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Abstract

In this paper we shall describe a numerical method for the solution of curve flow
problems in which the normal velocity of the curve depends locally on the position,
normal and curvature of the curve. The method involves approximating the curve by
a number of line elements (segments) which are only allowed to move in a direction
normal to the element. Hence the normal of each line element remains constant
throughout the evolution. In regions of high curvature elements naturally tend to
accumulate. The method easily deals with the formation of cusps as found in flame
propagation problems and is computationally comparable to a naive marker particle
method. As a test of the method we present a number of numerical experiments
related to mean curvature flow and flows associated with flame propagation and
bushfires.

1. Introduction

Suppose that at time ¢ we have aregion €2, in the plane with boundary 3€2,. We
are interested in the evolution in time of the region €2, such that the velocity
of the boundary 3€2,, at any point, is normal to the boundary and has a speed
depending on its position in R?, on the direction of the normal and on the
curvature of the boundary at that point. Specifically, if we can parameterise
the boundary so that 32, = {x(s, ) : s € S} then the evolution of the position
vector X(s, ) is given by

%x(s, t) =F(x,v, Hv )
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FIGURE 1. Interface 82, with normal v(s, ¢) at point x(s, ¢).

where v(s, t) and H (s, t) are respectively the outward normal and the curvature
of the interface at the point x(s, #) (see Figure 1). In this paper we shall introduce
a numerical method for modeling equations of this form, and use the method to
study a number of specific applications.

Many interesting problems can be formulated using an equation of type (1).
It is common to assume that the position of the interface between burnt and
unburnt gases in a uniformly mixed medium satisfies (1) with the function F
given by

Fx,v,Hy=c—€H

for ¢ and € constant and € small and non-negative ([6]). In fact, in many physical
situations the limiting case € = 0 provides a very good approximation.

In Australia we are particularly interested in modeling the propagation of
bushfires. Empirical studies indicate that some grass fires under the influence
of a constant wind tend to form elliptical burn profiles. This corresponds to a
normal speed given by

F(x,v, H) = g(v-n,) +Vh*+ (f2 = h)H(v-n,)?

where n,, is the direction of the wind and f, g, h are positive experimental
constants (see [2]). Essentially there is a constant outward term (speed h) which
is modified by the effect of the wind; retarded at the back of the fire (speed
f — g), forced at the head of the fire (speed f + g). We note that in the case
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FIGURE 2. Approximation of part of the interface by line elements. The evolution operator is
approximated by translating the elements in a normal direction.

of bushfires the standard models do not include a curvature term. This is due
to the fact that curvature terms are usually only considered to be of importance
on a scale much smaller than the overall size of a common bushfire (i.e., in the
€ — 0 limit above).

Pure mean curvature flow

F(x,v,H) = —H

can be used to describe the evolution of the annealing front of a metal (see [9]).
On the theoretical side, if an initial curve is embedded (non self intersecting),
then the mean curvature flow will flow the curve to a point in a finite time, such
that the enclosed area decreases linearly to zero. As the curve shrinks, the shape
of the curve converges to a circle (see [5]).

If the initial curve is immersed and self intersecting, then it is important
to understand the behaviour of the curve as it evolves to a singularity. In
Section 3 we shall describe some preliminary numerical experiments aimed at
this problem.

In this paper we introduce a simple method for the numerical solution of
equations of the form (1). An obvious way to approximate an equation of this
type is to place a number of marker points around the initial curve and then
use finite differences to approximate the evolution equation. Unfortunately this
leads to a number of problems (see Sethian [8]). In particular there is a need
to refine accurately regions of high curvature and to deal with the formation of
cusps. Standard explicit time-stepping schemes run into stability problems if
neighbouring marker points come too close. Essentially the time step needs to
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be of the same order as the square of the minimum distance between two neigh-
bouring points. In many cases, the distances between marker points become
very small, even though the solution at that point has very little curvature. While
our method will still need a similar time restraint for curvature problems, it will
only be in regions of high curvature that the distance between computational
points will become small. For flame propagation problems with F = c, it is
possible for cusps to form. This is a case in which the naive marker-point method
is guaranteed to fail for reasonable choices of time step (see [8] Appendix A).

