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Abstract
Cost efficiency is a critical factor in the competitive aviation sector. These efficiency factors force airline operators
to develop new approaches in their organizations. Predictive maintenance helps to build scheduling maintenance
programs for airline operators or MROs. Scheduled maintenance programs benefit cost efficiency in the aviation
sector. Predictive maintenance methods predict the failure time of any equipment. Predictions can be made by
analyzing the sensor values from equipment.

In this paper, we predicted the remaining useful life (RUL) of turbofan engines using machine learning models
and a similarity-based approach. Sensor datasets from the Prognostics Data Repository of NASA, called CMAPPS,
were utilized. Using the FD0002 sub-dataset, a health index (HI) was created, and models were trained. Once the
models were trained, train and test HIs were estimated. The predicted test HI was matched with the predicted train HI
based on a similarity-based approach, and then a RUL prediction was made. The results obtained were compared
with the actual results to calculate the accuracy, and the algorithm that resulted in the maximum accuracy was
identified.

We selected six machine learning algorithms and also created an ensemble model by averaging the predictions
of six machine learning algorithms for comparing prediction accuracy. The different algorithms were compared
to obtain the prediction model with the closest prediction of remaining useful lifecycle in terms of the number of
life cycles. This experiment showed us the effect of the similarity-based approach on the basic version of machine
learning models for RUL prediction.

Nomenclature
GBT Gradient-Boosted Trees
CMAPSS Commercial Modular Aero-Propulsion System Simulation
CV Cross-Validation
DdM Data-Driven Model
DT Decision Tree
HI Health Index
GBR Gradient Boosting Regressor
LightGBM Light Gradient Boosting Machine
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
MPD Maintenance Planning Document
MRO Maintenance, Repair and Overhaul
MSE Mean Squared Error
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PdM Predictive Maintenance
PHM Prognostics and Health Management
RF Random Forest
RMSE Root Mean Square Error
RUL Remaining Useful Life
SVM Support Vector Machine
SVR Support Vector Regression

1. Introduction
Leadership within airline organizations grapple with an array of optimization dilemmas within the
fiercely competitive aviation sector. Among these complexities lies the maintenance regimen, a critical
determinant of an airline’s financial performance [4]. Aircraft maintenance encompasses multifaceted
considerations for optimization, encompassing the provision of maintenance equipment, aviation mate-
rials, and the management of human resources. The harmonization of these elements is essential to
ensuring the provision of cost-effective and secure transportation services by airlines.

The ongoing discourse regarding the interplay between profitability and safety within the aviation
industry has been a subject of enduring deliberation spanning numerous years. This dialogue transcends
the purview of airline executives, extending to encompass regulatory authorities tasked with safeguard-
ing the integrity of airline operations and ensuring enduring safety standards in air transportation [10].
In tandem with financial analysts, governmental regulators exhibit a pronounced interest in elucidating
the intricate dynamics between an airline’s fiscal viability and its safety protocols [17]. The optimiza-
tion of this delicate balance between profitability and safety necessitates the meticulous execution of
maintenance plans within the realm of aviation maintenance, repair and overhaul (MRO).

The majority of airlines rely on technical documentation such as Maintenance Planning Documents
(MPDs) to ensure the continued airworthiness of their aircraft fleet, typically disseminated by aircraft
manufacturers [16]. Nonetheless, the statistical methodologies predominantly employed often base their
calculations on population or fleet-wide data. An inherent limitation of this method lies in its suscep-
tibility to uncertainty, thereby permitting the occurrence of unforeseen component failures before their
projected maintenance intervals, as depicted in Fig. 1. In the aviation industry, fleet-wide data analysis is
routinely used to assess the remaining useful life of components. By analyzing large datasets collected
from multiple aircraft, maintenance teams can identify patterns and trends that help predict when a com-
ponent is likely to fail. This approach allows for maximizing the use of serviceable life while minimizing
the risk of unexpected failures.

Statistical reliability is based on the collection and analysis of failure, removal, and repair rates of
systems or components, often referred to as “events.” Event rates are typically normalized per 1,000
flight hours or 100 flight cycles to facilitate analysis. However, it is crucial to ensure the accuracy of the
input data, as incorrect data can lead to misleading results. As described in the reference text, improper
use of statistical methods, such as including non-representative data points, can result in erroneous
conclusions [12].

For instance, an airline may incorrectly include months without data collection in their statistical
analysis, leading to an invalid mean failure rate and alert level. Proper statistical analysis should only
consider valid data points, and historical reliability data can be useful when statistical reliability is not
applicable due to insufficient data points. This uncertainty is exacerbated by variations in operational
conditions and individual component performance, which are not always accurately reflected in fleet-
wide data. Conversely, there exists a pronounced risk of premature component replacement, whereby
serviceable parts are removed preemptively prior to their actual failure, thus resulting in an opportunity
cost incurred due to the under-utilization of the component’s remaining serviceable lifespan in Fig. 2.
The premature replacement of components can lead to increased maintenance costs and unnecessary
waste of resources, further straining airline budgets. By adopting more precise predictive maintenance
techniques that account for individual component conditions and real-time data, airlines can mitigate
these risks and optimize their maintenance schedules, ultimately improving profitability.
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Figure 1. Traditional maintenance.

