, (b1b2), (b1b2b3), . . . , (b1 · · · bn)}, such that

(DaDb) = Da∧b

where ∧ denotes Boolean conjunction. Given this substitution, the application

(b1 · · · bn) reduces to either D
T

or D
F
. If the resulting expression is D

T
, then all

the bk ’s are z’s and the binary numeral is zero.

We make use of the following property of the application of two ordered pairs

(compare with Barendregt’s hint in his Problem 6.8.15(ii) Page 149):

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

Theoretical pearls 613

([a1, b1] [a2, b2]) −→ ((λx.xa1b1) (λx.xa2b2))

−→ ((λx.xa2b2)a1b1)

−→ (a1a2b2b1)

In particular, we have:

([M, b1] [M, b2]) = (MMb2b1)

We define M as follows:

M = λmb2b1.[m, (and b1 b2)]

By pairing M with F and T we obtain D
F

and D
T

respectively:

D
F

= [M,F]

D
T

= [M,T]

We now have

(D
F
D

F
) −→→ D

F
(D

T
D

F
) −→→ D

F

(D
F
D

T
) −→→ D

F
(D

T
D

T
) −→→ D

T

To obtain the result of the test for zero, we only need to take the second

projection. We thus define the test for zero as follows:

Zero?
bin

= λn.(π2
2 (n D

T
D

F
))

Note that as a byproduct of our construction, this definition of Zero?
bin

ignores

trailing zeros, for example:

(Zero?
bin

(λzw.zwzzz)) −→→ F

(Zero?
bin

(λzw.zzzzz)) −→→ T

(ii) Let

C = Width(Zero?
bin

) + max{Width(π2
2([M, b])) : b ∈ {F,T}}

r = max{Width([M, b1] [M, b2]) : b1, b2 ∈ {F,T}}
For any n ∈ N, binn = λzw.b1 · · · bk , we have:

Width(Zero?
bin

binn) 6 C + Width(binn) + k · r
= O(k)

= O(log n)

q

5.2 The successor function

Proposition 2

(i) There exists a combinator Succ
bin

, such that for all n ∈ N we have

(Succ
bin

binn) −→→ binn+1.

(ii) Width(Succ
bin

binn) = O(log n).

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

614 M. Goldberg

Proof

(i) We describe the successor function on binn using a three-state Mealy machine:

The first state, S0, propagates the carry; The second state, S1, goes through the

remaining bits after the carry operation has been performed; The third state,

S2, is the final state.

The machine is depicted in the following diagram:

Let binn = λzw.b1 · · · bk , where bj ∈ {z, w}. We apply binn to three terms

M0,M1,MEnd, substituting M0,M1, respectively, for z, w in the body of the

binary numeral, giving the application (Mδ1
· · ·MδkMEnd), where δk ∈ {0, 1},

for j 6 k, and where MEnd is a marker for the end of the number. Let

T = {Mδj}j6k . We embed the computable applicative structure 〈Bool, f〉, where

f is given by

f(S0, 0r, w) = f(S1, r, w1)

f(S0, 1r, w) = f(S0, r, w0)

f(S0,End, w) = w

f(S1, 0r, w) = f(S1, r, w0)

f(S1, 1r, w) = f(S1, r, w1)

f(S1,End, w) = w

in the term model of T ∪ {MN : M,N ∈ T}. Given this substitution, we can

implement the Mealy machine described above, thus computing binn+1. Note

that Mγ is not used in the applicative structure; It’s rôle, as will be explained

later, is to stop the state machine return the body of binn+1 (essentially imple-

menting the state S2). The remainder of the proof describes the implementation

details.

In moving from state to state, the reconstruction of the partial body of binn+1

is carried along and maintained together with some additional information.

Each expression Mδ ∈ T needs to have access to

• An encoding σ of the current state (i.e. of either S0 or S1).

• An encoding of whether the given expression is substituted for a 0-bit or

a 1-bit, or is a mark for the end of the stream of bits (noted by ε in the

diagram). This is denoted by b.

• A partial reconstruction of the body of the successive numeral. This is

denoted by r.

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

Theoretical pearls 615

The values of σ and b determine the value of the given expression. Any finite

set of λ-expressions, for which we have a test of equality could therefore be

used for encoding (1) and (2). Furthermore, since the encodings in (1) and (2)

serve only as tags upon which to dispatch, we can eliminate the test altogether

by using selectors, i.e. expressions of the form

Un
k = λx0 · · · xn.xk

to encode the various choices. The function we represent by our applicative

structure is thus a function of arity 3. The arguments to the function param-

eterize the terms in T, and are referred to as the information content of M.