Our method involves approximating the curve with a number of line elements
(segments) with a fixed angle between neighbouring elements. The accuracy of
the method improves as the size of this angle is decreased. The idea is to evolve
these line elements as lines and not as points. Each line element has a well-
defined normal which remains constant throughout the evolution. Given a time
step At, the positions of the elements are evolved in the direction normal to the
element and a distance approximating At F (x, v, H) (see Figure 2). Elements
representing inflection points on the curve are deleted from the calculation if
the approximating flow produces a situation in which the variation of the curve
increases (see Figure 4). Ateach time step the lengths of elements are monitored,
and if the length of an element becomes too long it is replaced by a collection
of elements with the same tangent direction as the original element, separated
by elements generating inflection points (see Figure 5). Together, this algorithm
provides a stable method for the representation of the normal to a curve and
allows for the accurate representation of regions of high curvature. A full
description of the algorithm is given in the next section.

Recently Taylor [10] has used essentially the same method to study equi-
librium and moving crystal surfaces. In her case, the angle is determined by
the crystalline structure of the material being modelled, and the evolution of
the crystalline surface is given by a steepest descent flow for an associated
crystalline energy.

It is worth noting that, like any method that represents an interface as a para-
meterised curve, problems will arise if the interface is made up of a large number
of disconnected regions. The method will then have to deal with the possible
intersection of distinct components. Provided the number of components is not
too large, it would be relatively easy to provide the appropriate bookkeeping to
deal with such intersections. At the intersection points, elements could be added
to coalesce two components into one.

However, for complicated situations it would probably be better to use one
of the techniques in which the interface is resolved as the level set of a function
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defined over a two dimensional region. One such method is the fractional
volume method, which is based on a Huygens principle. A function is defined
on a grid of cells covering the domain of interest. If the function value is
one, the cell lies completely inside the region bounded by the interface; if
the value is zero the cell is completely outside the region. Fractional values
indicate that the interface intersects the cell. An approximation of the interface
inside a cell is reconstructed using the fraction volume data for the cell together
with neighbouring cells. The approximate interface is then moved in such a
way as to model the evolution equation, which in turn updates the value of
the fractional volume for each grid cell (see [3]). This method seems to be
well adapted to problems that do not depend on curvature or on an accurate
representation of the normal of the interface. In particular, they work well in
the case F(x,v, H) = ¢ + w(x) - v where we have a constant outward normal
flow together with an advection term (wind). In particular the method has been
used to study turbulent flow in a combustion tunnel [4]. Unfortunately there
does not seem to be a reasonable way to accurately approximate a curvature
term using fractional volumes (see [8]). Hence our method is superior for
curvature-dependent problems.

Another approach considers the interface as the level set of a function which
satisfies a Hamilton-Jacobi equation. If 1 (x, #) is a function such that the level
sets 2, = {x : Y (x,t) = 0} satisfy (1), then formally

Vi — Fx, v, H) Jy2 + 92 =0. @)

This formulation provides a very powerful and general framework to study
equations of type (1) and allows for a general way to deal with cusps and the
evolution of the equations after singularities have formed. In addition the method
naturally generalises to higher dimensions. Numerical methods developed for
the solution of conservation laws have been applied to (2) with great success
(see {7]). On the other hand, two problems are evident. First, this formulation
increases the dimension of the problem from one to two and so is computationally
more intensive than a simple parameterised curve flow method. Secondly, the
problem is solved on a grid and so regions of high curvature are smoothed
onto the computational grid. To analyse the structure of singularities it would
be necessary to refine the grid substantially or to implement an adaptive grid
refinement algorithm. For the problems of interest to us, namely the singularity
structure of curve flows dependent on curvature and simple flame propagation
flows, our method is competitive.
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FIGURE 3. Stabilising algorithm: negatively oriented line elements are moved to the intersec-
tion point of the neighbouring elements.

2. The algorithm

In this section we shall define our method in more detail, but first we introduce
some notation. (Reference to Figure 2 may be of help). In our method the curve
is approximated by a number of line elements (line segments) with a fixed angle
between neighbouring elements. To element i we assign a fixed angle ¢, €
[0, 2] such that the tangent t; to the element is given by t; = (cos(¢;), sin(¢;))
and the normal is given by v; = (—sin(¢;), cos(¢;)). To specify the line L7,
at time nAt, which contains the i"* element as a segment, we need to specify a
point p? on that line. With p} specified,

L ={y=p! +at; : a0 € R}

where we note that the direction of the line is already given by t;.

We use the notation a] for the intersection of the lines L} , and L} and by
for the intersection of the lines L7 and L?,,. The i** line element at time nAt¢
is given by the line segment from a? to bf. The midpoint of the i’* element is
given by x? = 1(a? + b]) and the length of this line segment is denoted £;. If
the vector b} — a} points in the same direction as the tangent t;, then we say that
the element is positively oriented.

