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1. Introduction. Let Mn(C) be the algebra o f « x « complex matrices, and let °Un be
its unitary group. Given A, B e A/n(C), the A -numerical radius of B is the nonnegative
quantity

rA(B) = max{\tr(AU*BU\: U e %,}.

In particular, for A = diag(l,0,. . . ,0) it reduces to the classical numerical radius
r(B) = max{\x*Bx\:x*x = 1}. In [1] Goldberg and Straus proved that rA is a generalized
matrix norm (i.e. a positive definite seminorm) on Mn(C) if and only if 4̂ is nonscalar and
tr A ^ 0. This result agrees with the well-known fact that the classical numerical radius r is
a generalized matrix norm. The nontrivial part of the proof is to show that if A is
nonscalar and trA^O then rA is positive definite; that is, for any BeMn(C),
tr(AU*BU) = 0 for all U e %„ implies 5 = 0 . The proof given in [1] is computational and
involves the use of differentiation on matrices. Later Marcus and Sandy [2] gave three
elementary proofs of the result. Their proofs are still computational in nature and two of
them need knowledge of multilinear algebra.

In this note we will give an easier and more conceptual proof of the result. The ideas
of our proof stem from a simple observation. In terms of the usual inner product on
Mn(C) denned by (A, B)=tr(AB*), the condition "tr(AU*BU) = 0 for all Ue %„" is
equivalent to saying that B* belongs to the orthogonal complement of the linear span of
{UAU*: Ue °U,n}. Thus, the nontrivial part of the above result of Goldberg and Straus
says:

If A is nonscalar and \x A =f= 0, then span{UAU*: U e %„} = A/n(C). In the course of
our proof we reduce the problem to proving the geometric fact stated in Theorem 1. It
turns out that Theorem 1 and the result of Goldberg and Straus are "equivalent".

In [2] Marcus and Sandy also posed a conjecture which extends the above result of
Goldberg and Straus. In [4] the conjecture is shown to be incorrect. We will also give
some related results in [3].

2. Proofs of results. For any A e A/n(C), by a unitary (permutational) transform of
A we mean a matrix of the form U*AU, where U e °lln (U is a permutation matrix).

LEMMA. Let C,DeMn(C) such that t r C = t r D = 0 and C=f0. / / there exists a
constant a such that, for all U e °Un (C, U*DU) = a, then D=0.

Proof. By the fact tr (AB) = tr(BA), it is easily shown that in the condition

(C, U*DU) = a for all Ue% (1)

we may replace C and D by their unitary transforms. Also note that there is a unitary
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transform of C with some main diagonal entries being nonzero; for instance, if c,, = 0 for
l < i < n and c12 or c2l =f 0, then there exists some real number 0 such that the (1,1) and
(2,2) entries of the following unitary transform of C are nonzero:

1/V2 -e-"7V2\ I f / 1/V2 1/V2

Let C = (1/2") E UCU*, where the summation is taken over all n x n diagonal matrices U
with 1 or - 1 along its main diagonal. (There are altogether 2" such matrices.) It is not
difficult to show that C is a diagonal matrix with the same main diagonal as C. Further,
(1) still holds if C is replaced by C.

So, from the above observations we may assume that C is a nonzero diagonal matrix
with zero trace. Replacing C by a permutational transform, if necessary, we may assume
that cu, c22 are nonzero, unequal entries of C. Now suppose that D is nonzero. Again
replacing D by a suitable unitary transform, we may assume that dn, d22 are nonzero and
unequal. Now by (1),

n

a = tr(CD*) = cndn + c22d22 + £ cudu.
i=3

As the matrix diag(c22, cn, c33, . . . , cnn) is permutationally similar to C, by (1) again we
also have,

n

a = cnd22 + c22dn + X cudu.
1 = 3

Hence, cudu + c22d22 = cud22 + c22du; or (cu - c22)(du - d22) = 0, which is a
contradiction.

Since hyperplanes in the subspace {D e Mn(C):trZ) = 0} are of the form {D e
Mn(C): tr D = 0 and (D, C) = a} for some constant a and some matrix C with zero trace,
the above lemma can be restated in the following geometric language.

THEOREM 1. Suppose that AeMn(C) is a nonzero matrix with zero trace. Then the
complex affine hull of the set {UAU* :U e°Un} is equal to the subspace of matrices with
zero trace.

(The complex affine hull of a nonempty set S consists of all vectors of the form

<*!*! + . . . + ocpxpy where *, are vectors in 5, or, are (complex) scalars such that E o-, = 1

and p is some positive integer.)

THEOREM 2 (Goldberg-Straus). / / AeMn(C) is nonscalar and trA^O, then
span{UAU* :UeaUn} = Mn(C).

Proof. Express A in the form C + aln where C = A - (1/n)(tr A)In and a =
= (lln)trA. Then clearly C is a matrix with zero trace and is nonzero as A is nonscalar.
By Theorem 1, for any DeMn(Q with zero trace, there exist U, s % and scalars
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ah \^i^p, with ^ , = 1 such that D = a^CUf + ... + apUpCU*; then D'+ ocln =
;=i

axUxAUt + . . . + apUpAU*. This shows that span{UAU*: Ue %} contains the hyper-
plane {D e Mn(C): tr D = 0} + <*/„. As a =f 0, this hyperplane is not a hypersubspace and
hence spans Mn(C). It follows that span{UAU*: U e °Un} = Mn(C).

We have deduced Theorem 2 from Theorem 1. For completeness we show below that
Theorem 1 also follows from Theorem 2.

If Theorem 1 is incorrect, then so is our lemma. Then there exist nonzero matrices
C, DeMn(C) both with zero trace such that, for all Ue%, (C, U*DU) = a for some
constant a. Denote the matrix D + /„ by A. Then A is nonscalar and trA =f 0. Further,
span{UAU*: U e °iln} is a proper subspace of Mn(C), because for any U e %„,

= (C, U*DU) -(^In,In) = 0,

whereas C — {ccln)In =f 0. This shows that Theorem 2 does not hold, which is a
contradiction.
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