Figure 2. Predictive maintenance.

Numerous established maintenance methodologies encompass reactive maintenance, preventive
maintenance, and predictive maintenance. Reactive maintenance involves undertaking maintenance
interventions solely in response to system failures. Conversely, preventive maintenance involves both
the scheduled maintenance inspections and the preemptive replacement of system components prior to
the onset of any discernible failure. While preventive maintenance aids in sustaining operational con-
tinuity, its cost-effectiveness may be questioned due to the requirement for replacing potentially costly
components and allocating human resources or time resources before any fault manifestation [7].

In the realm of commercial enterprises, the meticulous balance between operational risk and expen-
diture is paramount to ensuring the enduring provision of services to clientele. Predictive Maintenance
(PdM) emerges as a promising solution, affording firms the capacity to foresee equipment malfunctions
and schedule maintenance activities judiciously. By integrating predictive maintenance methodologies,
enterprises managing complex systems can tactically orchestrate maintenance endeavors, thereby mit-
igating the incidence of unplanned downtime and enhancing the efficiency of component utilization.
Consequently, this strategic approach facilitates savings in time, labor, financial resources, and facilitates
a reduction in carbon emissions [28].

While there are multiple backup systems for communication or radar onboard to ensure airworthiness,
having a backup for the aircraft engine is not feasible. The engine represents a crucial component of
the aircraft that must be maintained to ensure airworthiness and safety. In this paper, we deal with
mainly Machine Learning (ML) algorithms, and a similarity-based approach was used for predicting

https://doi.org/10.1017/aer.2024.101 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.101


488 Isbilen et al.

the Remaining Useful Life (RUL) of the turbofan engine. A performance comparison of ML algorithms
is also carried out.

1.1 Related work
Over the last decade, there has been a proliferation of scholarly literature investigating the prediction of
RUL for aircraft engines. The primary objective of these studies is to achieve precise estimations of RUL,
aiming to mitigate maintenance expenditures while preserving operational reliability. This objective is
realized through the formulation of RUL prediction models, which leverage the analysis of degradation
patterns gleaned from various condition monitoring sensors. Such models play a pivotal role in devising
tailored maintenance strategies, thereby reducing instances of unplanned downtime and enhancing the
longevity of machinery, particularly in safety-critical contexts.

The expeditious detection of anomalies and timely provision of warnings regarding potential failures
constitute essential measures for optimizing system utilization. In the estimation of RUL, three principal
categories of prognostic methodologies are commonly employed: physical model-based approaches,
data-driven approaches, and hybrid approaches [2]. These methodologies assume critical significance
in the diligent monitoring of the health and operational efficacy of aircraft engines.

The model-based approach involves a comprehensive understanding of the mechanical structure
of the machinery, utilizing mathematical equations to articulate and predict sub-sequent behaviors.
However, addressing complex systems necessitates the formulation of numerous assumptions to facil-
itate the solution of these equations [5]. Consequently, predictive accuracy often suffers due to the
inherent assumptions inherent in grappling with intricate problems.

In contrast, the data-driven approach offers a diverse array of statistical and ML techniques tailored
to address the designated issue [6]. These methodologies endeavor to uncover correlations between
input variables and target outcomes, thereby simplifying the prediction of RUL compared to the model-
based approach. Unlike its model-based counterpart, the data-driven approach does not necessitate
an exhaustive comprehension of the intricate mechanical architectures or operational processes of the
machinery.

A significant proportion of prognostics research within the aviation domain has relied upon data
sourced from the NASA repository. The most recent release of datasets pertaining to the Commercial
Modular Aero-Propulsion System Simulation (CMAPSS) for aircraft engines was made publicly avail-
able in 2021 [7]. These updated datasets signify an advancement over their antecedents published in
2008 [20]. While it is acknowledged that data derived from laboratory experiments and simulations may
not entirely replicate real-world flight conditions [27], the newly released CMAPSS datasets enhance
fidelity by incorporating real flight conditions and enriching the degradation model with operational
history [7].

Several extant studies in the literature employ ML techniques to forecast the RUL for the C-MAPSS
dataset. One such study conducted by Mathew et al. [15] outlines a methodology centered on supervised
ML for RUL prediction in turbofan engines [15].

Singh et al. conducted an additional experiment employing gradient-boosted trees (GBT) and the
stacking ensemble method. This study is significant in assessing the efficacy of hybrid prediction
methodologies for the CMAPSS dataset. Rather than relying on a singular model and averaging tech-
niques, the authors endeavored to mitigate variance and enhance predictive robustness through the
proposed methodology [24].