The evolution of (1) is approximated by using a simple first order Euler time
stepping scheme. Let the size of the time step be denoted Az. Then a reference
point p/*! at time (n + 1) At is given by

i

P/t =pf + AtF (X}, vi, H)v; . 3)
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(a)

1+1

FIGURE 4. Stabilising inflection points: (a) Evolution of inflection points without stabilising.
(b) With stabilising, elements representing inflection points with negative orientation are removed
and neighbouring elements are coalesced.

Given the new reference points the intersection points a;*' and b/*! can then
be easily determined. In (3) above, H/ is some approximation to the mean
curvature of the curve at the midpoint of the i** element. In Section 3.3 we
describe and test two methods for discretising mean curvature.

If all the elements are initially positively oriented, then by choosing At small
enough we can ensure that the elements remain positively oriented. Essentially
the condition on the time step so that the elements remain positively oriented
is equivalent to a stability condition. Figure 3 shows a situation in which the
chosen step size is too large. Instead of choosing a smaller time step it is
possible to add a stabilising procedure in which elements are displaced so that
they become positively oriented. The elements are moved to the intersection
point of the previous and next elements.

Inflection points are handled somewhat differently. An element is considered
to be an inflection point if both neighbours have the same angle ¢. Figure 4a
shows the typical situation that arises for an inflection point if the time step
is chosen too large. In this case the stabilising procedure coalesces the two
neighbours into one element at an average position of the neighbouring elements
(so that enclosed area is conserved) and deletes the element corresponding to the
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Different velocity vectors influencing a long line element

N

*——

Long element broken into smaller elements

EDVUD aa i WD s

FIGURE 5. Adding elements: If elements become too long they are broken into parallel
elements separated by inflection points.

inflection point (Figure 4b). We see that the stabilising procedure reduces the
total variation of the curve and conserves signed arc-length and enclosed area.
(See Sethian [8] for a discussion of variation in the flame propagation case).

Finally there are flows in which the variation of the curve can increase
with time. It is then necessary to add extra elements in regions in which the
length of the elements become too long. We have two parameters £,,, and
£,0, corresponding to the maximum length allowed for any element and the
maximum length allowed for any new element. If an element is detected which
is longer than £,,.,, then the element is broken into a number of elements lying
on the original element and with the same angle ¢, separated by inflection point
elements (see Figure 5). The orientation of the inflection points are chosen so
that if the time-step is sufficiently small the evolution equation will flow the
elements so as to have positive length.

Hence we have a method that deals with regions of high curvature and cusps
in a stable and efficient manner.

3. Numerical results

In this section we describe some numerical experiments, in which we test our
method on a number of representative flows corresponding to different choices
of the velocity function F(x, v, H).
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FIGURE 6. Constant outward flow (F(x, v, H)).
(a) Initial circle with angle between elements ¢ = /10 (20 elements).
(b) Initial circle with & = 7 /20 (40 elements).
(c) Initial non-convex region with a = /10 (40 elements).
(d) Initial non-convex region with a = 7 /20 (80 elements).

3.1. Constant outward flow As a first test of our method we evolved a number
of curves using a constant outward velocity F(x, v, H) = 1. The main problems
associated with this evolution are the formation of cusps in a finite time and the
evolution of the curve once a cusp has formed. Both of these problems are
easily dealt with using line elements. First a cusp can be easily detected if a
number of consecutive elements intersect at a point and have zero length. The
stabilising procedure automatically produces cusps to ensure that no elements
are negatively oriented. The evolution of the cusp proceeds by the elements
generating the cusp gradually being able to evolve to strictly positively oriented
elements without the need to stabilise. For instance, a rectangle can immediately
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FIGURE 7. Constant angular rotation: Rectangle at times ¢ = 0 and 3.14. In all cases we
consider angle o = 7 /10.
(a) Time-step At = 0.01, £,,,, = 0.2 (b) Time-step At = 0.005, £, = 0.2
(c) Time-step At = 0.01, £,,,, = 0.05 (d) Time-step At = 0.005, £,,,, = 0.05
Note that accuracy is improved as time-step and £,,,, decreases.

evolve to a curve without cusps or comers. The elements initially generating
the comers immediately spread out to form a curve approximating an arc of a
circle. The error produced by this approximation is of order o, where « is the
angle between consecutive elements. See Figure 6 for the evolution of a circle
and a non-convex region with the angle between elements being @ = 7 /10 and
7/20. In these problems the production of extra elements as the lengths of the
elements become large does not increase the accuracy of the method. It is only
the time step At and angle difference o which matters.