We store this information, and a procedure m in an ordered 4-tuple. Again,

observe that:

([m, b1, r1, σ1][m, b2, r2, σ2])

−→ ((λx.xmb1r1σ1) (λx.xmb2r2σ2))

−→ ((λx.xmb2r2σ2) mb1r1σ1)

−→ (mmb2r2σ2b1r1σ1)

As one can see, m is passed a copy of itself, as well as all the information stored

in both ordered 4-tuples (both 4-tuples have m is common). On the basis of

the information it is passed, m can return the body of the successive numeral

or it can construct a new ordered 4-tuple, in which case the computation

continues.

Since the function represented by our applicative structure takes three

arguments, and is quite complicated, we use three Decision Logic Tables (cf.

section 4) to describe this behavior in a concise manner.

The main decision logic table in our proof distinguishes between the dif-

ferent states in the automaton. A separate decision logic table is provided for

each state, with the exception of the final state (which does nothing). The three

decision logic tables are given below:

Main DLT: Determining State

Value of σ1 U1
0 U1

1

Dispatch to the DLT of S0

√

Dispatch to the DLT of S1

√

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

616 M. Goldberg

The DLT at S0

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, (r1w),U1
1]

√ √

return with (r1w)
√

[m, b2, (r1z),U
1
0]

√ √

return with (r1zw)
√

irrelevant
√ √ √

The DLT at S1

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, (r1z),U
1
1]

√ √

return with (r1z)
√

[m, b2, (r1w),U1
1]

√ √

return with (r1w)
√

irrelevant
√ √ √

The actions to be taken at each state are a function of b1 and b2. In both

states, the computation of the body of binn+1 terminates when b2 = U2
2. Also,

the situation where b1 = U2
2 cannot occur (since for all n, binn abstracts over

at least one bit), and so the return value in such a situation is irrelevant; We

could return any value whatsoever, so we arbitrarily pick the I combinator.

The decision logic tables for the states S1 and S2 specify different actions

to be taken upon different possible values of b1 and b2. In general, we would

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

Theoretical pearls 617

require a selection mechanism of the form:

Case bi
Tag1 =⇒ Action1

Tag2 =⇒ Action2

Tag3 =⇒ Action3

Esac

However, since we are using selectors for tags, i.e. expressions of the form

Uk
r , for 0 6 r 6 k 6 2, we can use the following for our selection mechanism:

(bi Action1 Action2 Action3)

All three decision logic tables are combined in M:

M = λmb2r2σ2b1r1σ1.(σ1(b1(b2[m, b2, (r1w),U1
1]

[m, b2, (r1w),U1
1]

(r1w))

(b2[m, b2, (r1z),U
1
0]

[m, b2, (r1z),U
1
0]

(r1zw))

I)

(b1(b2[m, b2, (r1z),U
1
1]

[m, b2, (r1z),U
1
1]

(r1z))

(b2[m, b2, (r1w),U1
1]

[m, b2, (r1w),U1
1]

(r1w))

I))

We now define the successor function in terms of M as follows:

Succ
bin

= λnzw.(n[M,U2
0, I,U

1
0]

[M,U2
1, I,U

1
0]

[M,U2
2, I,U

1
0])

(ii) The proof is similar to the proof of Proposition 1, albeit more tedious. It can

be found in our PhD thesis (Goldberg, 1996).

q

5.3 The predecessor function

Proposition 3

(i) There exists a combinator Pred
bin

such that for all n ∈ N we have

(Pred
bin

binn+1) −→→ binn.

(ii) Width(Pred
bin

binn) = O(log n).

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

618 M. Goldberg

Proof

(i) We describe the predecessor function on binn using a three-state Mealy ma-

chine: The first state, S0, propagates the carry; the second state, S1, goes

through the remaining bits after the carry operation has been performed; the

third state, S2, is the final state.