Fei et al. introduced the utilization of the Light Gradient Boosting Machine (LightGBM) for RUL
prediction. Their findings indicate that LightGBM demonstrates notable performance when applied to C-
MAPSS data characterized by high-dimensional inputs, while also possessing interpretability. Moreover,
to enhance the capture of degradation information, the authors incorporated the time window of raw data
and the runtime of the turbofan engine as inputs to their proposed method following normalization. By
integrating data manipulation techniques such as combining window size and normalization methods,
the effectiveness of the proposed methodology was augmented [9].
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Xin et al.’s study assumes significance in evaluating the efficacy of tree-based methodologies within
the existing literature concerning RUL prediction for the C-MAPSS dataset. While the authors dis-
cuss the performance of various models and approaches in their paper, they propose a straightforward
and robust method for estimating RUL based on random forest regression. Notably, their feature selec-
tion approach stands apart from conventional methodologies found in the literature. Additionally, the
utilization of Lasso regression for feature selection is elucidated for readers’ comprehension [15].

In the realm of Prognostics and Health Management (PHM) applications, sequential data, such as
pressure, temperature, and time-series data, represents a prevalent format of input data. While lever-
aging Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), or Recurrent Neural
Network (RNN) for training time-series data has yielded commendable results in existing literature,
these methodologies are noted for their time-consuming nature and the associated expenses in predic-
tive scenarios [9]. Consequently, researchers have redirected their focus toward single ML methods
or ensemble methods for PHM applications. This study endeavors to introduce novel approaches by
employing ensemble methods for RUL prediction, in contrast to the prevalent deep learning methodolo-
gies, and aims to assess the performance of the proposed model in comparison to existing benchmarks
within the literature.

1.2 Aim, objectives and main contributions
This study aims to propose a methodology and algorithm for the implementation of a condition monitor-
ing and prognostics system for aircraft engines. By leveraging the most recent NASA CMAPSS datasets
as both training and test sets, the projected RULs are verified for accuracy. These RUL estimations
subsequently inform critical maintenance decisions, encompassing intervention strategies, planning,
scheduling, and parts preparation, in line with current practices such as MSG-3 and future advancements
like MSG-4 [22]. To fulfill these objectives, the paper is structured as follows:

• Examination of the current state-of-the-art in prognostics technology.
• Development of condition monitoring and prognostics algorithms aimed at optimizing aircraft

engine maintenance.

The primary focus of this paper is to address these challenges by proposing alternative techniques that
bridge the gap between research advancements and industry demands, while simultaneously maintaining
a robust RUL prediction performance. Key contributions of this study include:

• Introducing an alternative prognostics technique to complement existing data-driven approaches
utilizing the latest CMAPSS dataset, with a particular emphasis on transparency and uncertainty
quantification.

• Conducting an in-depth analysis of CMAPSS dataset 02 and comparing prediction performance
against previously published research findings.

1.3 Paper organization
This manuscript is structured into five main sections: Introduction, methodology, results, discussion,
and conclusion and future work. The introductory segment serves to expound upon the rationale behind
the research and contextualizes it within the existing literature, delineating the aims, objectives, and
prognostic methodologies pertinent to aircraft maintenance. The Methodology section, constituting the
second component of this paper, provides a comprehensive discussion encompassing dataset description,
preprocessing techniques employed, as well as elucidation of the training, prediction, and evaluation
processes. The subsequent section delves into the presentation of outcomes and findings, entailing
a meticulous examination and comparative analysis versus findings reported in antecedent studies.
Lastly, the concluding section encapsulates the primary findings, synthesizes key insights, and proposes
potential avenues for future research enhancement.
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Table 1. FD002 sub-dataset

Dataset Engine Quantity Feature Quantity Trajectory Quantity
FD002 Train 260 28 53759
FD002 Test 259 28 33991
FD002 RUL 259 1

Figure 3. Research methodology overview.

2. Methodology
2.1 Overview
The methodology employed in this study is structured into nine distinct phases, each delineating
key tasks and corresponding outputs. The overarching research methodology is visually depicted in
Fig. 3, elucidating the sequential progression of each process, which is subsequently expounded upon
in the ensuing sections. It is noteworthy that the algorithms are developed utilizing Python Jupyter
Notebook on Google Colab, leveraging the latest packages for Data Acquisition, Feature Selection,
Engine Prognostics, Parameter Tuning, and Performance Tests.