3.2. Constant angular rotation Another important test of our method is a flow
which simply rotates the object. In fact this is a very severe test of our method
as it involves moving elements appreciably in the tangential direction. Recall
that our method is based on the assumption that the evolution is dominatéd by
the normal flow. In this rotating case the creation of elements is crucial for the
approximation of the flow. We used an initial curve given by a rectangle and
flowed with a constant angular velocity F (x, v, H) = x' - v (here x! is obtained
by rotating x by an angle 7 /2 in counter-clockwise direction). The sides of the
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rectangle rotate and so must be generated by a continuously changing collection
of elements separated by inflection points. At the comers, elements become
negatively oriented and need to be stabilised. Figure 7 shows the evolution of
the rectangle using an angle ¢ = 7 /10, time steps of At = 0.01 and 0.005, and
£max = 0.2 and 0.05. We observe that it is the time step and the maximum length
of the elements which controls the accuracy. It should be noted that the total
number of elements generating the curve is of the order of 100 for £,,, = 0.2
and 400 for £,,,, = 0.05. In all cases we used £,,, = £,.4,/3. Observe that the
sides of the rectangle are generally made up of a number of elements separated
by inflection points.

3.3. Mean curvature flow Next we tested our method on pure mean-curvature
flow. The mean curvature of an element can be calculated in a number of
ways. We concentrated on two methods. First we calculated the curvature of
an element by calculating the radius of a circle tangent to the element and its
two neighbours. This method produces very large curvatures if the length of
an element is small. To ensure stability of the method we must ensure that the
time step be smaller than a constant times the square of the smallest length of
any element (parabolic stability requirement). With this choice of time step it is
not necessary to use the stabilising algorithm as only inflection point elements
can evolve into a negatively oriented state. Figure 8 shows the results of using
this method to study the formation of a singularity for an embedded curve. The
singularity has been magnified so that the curvature of the point on the axis is
equal to one. We have been able to continue this evolution to stages in which
the spatial resolution of the method extends over at least 7 orders of magnitude.
Secondly we approximated the mean curvature by

H! = (¢4 — ¢2)/d; ,

where ¢, is the angle of the first element after element i with positive length,
¢_ is the angle of the last element before element i with positive length and d;
is the distance between the midpoints of these two associated elements. This
second method is better for dealing with comers and allows for larger time steps
in these situations. The parabolic time step restraint is still necessary, but now
the time step needs to be less than a constant times the square of the smallest
length of any element with strictly positive length, i.e. we allow elements to
have zero length. Figure 9 shows the result of using the second method for the
evolution of a number of initial curves. It should be noted that in all these cases
the time-step is bounded by the square of the minimum length of elements with
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FIGURE 8. Mean curvature flow F(x, v, H) = —H using inscribed circle method. Formation
of singularity from an initially self intersecting curve. Figures a, c, e, g show immersed curve
at times 0.0, 0.10928, 0.112067, 0.112178 respectively. Figures b, d, f, h scale the singularity
region so that curvature at point p is one.
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Singularity Times
Curves T, T,
Fig. 9a | 0.5000 | 0.5016
Fig. 9b | 0.5602 | 0.5561
Fig. 9c | 0.1108 | 0.1104

TABLE 1. Exact singularity times 7, and computed singularity times T for the mean curvature
flows depicted in Figure 9.

(a) (b)
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FIGURE 9. Mean curvature flow F(x, v, H) = —H using finite difference method.
(a) Initially circular region, & = 7/20.  (b) Initially non-convex region, & = 7 /20.
(c) Initially cigar shaped region, @ = n/20.

positive length. Notice that all the curves flow to point in a finite time, and
the shape converges to a circle. Table 1 shows the computed singularity times
together with the theoretical singularity time given by /Initial area/2r.

3.4. Combined flows Finally we combined the constant outward flow with
mean curvature flow. We tested our method on flows of the form F(x, v, H) =
1 — €eH. Starting from an initially non-convex curve we tested the flow with
e = 0.0,0.1,0.5, 1.5. As can be seen in Figures 10a-d, for larger values of ¢
the mean curvature flow dominates and forces the flow to converge to a point in
a finite time. For small €, the outward flow dominates. It is only in the regions
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FIGURE 10. Combined flow F(x,v, H) = 1—€H. (@) e = 0, = 7/10. (b) e = 0.5,
a=n/10. (c)e = 1.0, =7/10. (d)e = 1.5, = 7 /10.

of high curvature (i.e., the comers and cusps) that the mean curvature term
competes with the outward flow so as to smooth out these regions. Finally for
intermediate values of € the outward flow and the mean curvature flow compete
more evenly to produce the flows displayed in Figure 10.