The machine is depicted in the following diagram:

Let binn+1 = λzw.b1 · · · bk , where bj ∈ {z, w}. We apply binn+1 to three terms

M0,M1,MEnd, substituting M0,M1 for z, w, respectively, in the body of the

binary numeral, giving the application (Mδ1
· · ·MδkMEnd), where δk ∈ {0, 1},

for j 6 k, and where MEnd is a marker for the end of the number. Let

T = {Mδj}j6k . We embed the computable applicative structure 〈Bool, f〉, where

f is given by

f(S0, 0r, w) = f(S0, r, w1)

f(S0, 1r, w) = f(S1, r, w0)

f(S0,End, w) = w

f(S1, 0r, w) = f(S1, r, w0)

f(S1, 1r, w) = f(S1, r, w1)

f(S1,End, w) = w

in the term model of T ∪ {MN : M,N ∈ T}. Given this substitution, we can

implement the Mealy machine described above, thus computing binn. As in

the derivation of Succ
bin

, here too MEnd is not used in the applicative structure

itself, and is really a device for stopping the state machine and returning the

body of binn (essentially implementing the state S2). The remainder of the

proof describes the implementation details.

In moving from state to state, the reconstruction of the partial body of binn
(the preceding numeral) will need to be carried along and maintained together

with some additional information. Therefore, each expression needs to have

access to

• An encoding σ of the current state (i.e. of either S0 or S1).

• An encoding of whether the given expression is substituted for a 0-bit, a

1-bit, or is a mark for the end of the stream of bits. This is denoted by b.

• A partial reconstruction of the body of the preceding numeral, under the

assumption that additional z’s in the number are trailing, and should be

ignored. This reconstruction is denoted by r1.

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

Theoretical pearls 619

• A partial reconstruction of the body of the preceding numeral, under the

assumption that additional z’s in the number are not trailing, and should

not be dropped. This reconstruction is denoted by r2.

The values of (1) and (2) are the same as the corresponding ones in the

construction of the successor. Since the predecessor of a bin numeral may

have one less bit, we generate two reconstructions of the numeral, in parallel,

and commit to one of the two when either a 1-bit or the terminal mark is

encountered. Together, (3) and (4) correspond to (3) in the construction of

the successor. We store this information, as well as a procedure m, in an

ordered 5-tuple. The function we represent by our applicative structure is thus

a function of arity 4. The arguments to the function parameterize the terms

in T, and are referred to as the information content of M. We store this infor-

mation, and a procedure m in an ordered 5-tuple. As usual by now, observe

that:

([m, b1, r11, r12, σ1] [m, b2, r21, r22, σ2])

−→ ((λx.xmb1r11r12σ1)

(λx.xmb2r21r22σ2))

−→ ((λx.xmb2r21r22σ2)

mb1r11r12σ1)

−→ (mmb2r21r22σ2b1r11r12σ1)

As one can see, m is passed a copy of itself, and all the information that

is stored in both ordered 5-tuples (again, both ordered 5-tuples have m in

common).

Since the function represented by our applicative structure takes four argu-

ments, and is quite complicated, we use three decision logic tables to represent

the behavior of m:

Main DLT: Determining State

Value of σ1 U1
0 U1

1

Dispatch to the DLT of σ0

√

Dispatch to the DLT of σ1

√

As was the case with the derivation of the successor function, the actions to be

taken at each state are a function of b1 and b2. In both cases, the computation

of the body of binn terminates when b2 = U2
2. Also, just as with the successor

function, the situation where b1 = U2
2 cannot occur, and so the return value

in this case is irrelevant, and once again, we arbitrarily pick the I combinator.

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

620 M. Goldberg

The DLT at σ0

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, (r12w), (r12w),U1
0]

√ √

return with (r12w)
√

[m, b2, r11, (r12z),U
1
1]

√ √

return with r11

√

irrelevant
√ √ √

The DLT at σ1

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, r11, (r12z),U
1
1]

√ √

return with r11

√

[m, b2, (r12w), (r12w),U1
1]

√ √

return with (r12w)
√

irrelevant
√ √ √

The decision logic tables for the states S1 and S2 specify different actions to

be taken upon different possible values of b1 and b2. Just as with the successor

function, we rely on the fact that b1 and b2 are selectors in order to simplify

the selection mechanism. All three decision logic tables are combined in M:

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

Theoretical pearls 621

M = λmb2r21r22σ2b1r11r12σ1.(σ1(b1(b2[m, b2, (r12w), (r12w),U1
0]

[m, b2, (r12w), (r12w),U1
0]

(r12 w))

(b2[m, b2, r11, (r12z),U
1
1]

[m, b2, r11, (r12z),U
1
1]

r11)

I)