2.2 Dataset
Initially introduced as the PHM Challenge by Saxena and Goebel in 2008, the CMAPSS dataset has
emerged as a widely recognized resource within the field of prognostics [20,21]. This dataset, as
described by Saxena et al., provides simulated run-to-failure trajectories of a fleet comprising large
turbofan engines, thereby serving as a valuable tool for research and development endeavors in prog-
nostics and health management [20]. In this study, the FD002 train and test sub-datasets from the
CMAPSS dataset were utilized for the purpose of training ML models and predicting RUL for test
data. Specifically, the train FD002 sub-dataset comprises 260 engines and 53,759 trajectories, while the
test FD002 sub-dataset encompasses 259 engines and 33,991 trajectories. As seen in Table 1 the train
FD002 sub-dataset comprises 260 engines and 53,759 trajectories, while the test FD002 sub-dataset
encompasses 259 engines and 33,991 trajectories.

2.3 Preprocessing data
Preprocessing constitutes a fundamental phase in the realm of data science. Raw data typically arrive
in an unrefined state, necessitating exploration and potential cleansing or manipulation to optimize
model training. Additionally, selecting an appropriate model structure is imperative to derive meaningful
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outcomes post-training. This section delves into the methodologies encompassing the preparation of raw
sensor data leading up to model training, elucidating the sequential processes involved therein.

2.4 Z-score normalization
Normalization constitutes a fundamental preprocessing stage pivotal for both scaling and mapping,
thereby enhancing the accuracy of prediction and forecasting [18]. This technique involves the trans-
formation of data from its original range to a new one, thereby mitigating the impact of significant
variations among diverse prediction and forecasting methods [9]. In the domain of predictive analytics,
characterized by a multitude of approaches, normalization serves as an integrative mechanism, fostering
cohesion among disparate models and facilitating a more comprehensive analysis of the data. Its impor-
tance lies in its capacity to establish a standardized framework, ensuring that predictions and forecasts
maintain consistency and comparability across various methodologies.

Z-score normalization, also known as standardization, represents a statistical and ML method
employed for scaling and normalizing features within a dataset. The primary objective of Z-score nor-
malization is to alter the distribution of data such that it possesses a mean of 0 and a standard deviation
of 1. This process of standardization guarantees that each feature is transformed to a uniform scale,
thereby streamlining analysis and comparison. Such standardization proves particularly advantageous
when dataset features exhibit disparities in units or scales. Overall, standardization assumes a pivotal
role in rendering data into a consistent scale, thereby facilitating more meaningful interpretations and
evaluations across different features.

The research applied z-score normalization to the sensor values within the FD002 dataset for the pur-
poses of model training and data observation. This normalization procedure was undertaken to facilitate
the analysis of sensor data, thereby aiding in the identification of pertinent sensors. Figure 4 illustrates the
normalized raw sensor data for trajectories, providing a representative sample for observation. Through
this normalization process, it becomes feasible to discern trends within the sensor data. Notably, as
depicted in Fig. 4, sensors exhibiting irregular trends are deemed unsuitable for model training to prevent
any adverse impact on model performance.

Monotonicity characterizes the underlying positive or negative trend of a parameter, an essential
feature for prognostic parameters. Generally, it is assumed that systems do not undergo self-healing,
which would be indicated by a non-monotonic parameter. This assumption holds for mechanical compo-
nents or systems combining electronic and mechanical components. However, this assumption does not
apply to some components, such as batteries, which may experience self-repair during short periods of
nonuse [8].

We employed this assumption to select sensors that create more consistent degeneration patterns
compared to those with erratic behaviors. Specifically, sensors identified as sensor 10, sensor 12, sensor
13, sensor 14, sensor 17, and sensor 18 are excluded from model training due to their erratic behavior.
It is pertinent to note that empty sensor values were disregarded in the determination of excluded sen-
sors. Their erratic behavior could undermine the model’s reliability and accuracy. Specifically, their
non-monotonic nature introduces noise, masking the true underlying trends necessary for accurate
prognostics.

2.5 Feature extraction and selection
Feature extraction and selection play a crucial role in enhancing the effectiveness of model training.
Given the limited range of normalized sensor data, the trends in sensor data were examined using
prognostic indicators. As illustrated in Fig. 4, the normalized data revealed that sensors with valuable
information could be identified based on monotonicity and trendability behaviors, categorizing them as
either useful or useless sensor data.

Following a visual inspection of the sensor data indicators in Fig. 4, sensors 6, 7, 8, 11, 15, 16, 19,
21, 24, and 25 were identified as useful sensors due to their demonstrated trendability. However, sensors
11, 16, 24, and 25 require transformation as they exhibit negative directional trends.
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Figure 4. Normalized sensor data.

Figure 5. Useful sensors.

2.6 Data transform
Sensors exhibiting a negative trend direction were rectified to align with positive trends through a rever-
sal process. This entailed subtracting each value within the sensor data from the maximum value present
in the respective column, augmented by one. This reversal procedure aims to harmonize the data with
the underlying assumptions or anticipations of the ML model, thereby fostering the generation of more
interpretable results. As seen in Fig. 5, sensors 11, 16, 24 and 25 directions were reversed.