4. An application to bushfires

In this section we will apply our method to curve flows associated with the
evolution of bushfires. It has been observed that many bushfires tend to form
elliptical fronts (see [1] and [2]). It is a simple matter to see that the normal flow
which corresponds to an elliptical front is given by

F(x,v, H) = g-n,) + VI2 + (f2 — k%) (v - n,)? @)

where n,, is the direction of the wind and f, g, 4 are experimental constants (see
[2]). The velocity of the head of the fire is given by f + g, the velocity of the tail
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by f — g, and the side of the fire by 4. We compared the evolution of a bushfire
under the influence of wind using the normal flow given by (4) together with

F(x,v, H) =g(v-n,)+h+(f —h)(v-n,)* (5)
and

F(x,v,H) =g -n,) +h+(f —h)v-n,l (6)

(b)

FIGURE 11. Bushfire fronts at 6, 14, 22, and 24 minutes using experimental data
B, f,. g, h) = (0°,0.2,0.133,0.1) for r € [0, 6], (—55°,0.437,0.387,0.212) for t € (6, 14],
(—22°,0.525,0.475,0.137) for t € (14,22] and (20°,0.95,0.9,0.1) for ¢t € (22,24] (B is the
angle of wind with respect to the initial wind direction).

(a) Normal flow given by (3). (b) Normal flow given by (4). (c) Normal flow given by (5).
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FIGURE 12. Bushfire fronts at 2 minute intervals using the same experimental data as for figure
11. (a) Normal flow using (5). (b) Normal flow using (7).

where f, g, h are the same experimentally obtained parameters which depend
on wind speed.

In Figure 11 we display the evolution using the three normal flows above,
using a set of values g, f, h and wind direction from an actual fire (see [1]). The
curves show the computed position of the curve just as the wind direction and
speed is about to change. We note that all three evolutions give qualitatively
similar results.

In addition we evolved our bushfire using a flow of the form

Fx,v, H) =g -n,) +h+ (f — h)(v-n,)? — 0.05H . 7

Note that a curvature term has been added. Figure 12 shows the bushfire front
at two minute intervals for flow with and without the added curvature term. We
see that the added term tends to smooth out the area at the head and tail of the
front. To deal with the extra second-order term in the equation it is necessary
for the time step to depend on the square of the distance between line elements
to maintain stability in the computation of the length of the elements. (Note
that the distance between elements can only become small in regions of high
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curvature.)

We draw two conclusions from these simple experiments. First, it is quite
possible that an ideal fire acted upon by a constant wind will form a shape which
only approximates the shape of an ellipse. As can be seen from the simulations,
subtle differences in the shape of the fire front are associated with different
local velocity functions. To provide an accurate simulation of a bushfire it is
necessary to have an accurate formn for this normal velocity of the evolution. This
information can either be in the form of a statement about the fire evolving via a
Huygens principle generated by small regions of a specific shape, or via a formula
for normal velocity. Both are essentially equivalent. From this information an
appropriate numerical method can be chosen, whether it be a Huygens principle,
a standard marker particle method or the line element method described in this
paper.

On the other hand, it is evident that provided the speed of the head, tail and
side of the fire are well approximated, then the basic shape and size of the fire
will be well approximated. Hence for instances in which only very general
information about the direction and size of a fire is known and the region of
interest is fairly homogeneous, reasonable simulations can still be obtained using
any of the flows described above and perhaps even cruder assumptions.

5. Conclusion

In this paper we have described a numerical method which allows for the
approximation of curve flow problems in which the normal velocity of the curve
depends on a function of position, the normal and the curvature of the curve. The
method naturally allows for a stable representation of the normal of a curve and
automatically concentrates computational effort in regions of high curvature.
With appropriate bookkeeping, the method could deal with the situation of a
number of curves flowing in the plane with intersections occurring. The method
is computationally comparable with a naive marker particle method, but can
naturally deal with the cusp formation found in flame propagation problems.
We feel that the method provides a stable and computationally efficient method
for the study of curve flow problems in the plane.
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