(b1(b2[m, b2, r11, (r11z),U
1
1]

[m, b2, r11, (r11z),U
1
1]

r11)

(b2[m, b2, (r12w), (r12w),U1
1]

[m, b2, (r12w), (r12w),U1
1]

(r12w))

I))

We now define the predecessor function in terms of M as follows:

Pred
bin

= λnzw.(n[M,U2
0, z, I,U

1
0]

[M,U2
1, z, I,U

1
0]

[M,U2
2, z, I,U

1
0])

Recall that r1 contains the partial reconstruction of the preceding numeral

under the assumption that any additional zero bits are trailing, and can

therefore be ignored. The initial value of r1 must therefore be z, rather than I.

(ii) The proof is similar to the proof of Proposition 1, albeit more tedious. It can

be found in our PhD thesis (Goldberg, 1996).

q

5.4 Adequacy

Proposition 4

The numeral system bin is adequate.

Proof

Having defined Zero?
bin

, Succ
bin

, and Pred
bin

, it follows from Proposition 6.4.3 in

Barendregt’s book (Barendregt, 1984) that bin is an adequate numeral system. q

6 Conclusion and assessment

This paper introduces the sequence bin, and shows that it is an adequate numeral

system. This section analyzes several aspects of bin.

6.1 Extensibility

The definition of bin is easily extensible to other bases. Similarly, bin can be extended

to have a sign, a decimal point and an exponent, facilitating fixed-size floating point

arithmetic.

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

622 M. Goldberg

6.2 Efficiency

Numerals in bin are represented as concisely as possible. The number-theoretic

functions can be computed on bin with the same complexity as they are computed

on the standard binary representation used on modern computers. The complexity

of this computation is independent of the order of evaluation. The use of selectors

rather than arbitrary tags in the dispatching mechanism results in considerable gains

in efficiency, and the resulting λ-expressions are both more concise and simpler to

verify.

6.3 Implementation

The numeral system bin is suitable for implementation in functional programming

languages that model the pure, untyped λ-calculus. We have implemented both the

numeral system bin, and the basic number-theoretic functions defined on it in the

Scheme programming language (Clinger and Rees, 1991). Our implementation can

be combined with the Gödelizer developed as a part of our PhD thesis (Goldberg,

1995; Goldberg, 1996), so that such numerals, as well as possible extensions to the

bin numeral system, can be displayed.

6.4 Decision logic tables

Although decision logic tables are elaborate and verbose, they are relatively straight-

forward to construct, and help insure correctness. Decision logic tables have tra-

ditionally been compiled into various programming languages (Humby, 1973), and

so it seems reasonable to expect that λ-expressions for computing more elaborate

functions could be generated automatically from a given set of decision logic tables.

Acknowledgements

This work was supported by the Danish Research Academy. I am grateful to BRICS

for hosting me and for providing a stimulating environment. Thanks are also due to

Olivier Danvy, Daniel P. Friedman, Julia Lawall, and Larry Moss for their comments

and encouragement.

References

Barendregt, H. P. (1984) The Lambda Calculus, Its Syntax and Semantics. North-Holland.

Barendregt, H. P. (1990) Personal Communication, Bloomington, Indiana.

Church, A. (1941) The Calculi of Lambda-Conversion. Princeton University Press.

Clinger, W. and Rees, J. (editors) (1991) Revised4 report on the algorithmic language Scheme.

LISP Pointers, IV(3), 1–55.

Goldberg, M. (1995) Gödelisation in the λ-calculus. BRICS Research Series RS-95-38,

Department of Computer Science, University of Aarhus, Denmark.

Goldberg, M. (1996) Recursive Application Survival in the λ-Calculus. PhD thesis, Department

of Computer Science, Indiana University.

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

Theoretical pearls 623

Humby, E. (1973) Programs from Decision Tables. Macdonald/Elsevier.

Kavanagh, T. F. (1960) Tabsol – a fundamental concept for system-oriented language. Proc.

Eastern Joint Computer Conference, pp. 117–127.

McDaniel, H. (1968) An Introduction to Decision Logic Tables. Wiley.

Mitchell, J. C. (1996) Foundations of Programming Languages. MIT Press.

van der Poel, W. L., Schaap, C. E. and van der Mey, G. (1980) New arithmetical operators in

the theory of combinators. Indagationes Mathematicae, 42, 271–325. Parts I-III.

https://doi.org/10.1017/S0956796800003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003804