2.7 Health index creation
The multi-dimensional sensor readings, as well as the features extracted from the raw sensor data, are
first fused to produce a single Health Indicator (HI). This process, known as performance assessment,
starts with sensor selection based on observations in each operating regime [30].
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Figure 6. Health index creation.

A few sensors have single or multiple discrete values, from which it is difficult to trace system
degradation. Most sensors with continuous values exhibit a monotonic trend during the units’ lifetime.
However, some sensors show inconsistent end-of-life trends among different units in the training dataset,
as shown in Fig. 4. This inconsistency might indicate different failure modes of the system.

It might be possible to classify the units by failure modes based on these sensors and then use different
prediction models. However, this approach encounters two challenges. First, the end-of-life readings of
these sensors spread over a large range, making it hard to quantify the failure modes without extra
information. Second, the failure modes might not be clearly identifiable, if at all, in the early stages of a
unit’s life, contributing little to RUL estimation when only early history is available.

Therefore, only those continuous-value sensors with a consistent trend, as shown in Fig. 4, are
selected for HI and RUL prediction. Some sensors do not show a clear trend due to high noise or
low sensitivity to degradation. Including these sensors in the analysis may reduce the accuracy of the
prediction.

In this section, health index (HI) curves were constructed for individual engines, utilizing clustered
sensor data normalized and reversed in trend, categorized by engine number. The HI for each engine
was derived through the averaging of pertinent preprocessed sensor data. Figure 6 depicts the HI curve
for engine 1.

2.8 Power law fitting
As illustrated in Fig. 6, the presence of noise within the HI data remains apparent, potentially under-
mining the efficacy of ML model training. To mitigate the adverse impact of noise on model training, a
second-degree power law transformation was implemented for curve fitting. Following this procedure,
a one-dimensional representation of the HI was attained, facilitating the straightforward observation of
engine degradation. The power law fitting operation constituted the final preprocessing step prior to
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Figure 7. Power law curve fitting applied to health index.

model training. A sample of the fitted curve is depicted in Fig. 7, and the resulting fitted data served as
the target dataset for model training.

2.9 Classification with ML models
In this paper, we opted to utilize basic versions of various models, eschewing extensive hyperparame-
ter optimization typically seen in the literature. Specifically, only the K-fold cross-validation method
features adjustable parameters, namely n-split and random-state, which are specified for clarity to
aid readers. Rather than solely focusing on hyperparameter tuning to bolster prediction accuracy,
we supplemented our basic models with similarity-based approaches to augment predictive effi-
cacy. Consequently, we selected seven models commonly employed in regression tasks. Furthermore,
Moreover, we employed k-fold cross-validation for the random forest regressor model, as it exhibited
superior performance compared to other models.

The dataset splitting process is integral in the development of ML models. In this context, the pro-
vided code snippet illustrates the utilization of the train-test-split function. The dataset, comprised of
useful sensors (x) and HI data (y), is partitioned into training and testing subsets. Notably, the test-size
parameter is set to 0.3, signifying that 30% of the data is earmarked for testing, while the remaining
70% is allocated for training the model. To ensure reproducibility, the random-state parameter is fixed
at 0, thereby maintaining consistency across different executions. Given that we are working with time
series data and regression analysis, maintaining the temporal order of data is crucial for the validity
of our models. Additionally, the shuffle parameter is deliberately set to False, indicating that the data
points will not be randomly rearranged prior to partitioning. This controlled division facilitates robust
evaluation of the model’s performance on unseen data during testing, while upholding a stable training
environment. Furthermore, the regimes already come from different domains and are inherently mixed,
reducing the necessity for further shuffling.
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Figure 8. True and predicted values for the linear regression model.

2.10 Linear regression
Linear regression is a statistical technique utilized to ascertain the association between a dependent
variable and one or more independent variables [14]. This relationship is expressed by Equation (1),
where the dependent variable, denoted as y, is a function of an independent variable, x, and a coef-
ficient b representing the slope characterizing the linear dependence between x and y, along with the
constant ε. In our context, x pertains to the raw data extracted from the engine’s useful sensor readings,
whereas y signifies the value obtained through a second-degree power law fitting.

y = b · x + ε. (1)

Figure 8 displays the training prediction performance for the split test data from train data engine
values. The MSE of the training set is 0.07 for the linear regression model.

2.11 Support vector regression
Support Vector Machine (SVM) for regression, often denoted as Support Vector Regression (SVR), is
a statistical approach aimed at establishing relationships between a dependent variable and independent
variables [11]. One notable distinction of SVR lies in its utilization of support vectors, which endeavor
to encompass as many training points as feasible, thereby creating an optimized margin. SVMs delineate
this optimal hyperplane with support vectors. The sparse solution and superior generalization capabili-
ties of SVMs render them well-suited for adaptation to regression tasks [3]. Following the training of the
SVM model, predictions for new dependent values are generated based on optimized metrics established
during the training phase. SVM models demonstrate proficiency in addressing problems characterized
by noisy data. Figure 9 displays the training prediction performance for the split test data from train data
engine values. The MSE of the training set is 0.40 for the support vector regression model.
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Figure 9. True and predicted values for the support vector regression model.

2.12 Decision tree regressor
A Decision Tree (DT) serves as a statistical method employed to delineate relationships between depen-
dent and independent variables. In contrast to SVM, which endeavor to ascertain a hyperplane for
classification tasks, decision trees adopt a hierarchical tree structure. In the context of regression analy-
sis, these structures are denoted as regression trees (Freund and Mason). The dataset undergoes recursive
partitioning by the decision tree, utilizing threshold conditions optimized to maximize information gain
for classification tasks or minimize variance for regression analysis. The final outcome is determined at
the terminal nodes of the tree hierarchy.

Figure 10 showcases the training prediction performance for the test data split from the training
dataset’s engine values. MSE observed for the training set amounts to 0.07 for the decision tree regressor
model.

2.13 Random forest regressor
Random Forest (RF) represents an ensemble learning technique renowned for its efficacy in both clas-
sification and regression endeavors. Introduced by Leo Breiman in 2001 [23], RF stands out for its
remarkable performance in minimizing prediction errors across benchmark datasets.

Functioning as a tree-based method, RFs share similarities with DT models, yet their principal diver-
gence lies in their ensemble nature. The RF model partitions the dataset into subsets through random
sampling with replacement and constructs individual decision tree hierarchies for each subset. During
the training phase, these hierarchical structures are crafted under optimized conditions.

For regression tasks, the RF model aggregates the outputs of the individual decision trees to derive
the final prediction. This ensemble strategy contributes to enhanced predictive accuracy and serves as
a preventive measure against overfitting. Upon encountering new data points, predictions are generated
by leveraging the hierarchical structure of the trained RF model.
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Figure 10. True and predicted values for the decision tree regression model.

Figure 11 illustrates the training prediction performance for the test data partitioned from the training
dataset’s engine values. The MSE observed for the training set amounts to 0.03 for the RF regressor
model.

Functioning as a tree-based method, RFs share similarities with DT models, yet their principal diver-
gence lies in their ensemble nature. The RF model partitions the dataset into subsets through random
sampling with replacement and constructs individual decision tree hierarchies for each subset. During
the training phase, these hierarchical structures are crafted under optimized conditions.

For regression tasks, the RF model aggregates the outputs of the individual decision trees to derive
the final prediction. This ensemble strategy contributes to enhanced predictive accuracy and serves as a
preventive measure against overfitting. Upon encountering new data points, predictions are generated by
leveraging the hierarchical structure of the trained RF model. Figure 11 illustrates the training prediction
performance for the test data partitioned from the training dataset’s engine values. The MSE observed
for the training set amounts to 0.03 for the RF regressor model.

2.14 Random forest regressor with K-fold cross validation
The random forest regressor exhibited superior performance during the training phase, prompting our
endeavor to refine it further through hyperparameter tuning. Given the sensitivity of ML models to such
adjustments and their consequential impact on predictive efficacy [1].

In this study, we elected to employ k-fold cross-validation (CV), a widely embraced technique for
model validation, to ensure optimal data partitioning during the training process. K-fold cross-validation
stands as one of the most prevalent forms of cross-validation in ML. While there exists no rigid guideline
for determining the value of k, a commonly adopted standard in practical ML is k = 10 (or 5). Employing
either five or ten folds yields a more accurate estimation with reduced bias [19]. Consequently, we set
the value of k to 5 in our experiment during the training of the RF model.
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Figure 11. True and predicted values for the random forest regression model.

Figure 12 illustrates the training prediction performance of the RF model integrated with k-fold cross-
validation. The MSE observed for the training set remains at 0.03 for the RF regressor model.

2.15 Gradient boosting regressor
The Gradient Boosting Regressor (GBR) serves as another statistical model utilized for delineating
relationships between dependent and independent variables. Its notable significance lies in its capacity
to learn from weak learners. The GBR algorithm initiates prediction at the median of the dataset for each
observation, and subsequently computes residuals by determining the differences between the target and
the initial prediction. As the process iterates through multiple leaves, each subsequent leaf endeavors
to capture and rectify the errors (residuals) incurred by its predecessors. The learning rate parameter
governs the contribution of each weak learner to the overall model [29].

In this experiment, two preprocessing techniques were applied to enhance training efficiency and
reduce computational expenses prior to GBR model training, in contrast to other models. Firstly, feature
standardization was performed, followed by the application of truncated singular value decomposition
for dimensionality reduction. Subsequently, the model was fitted.

Figure 13 illustrates the training prediction performance for the split test data derived from the
training dataset’s engine values. The MSE observed for the training set stands at 0.10 for the GBR
model.

2.16 K-nearest neighbors regressor
K-Nearest Neighbors (KNN) represents a versatile and intuitive algorithm employed in statistical mod-
eling to establish relationships between dependent and independent variables. At its core, KNN operates
on the principle of making predictions based on the majority class or average of the k-nearest data points
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Figure 12. True and predicted values for the random forest regression with K-fold cross validation.

Figure 13. True and predicted values for the gradient boosting model.
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Figure 14. True and predicted values for the K-nearest neighbors regressor model.

in the feature space. Notably, this algorithm is non-parametric, signifying that it does not rely on assump-
tions regarding the underlying data distribution. Instead, it leverages the proximity of data points in the
feature space to make predictions.

Figure 14 illustrates the training prediction performance for the split test data derived from the
training dataset’s engine values. The MSE observed for the training set amounts to 0.07 for the KNN
model.

2.17 Ensemble model
The predictions of the ensemble model were generated by averaging all the individual model predictions
for the related engines. While prediction performances varied among individual predictions, the overall
model prediction performance was considered. It’s important to note that no specific training step was
conducted for the ensemble model, and as such, its training performance is not discussed in this section.
The performance of the ensemble model will be addressed in the Results section.

2.18 Estimation
In this section, both the training and test datasets comprising useful raw sensor data were subjected
to estimation. The training data underwent re-estimation to enhance the accuracy of HI calculation.
Initially, HI was computed for model training purposes; however, post-model training, the models
were utilized for HI re-estimation instead of manual calculation. This automated approach significantly
reduced the expense associated with creating HI manually. Additionally, while we provide a smooth
curve, it is important to note that such smoothness would not be achievable in a real-world scenario.
The absence of noise in our estimations is intentional to avoid potential errors that could arise from
numerous sources.
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Figure 15. Similarity methodology.

For our study, we utilized the NASA Commercial Modular Aero-Propulsion System Simulation (C-
MAPSS) datasets for both testing and training. The raw sensor data from these datasets served as the
feature input, while the fitted values were used as the target data. This choice was made to ensure that
our model could accurately learn the underlying patterns in the data without being influenced by noise.

2.19 Similarity-based approach and RUL prediction
The estimated HI values for both the training and test datasets were clustered based on the engine ID,
resulting in unique trajectories for each engine. Figure 15 shows the estimated HI values for the training
dataset as a solid black line and the test dataset as a dashed gray line. To align the test trajectories with the
training data, the test engine trajectories were overlaid on the estimated training data. As the test engine
trajectories traverse the estimated training data, the Euclidean distances between the test trajectory values
and the corresponding training values were measured. These distances are visually represented by the
red vertical lines connecting points on the test trajectory to the closest points on the training trajectory.
For each test engine, the top five closest distances were identified using this approach, employing all
models. In Fig. 15, points a and a’, b and b’ are annotated, with a and b representing points on the
training trajectory and a’ and b’ representing the corresponding points on the test trajectory.

Concurrently, the maximum length of the trajectory was designated as the RUL for each engine
in the training data. These RUL values served as reference points for predicting the RUL for the test
engines. Upon identifying the best-matched training data with the test data, RUL was calculated using
the following formula:

RUL = Best Matched Max Length − (Test Engine Length + Best Matched Trajectory Value) (2)

This process was repeated five times for each engine, and the average of the resultant sum values was
considered as the RUL for the engine. Figure 16 illustrates the best-matched value on the training data
and the RUL for test engine 1. The same method was applied to each test engine dataset.
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Figure 16. Similarity-based prediction.

3. Results
The C-MAPSS dataset has 4 sub-datasets, but we applied training and evaluation for the FD002 dataset
in this paper since FD002 has data in all regimes. Specifically, the training FD002 sub-dataset comprises
260 engines and 53,759 trajectories, while the test FD002 sub-dataset encompasses 259 engines and
33,991 trajectories. Seven algorithms were tested by using the test FD002 sub-dataset and applied the
same similarity-based approach for each model’s outputs.

The root mean square error (RMSE) and mean absolute error (MAE) metrics were used to evaluate
model performances. RMSE measures the square root of the average squared differences between pre-
dicted and actual values of RUL. On the other hand, MAE measures the average absolute differences
between predicted values and actual RUL. The objective was to identify the algorithm with the lowest
RMSE and MAE values. Although net RUL cannot be directly predicted, minimizing the gap between
actual RUL and predicted RUL can be achieved by selecting the best-performing algorithm. Based on
our experiments, the ensemble model, demonstrated the least prediction error. Algorithm’s metric scores
are represented in Table 2.

In this paper, we not only compared the algorithms with each other but also assessed their per-
formance against models presented in the existing literature. Table 3 provides a comparison of the
performance of our algorithms and the relevant models from the literature.

By incorporating initial conditions, we enable a comparative analysis between our study and the
referenced work by Mathew et al. [15]. In the compared experiment, the authors used RUL cycles as the
target label and raw sensor data to train the model. Although this approach provides good performance
for LSTM models, traditional ML models did not have sufficient ability to learn and predict effectively.
Additionally, sensor selection was not evident in the related paper, which negatively impacted model
training.

In contrast, our paper defines the degradation pattern of the engine and includes sensor selection to
enhance model learning. By creating degradation patterns, trained models can compare these patterns
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Table 2. Algorithm’s metric scores

Model RMSE∗ MAE∗

Decision Tree Regressor 40.16 26.54
Gradient Bossting Regressor 30.36 21.49
K Neighbors Regressor 28.38 19.26
Linear Regression 28.25 20.55
Support Vector Regressor 45.31 34.56
Random Forest Regressor 26.88 19.19
Ensemble Model 26.23 18.48
∗Unit: operational cycles – each data capture is a snapshot of a cycle ([21]. “Turbofan Engine Degradation
Simulation).

Table 3. Comparison between the results from our study and [15]

Model Dataset RMSE∗ [15] RMSE∗ (our study)
Decision tree regressor FD002 34.52 40.16
Gradient bossting regressor FD002 27.45 30.36
K neighbors regressor FD002 34.79 28.38
Linear regression FD002 31.49 28.25
Support vector regressor FD002 31.12 45.31
Random forest regressor FD002 29.64 26.88
∗Unit: operational cycles – each data capture is a snapshot of a cycle ([21].“Turbofan Engine Degradation Simulation).

with training baseline samples, allowing a similarity-based approach to be applied to our predictions.
This methodology provides a better definition of degradation than models trained on raw sensor data.

Although we used common ML models, our preprocessing methods allowed us to define degradation
more accurately. As we cannot predict exact RUL, applying an average of the best-matched training
samples reduces error risk. These fundamental differences contribute to the superior performance of
our models. This allows us to assess the efficacy of our similarity-based approach in conjunction with
algorithms that consider initial conditions. Through this comparison, we can discern any enhancements
achieved by our methodology over existing approaches.

4. Discussion
Different models were employed to estimate the HI for the same dataset, while a uniform similarity-
based approach was utilized to predict RUL. Consequently, each model’s performance was discerned
by this method on identical data. The primary objective was to minimize the discrepancy between the
actual RUL and the predicted RUL. Although MAE was calculated, both our study and other authors in
the literature for this dataset typically favored the RMSE metric over MAE. This preference is attributed
to the aim of reducing the occurrence of larger outliers in predictions, as RMSE provides a more compre-
hensive evaluation of model performance. The RF model yielded the lowest RMSE among all models,
with a value of 26.88, as illustrated in Table 3. Although the ensemble model shows the best results in
our study, we compared the performance of common models with the study by Ref. [15]. In that com-
parison, the Random Forest regressor achieved the best performance. Since Mathew et al.’s study did
not utilize an ensemble model, we highlighted the Random Forest as having the best score among the
common models.

Different models exhibit varying strengths depending on the trajectory length of the samples. Some
models perform better with long trajectories, while others excel with short trajectories. By combining
these models in an ensemble, we leverage their individual strengths, leading to improved overall pre-
diction performance. The ensemble model achieves superior performance by averaging the predictions
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of individual models. This approach mitigates the weaknesses of any single model and harnesses the
strengths of multiple models, resulting in lower RMSE and MAE errors.

5. Conclusion and future work
Predictive maintenance holds significant appeal for companies seeking to mitigate unforeseen oper-
ational disruptions. The RUL enables proactive planning of maintenance requirements for turbofan
engines. This proactive approach empowers airline operators or MRO companies to schedule main-
tenance activities preemptively, thereby averting potential errors and optimizing resource management,
including human resources, equipment, and cash flow. By implementing predictive maintenance strate-
gies, companies not only minimize wasted time and resources but also enhance operational security.

In our experiment, we evaluated the performance of ML algorithms augmented by a similarity-based
approach. Moving forward, we aim to delve deeper into optimizing hyperparameters for ML models.
Additionally, we intend to investigate prediction errors and explore strategies for enhancing the effec-
tiveness of the similarity-based approach. For instance, we may consider manipulating engine length
data to refine the application of the similarity-based approach. For instance, we could exclude the initial
50 trajectory data points if an engine has more than 150 trajectory data points, subsequently applying the
similarity-based approach to the remaining 100 trajectory data points. While 150 is provided as a sample
threshold value, the determination of the optimal threshold value could be informed by observing the
models’ most significant errors.

Data availability statement. All data used during the study are available from the corresponding author by request.
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